Review for Exam 4.

- Sections 16.1-16.5, 16.7, 16.8.
- 50 minutes.
- 5 problems, similar to homework problems.
- No calculators, no notes, no books, no phones.
- No green book needed.

Review for Exam 4.

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area, surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

Conservative fields, potential functions (16.3).
Example
Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.

Conservative fields, potential functions (16.3).

Example
Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} .
$$

Conservative fields, potential functions (16.3).

Example
Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} . \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y},
\end{gathered}
$$

Conservative fields, potential functions (16.3).

Example
Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x}
\end{gathered}
$$

Conservative fields, potential functions (16.3).

Example
Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x} \\
\partial_{x} F_{y}=\sin (z)=\partial_{y} F_{x}
\end{gathered}
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x} \\
\partial_{x} F_{y}=\sin (z)=\partial_{y} F_{x}
\end{gathered}
$$

Therefore, \mathbf{F} is a conservative field,

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x} \\
\partial_{x} F_{y}=\sin (z)=\partial_{y} F_{x}
\end{gathered}
$$

Therefore, \mathbf{F} is a conservative field, that means there exists a scalar field f such that $\mathbf{F}=\nabla f$.

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x} \\
\partial_{x} F_{y}=\sin (z)=\partial_{y} F_{x}
\end{gathered}
$$

Therefore, \mathbf{F} is a conservative field, that means there exists a scalar field f such that $\mathbf{F}=\nabla f$. The equations for f are

$$
\partial_{x} f=y \sin (z), \quad \partial_{y} f=x \sin (z), \quad \partial_{z} f=x y \cos (z) .
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$.

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z)
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$.

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0,
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$.

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$. Introduce this expression into the last equation above,

$$
\partial_{z} f=x y \cos (z)+h^{\prime}(z)=x y \cos (z)
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$. Introduce this expression into the last equation above,

$$
\partial_{z} f=x y \cos (z)+h^{\prime}(z)=x y \cos (z) \Rightarrow h^{\prime}(z)=0
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$.
Introduce this expression into the last equation above,

$$
\partial_{z} f=x y \cos (z)+h^{\prime}(z)=x y \cos (z) \Rightarrow h^{\prime}(z)=0 \Rightarrow h(z)=c
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$.
Introduce this expression into the last equation above,

$$
\partial_{z} f=x y \cos (z)+h^{\prime}(z)=x y \cos (z) \Rightarrow h^{\prime}(z)=0 \Rightarrow h(z)=c
$$

We conclude that $f(x, y, z)=x y \sin (z)+c$.

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative,

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$,

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z .
$$

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z
$$

We have computed f already, $f=x y \sin (z)+c$.

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z
$$

We have computed f already, $f=x y \sin (z)+c$. Since \mathbf{F} is conservative, the integral $/$ is path independent,

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z .
$$

We have computed f already, $f=x y \sin (z)+c$.
Since \mathbf{F} is conservative, the integral $/$ is path independent, and

$$
I=\int_{(1,1, \pi / 2)}^{(1,2, \pi / 2)}[y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z]
$$

Conservative fields, potential functions (16.3).

Example
Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z .
$$

We have computed f already, $f=x y \sin (z)+c$.
Since \mathbf{F} is conservative, the integral / is path independent, and

$$
\begin{aligned}
& \quad I=\int_{(1,1, \pi / 2)}^{(1,2, \pi / 2)}[y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z] \\
& I=f(1,2, \pi / 2)-f(1,1, \pi / 2)
\end{aligned}
$$

Conservative fields, potential functions (16.3).

Example
Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z .
$$

We have computed f already, $f=x y \sin (z)+c$.
Since \mathbf{F} is conservative, the integral / is path independent, and

$$
\begin{gathered}
\quad I=\int_{(1,1, \pi / 2)}^{(1,2, \pi / 2)}[y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z] \\
I=f(1,2, \pi / 2)-f(1,1, \pi / 2)=2 \sin (\pi / 2)-\sin (\pi / 2)
\end{gathered}
$$

Conservative fields, potential functions (16.3).

Example
Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z .
$$

We have computed f already, $f=x y \sin (z)+c$.
Since \mathbf{F} is conservative, the integral $/$ is path independent, and

$$
\begin{gathered}
I=\int_{(1,1, \pi / 2)}^{(1,2, \pi / 2)}[y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z] \\
I=f(1,2, \pi / 2)-f(1,1, \pi / 2)=2 \sin (\pi / 2)-\sin (\pi / 2) \Rightarrow I=1 .
\end{gathered}
$$

Conservative fields, potential functions (16.3).

Example

Show that the differential form in the integral below is exact,

$$
\int_{C}\left[3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln (y) d z\right], \quad y>0
$$

Conservative fields, potential functions (16.3).

Example

Show that the differential form in the integral below is exact,

$$
\int_{C}\left[3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln (y) d z\right], \quad y>0
$$

Solution: We need to show that the field $\mathbf{F}=\left\langle 3 x^{2}, \frac{z^{2}}{y}, 2 z \ln (y)\right\rangle$ is conservative.

Conservative fields, potential functions (16.3).

