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There are two main ways to introduce the dot product

Geometrical

definition
→ Properties →

Expression in

components.

Geometrical

expression
← Properties ←

Definition in

components.

We choose the first way, the textbook chooses the second way.
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The dot product of two vectors is a scalar

Definition
Let v , w be vectors in Rn, with n = 2, 3, having length |v | and |w|
with angle in between θ, where 0 ≤ θ ≤ π. The dot product of v
and w, denoted by v ·w, is given by

v ·w = |v | |w| cos(θ).
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The dot product of two vectors is a scalar

Example

Compute v ·w knowing that v, w ∈ R3, with |v| = 2, w = 〈1, 2, 3〉
and the angle in between is θ = π/4.

Solution: We first compute |w|, that is,

|w|2 = 12 + 22 + 32 = 14 ⇒ |w| =
√

14.

We now use the definition of dot product:

v ·w = |v| |w| cos(θ) = (2)
√

14

√
2

2
⇒ v ·w = 2

√
7.

C

I The angle between two vectors is a usually not know in
applications.

I It will be convenient to obtain a formula for the dot product
involving the vector components.
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Perpendicular vectors have zero dot product.

Definition
Two vectors are perpendicular, also called orthogonal, iff the angle
in between is θ = π/2.

0 =      /  2

V W

Theorem
The non-zero vectors v and w are perpendicular iff v ·w = 0.

Proof.

0 = v ·w = |v| |w| cos(θ)

|v| 6= 0, |w| 6= 0

}
⇔

{
cos(θ) = 0

0 6 θ 6 π
⇔ θ =

π

2
.
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The dot product of i, j and k is simple to compute

Example

Compute all dot products involving the vectors i, j , and k.

Solution: Recall: i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉.

yi j

k

x

z

i · i = 1, j · j = 1, k · k = 1,

i · j = 0, j · i = 0, k · i = 0,

i · k = 0, j · k = 0, k · j = 0.

C
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The dot product and orthogonal projections.

The dot product is closely related to orthogonal projections of one
vector onto the other. Recall: v ·w = |v| |w| cos(θ).

V W  =  |V| cos(O)�� ����
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|W|

|V|
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W

V W  =  |W| cos(O)
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Properties of the dot product.

Theorem

(a) v ·w = w · v , (symmetric);

(b) v · (aw) = a (v ·w), (linear);

(c) u · (v + w) = u · v + u ·w, (linear);

(d) v · v = |v |2 > 0, and v · v = 0 ⇔ v = 0, (positive);

(e) 0 · v = 0.

Proof.
Properties (a), (b), (d), (e) are simple to obtain from the
definition of dot product v ·w = |v| |w| cos(θ).
For example, the proof of (b) for a > 0:

v · (aw) = |v| |aw| cos(θ) = a |v| |w| cos(θ) = a (v ·w).
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Properties of the dot product.

(c), u · (v + w) = u · v + u ·w, is non-trivial. The proof is:

V

W

w
|V+W| cos(0)

V+W

U

0V

0

0W

|W| cos(0 ) 

|V| cos(0 ) V

W

|v + w| cos(θ) =
u · (v + w)

|u|
,

|w| cos(θw ) =
u ·w
|u|

,

|v| cos(θv ) =
u · v
|u|

,


⇒ u · (v + w) = u · v + u ·w



Properties of the dot product.

(c), u · (v + w) = u · v + u ·w, is non-trivial. The proof is:

V

W

w
|V+W| cos(0)

V+W

U

0V

0

0W

|W| cos(0 ) 

|V| cos(0 ) V

W

|v + w| cos(θ) =
u · (v + w)

|u|
,

|w| cos(θw ) =
u ·w
|u|

,

|v| cos(θv ) =
u · v
|u|

,


⇒ u · (v + w) = u · v + u ·w



Dot product and vector projections (Sect. 12.3)

I Two definitions for the dot product.

I Geometric definition of dot product.

I Orthogonal vectors.

I Dot product and orthogonal projections.

I Properties of the dot product.

I Dot product in vector components.

I Scalar and vector projection formulas.



The dot product in vector components (Case R2)

Theorem
If v = 〈vx , vy 〉 and w = 〈wx ,wy 〉, then v ·w is given by

v ·w = vxwx + vywy .

Proof.
Recall: v = vx i + vy j and w = wx i + wy j . The linear property of
the dot product implies

v ·w = (vx i + vy j ) · (wx i + wy j )

= vxwx i · i + vxwy i · j + vywx j · i + vywy j · j .

Recall: i · i = j · j = 1 and i · j = j · i = 0. We conclude that

v ·w = vxwx + vywy .
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The dot product in vector components (Case R3)

Theorem
If v = 〈vx , vy , vz〉 and w = 〈wx ,wy ,wz〉, then v ·w is given by

v ·w = vxwx + vywy + vzwz .

I The proof is similar to the case in R2.

I The dot product is simple to compute from the vector
component formula v ·w = vxwx + vywy + vzwz .

I The geometrical meaning of the dot product is simple to see
from the formula v ·w = |v| |w| cos(θ).
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Example

Find the cosine of the angle between v = 〈1, 2〉 and w = 〈2, 1〉

Solution:

v ·w = |v| |w| cos(θ) ⇒ cos(θ) =
v ·w
|v| |w|

.

Furthermore,

v ·w = (1)(2) + (2)(1)

|v| =
√

12 + 22 =
√

5,

|w| =
√

22 + 12 =
√

5,

 ⇒ cos(θ) =
4

5
.

C
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Scalar and vector projection formulas.

Theorem
The scalar projection of vector v along the vector w is the number
pw (v) given by

pw (v) =
v ·w
|w|

.

The vector projection of vector v along the vector w is the vector
pw (v) given by

pw (v) =
(v ·w
|w|

) w

|w|
.

P  (V)  =   V W   =   |V| cos(O) ��
����

O

V

W

W
|W|

P  (V)  =    V W      W ��

O

V

W

W
|W||W|
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Example

Find the scalar projection of b = 〈−4, 1〉 onto a = 〈1, 2〉.

Solution: The scalar projection of b onto a is the number

pa(b) = |b| cos(θ) =
b · a
|a|

=
(−4)(1) + (1)(2)√

12 + 22
.

We therefore obtain pa(b) = − 2√
5
.

a

p (b)
a

b
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Cross product and determinants (Sect. 12.4)

I Two definitions for the cross product.

I Geometric definition of cross product.

I Parallel vectors.

I Properties of the cross product.

I Cross product in vector components.

I Determinants to compute cross products.

I Triple product and volumes.



There are two main ways to introduce the cross product

Geometrical

definition
→ Properties →

Expression in

components.

Geometrical

expression
← Properties ←

Definition in

components.

We choose the first way, like the textbook.
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The cross product of two vectors is another vector

Definition
Let v , w be vectors in R3 having length |v | and |w| with angle in
between θ, where 0 ≤ θ ≤ π. The cross product of v and w,
denoted as v ×w, is a vector perpendicular to both v and w,
pointing in the direction given by the right hand rule, with norm

|v ×w| = |v | |w| sin(θ).
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Cross product vectors are perpendicular to the original vectors.



|v ×w| is the area of a parallelogram

Theorem
|v ×w| is the area of the parallelogram formed by vectors v and w.

Proof.

V

W

|V| sin(O)

O

The area A of the parallelogram formed by v and w is given by

A = |w|
(
|v| sin(θ)

)
= |v×w|.
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Parallel vectors have zero cross product.

Definition
Two vectors are parallel iff the angle in between them is θ = 0.

v

w

Theorem
The non-zero vectors v and w are parallel iff v ×w = 0.

Proof.
Recall: Vector v×w = 0 iff its length |v×w| = 0, then

|v| |w| sin(θ) = 0

|v| 6= 0, |w| 6= 0

}
⇔

{
sin(θ) = 0

0 6 θ 6 π
⇔


θ = 0,

or

θ = π.
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|v| 6= 0, |w| 6= 0

}
⇔

{
sin(θ) = 0

0 6 θ 6 π
⇔


θ = 0,

or

θ = π.
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Recall: |v ×w| is the area of a parallelogram

Example

The closer the vectors v, w are to be parallel, the smaller is the
area of the parallelogram they form, hence the shorter is their cross
product vector v×w.
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Example

Compute all cross products involving the vectors i, j , and k.

Solution: Recall: i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉.

yi j

k

x

z

i× j = k, j × k = i, k× i = j ,

i× i = 0, j × j = 0, k× k = 0,

i× k = −j , j × i = −k, k× j = −i.

C
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Cross product and determinants (Sect. 12.4)

I Two definitions for the cross product.

I Geometric definition of cross product.

I Parallel vectors.

I Properties of the cross product.

I Cross product in vector components.

I Determinants to compute cross products.

I Triple product and volumes.



Main properties of the cross product

Theorem

(a) v ×w = −(w× v ), (Skew-symmetric);

(b) v × v = 0;

(c) (a v )×w = v × (a w) = a (v ×w), (linear);

(d) u× (v + w) = u× v + u×w, (linear);

(e) u× (v ×w) 6= (u× v )×w, (not associative).

Proof.
Part (a) results from the right hand rule. Part (b) comes from part
(a). Parts (b) and (c) are proven in a similar ways as the linear
property of the dot product. Part (d) is proven by giving an
example.
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The cross product is not associative, that is,
u× (v×w) 6= (u× v)×w.

Example

Show that i× (i× k) = −k and (i× i)× k = 0.

Solution:

i× (i× k) = i× (−j ) = −(i× j ) = −k ⇒ i× (i× k) = −k,

(i× i)× k = 0× j = 0 ⇒ (i× i)× k = 0.

C

Recall: The cross product of two vectors vanishes when the
vectors are parallel
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I Two definitions for the cross product.

I Geometric definition of cross product.
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I Properties of the cross product.
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The cross product vector in vector components.

Theorem
If the vector components of v and w in a Cartesian coordinate
system are v = 〈v1, v2, v3〉 and w = 〈w1,w2,w3〉, then holds

v ×w = 〈(v2w3 − v3w2), (v3w1 − v1w3), (v1w2 − v2w1)〉.

For the proof, recall the non-zero cross products

i× j = k, j × k = i, k× i = j ,

and their skew-symmetric products, while all the other cross
products vanish, and then use the properties of the cross product.
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Cross product in vector components.

Proof.
Recall:

v = v1 i + v2 j + v3 k, w = w1 i + w2 j + w3 k.

Then, it holds

v ×w = (v1 i + v2 j + v3 k)× (w1 i + w2 j + w3 k).

Use the linearity property. The only non-zero terms are those with
products i× j = k and j × k = i and k× i = j . The result is

v×w = (v2w3 − v3w2) i + (v3w1 − v1w3) j + (v1w2 − v2w1) k.



Cross product in vector components.

Example

Find v×w for v = 〈1, 2, 0〉 and w = 〈3, 2, 1〉,

Solution: We use the formula

v×w = 〈(v2w3 − v3w2), (v3w1 − v1w3), (v1w2 − v2w1)〉
= 〈[(2)(1)− (0)(2)], [(0)(3)− (1)(1)], [(1)(2)− (2)(3)]〉
= 〈(2− 0), (−1), (2− 6)〉 ⇒ v×w = 〈2,−1,−4〉.

C

Exercise: Find the angle between v and w above, and then check
that this angle is correct using the dot product of these vectors.
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Determinants help to compute cross products.

We use determinants only as a tool to remember the components
of v×w. Let us recall here the definition of determinant of a 2× 2
matrix: ∣∣∣∣a b

c d

∣∣∣∣ = ad − bc .

The determinant of a 3× 3 matrix can be computed using three
2× 2 determinants:∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 b3

c2 c3

∣∣∣∣− a2

∣∣∣∣b1 b3

c1 c3

∣∣∣∣ + a3

∣∣∣∣b1 b2

c1 c2

∣∣∣∣ .



Determinants help to compute cross products.

Claim
If the vector components of v and w in a Cartesian coordinate
system are v = 〈v1, v2, v3〉 and w = 〈w1,w2,w3〉, then holds

v×w =

∣∣∣∣∣∣
i j k
v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣

A straightforward computation shows that∣∣∣∣∣∣
i j k
v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ = (v2w3−v3w2) i−(v1w3−v3w1) j +(v1w2−v2w1) k.
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Determinants help to compute cross products.

Example

Given the vectors v = 〈1, 2, 3〉 and w = 〈−2, 3, 1〉, compute both
w× v and v×w.

Solution: We need to compute the following determinant:

w× v =

∣∣∣∣∣∣
i j k

w1 w2 w3

v1 v2 v3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
i j k
−2 3 1
1 2 3

∣∣∣∣∣∣
The result is

w×v = (9−2) i−(−6−1) j +(−4−3) k ⇒ w× v = 〈7, 7,−7〉.

From the properties of the determinant we know that
v×w = −w× v, therefore v×w = 〈−7,−7, 7〉. C
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The triple product of three vectors is a number

Definition
Given vectors u, v , w, the triple product is the number given by

u · (v ×w).

The parentheses are important. First do the cross product,
and only then dot the resulting vector with the first vector.

Property of the triple product.

Theorem
The triple product of vectors u, v , w satisfies

u · (v ×w) = w · (u× v ) = v · (w× u).
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The triple product of three vectors is a number
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Given vectors u, v , w, the triple product is the number given by
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The triple product is related to the volume of the
parallelepiped formed by the three vectors

Theorem
If u, v , w are vectors in R3, then |u · (v ×w)| is the volume of the
parallelepiped determined by the vectors u, v , w.

W x V

U

V

W



The triple product and volumes

A

W x V

0

U

V

W

h

Proof.
Recall the definition of a dot product: x · y = |x| |y| cos(θ).

So,

|u · (v×w)| = |u| |v×w| cos(θ) = h |v×w|.

|v×w| is the area A of the parallelogram formed by v and w. So,

|u · (v×w)| = h A,

which is the volume of the parallelepiped formed by u, v, w.
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The triple product and volumes

Example

Compute the volume of the parallelepiped formed by the vectors
u = 〈1, 2, 3〉, v = 〈3, 2, 1〉, w = 〈1,−2, 1〉.

Solution: We use the formula V = |u · (v×w)|. We must compute
the cross product first:

v×w =

∣∣∣∣∣∣
i j k
3 2 1
1 −2 1

∣∣∣∣∣∣ = (2 + 2) i− (3− 1) j + (−6− 2) k,

that is, v×w = 〈4,−2,−8〉. Now compute the dot product,

u · (v×w) = 〈1, 2, 3〉 · 〈4,−2,−8〉 = 4− 4− 24,

that is, u · (v×w) = −24. We conclude that V = 24. C
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The triple product is computed with a determinant

Theorem
The triple product of vectors u = 〈u1, u2, u3〉, v = 〈v1, v2, v3〉, and
w = 〈w1,w2,w3〉 is given by

u · (v ×w) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3
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Example

Compute the volume of the parallelepiped formed by the vectors
u = 〈1, 2, 3〉, v = 〈3, 2, 1〉, w = 〈1,−2, 1〉.

Solution:
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3 2 1
1 −2 1

∣∣∣∣∣∣ .



The triple product is computed with a determinant

Theorem
The triple product of vectors u = 〈u1, u2, u3〉, v = 〈v1, v2, v3〉, and
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The result is:

u · (v ×w) = (1)(2 + 2)− (2)(3− 1) + (3)(−6− 2),= 4− 4− 24,

that is, u · (v ×w) = −24. We conclude that V = 24. C
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