Example

Show that the differential form in the integral below is exact,

$$
\int_{C}\left[3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln (y) d z\right], \quad y>0
$$

Solution: We need to show that the field $\mathbf{F}=\left\langle 3 x^{2}, \frac{z^{2}}{y}, 2 z \ln (y)\right\rangle$ is conservative. It is, since,

$$
\partial_{y} F_{z}=\frac{2 z}{y}=\partial_{z} F_{y}
$$

Conservative fields, potential functions (16.3).

Example
Show that the differential form in the integral below is exact,

$$
\int_{C}\left[3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln (y) d z\right], \quad y>0
$$

Solution: We need to show that the field $\mathbf{F}=\left\langle 3 x^{2}, \frac{z^{2}}{y}, 2 z \ln (y)\right\rangle$ is conservative. It is, since,

$$
\partial_{y} F_{z}=\frac{2 z}{y}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=0=\partial_{z} F_{x}
$$

Conservative fields, potential functions (16.3).

Example
Show that the differential form in the integral below is exact,

$$
\int_{C}\left[3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln (y) d z\right], \quad y>0
$$

Solution: We need to show that the field $\mathbf{F}=\left\langle 3 x^{2}, \frac{z^{2}}{y}, 2 z \ln (y)\right\rangle$ is conservative. It is, since,

$$
\partial_{y} F_{z}=\frac{2 z}{y}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=0=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=0=\partial_{y} F_{x}
$$

Conservative fields, potential functions (16.3).

Example
Show that the differential form in the integral below is exact,

$$
\int_{C}\left[3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln (y) d z\right], \quad y>0
$$

Solution: We need to show that the field $\mathbf{F}=\left\langle 3 x^{2}, \frac{z^{2}}{y}, 2 z \ln (y)\right\rangle$ is conservative. It is, since,

$$
\partial_{y} F_{z}=\frac{2 z}{y}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=0=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=0=\partial_{y} F_{x} .
$$

Therefore, exists a scalar field f such that $\mathbf{F}=\nabla f$,

Conservative fields, potential functions (16.3).

Example
Show that the differential form in the integral below is exact,

$$
\int_{C}\left[3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln (y) d z\right], \quad y>0
$$

Solution: We need to show that the field $\mathbf{F}=\left\langle 3 x^{2}, \frac{z^{2}}{y}, 2 z \ln (y)\right\rangle$ is conservative. It is, since,

$$
\partial_{y} F_{z}=\frac{2 z}{y}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=0=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=0=\partial_{y} F_{x} .
$$

Therefore, exists a scalar field f such that $\mathbf{F}=\nabla f$, or equivalently,

$$
d f=3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln (y) d z
$$

Review for Exam 4.

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area, surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral given by $\oint_{C}[(6 y+x) d x+(y+2 x) d y]$ on the circle C defined by $(x-1)^{2}+(y-3)^{2}=4$.

The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral given by $\oint_{C}[(6 y+x) d x+(y+2 x) d y]$ on the circle C defined by $(x-1)^{2}+(y-3)^{2}=4$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$.

The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral given by $\oint_{C}[(6 y+x) d x+(y+2 x) d y]$ on the circle C defined by $(x-1)^{2}+(y-3)^{2}=4$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$. Here $\mathbf{F}=\langle(6 y+x),(y+2 x)\rangle$.

The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral given by $\oint_{C}[(6 y+x) d x+(y+2 x) d y]$ on the circle C defined by $(x-1)^{2}+(y-3)^{2}=4$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$.
Here $\mathbf{F}=\langle(6 y+x),(y+2 x)\rangle$. Since $\partial_{x} F_{y}=2$ and $\partial_{y} F_{x}=6$,

The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral given by $\oint_{C}[(6 y+x) d x+(y+2 x) d y]$ on the circle C defined by $(x-1)^{2}+(y-3)^{2}=4$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$.
Here $\mathbf{F}=\langle(6 y+x),(y+2 x)\rangle$. Since $\partial_{x} F_{y}=2$ and $\partial_{y} F_{x}=6$, Green's Theorem implies

$$
\oint_{C}[(6 y+x) d x+(y+2 x) d y]=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(2-6) d x d y .
$$

The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral given by $\oint_{C}[(6 y+x) d x+(y+2 x) d y]$ on the circle C defined by $(x-1)^{2}+(y-3)^{2}=4$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$.
Here $\mathbf{F}=\langle(6 y+x),(y+2 x)\rangle$. Since $\partial_{x} F_{y}=2$ and $\partial_{y} F_{x}=6$, Green's Theorem implies

$$
\oint_{C}[(6 y+x) d x+(y+2 x) d y]=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(2-6) d x d y .
$$

Since the area of the disk $S=\left\{(x-1)^{2}+(y-3)^{2} \leqslant 4\right\}$ is $\pi\left(2^{2}\right)$,

The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral given by $\oint_{C}[(6 y+x) d x+(y+2 x) d y]$ on the circle C defined by $(x-1)^{2}+(y-3)^{2}=4$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$.
Here $\mathbf{F}=\langle(6 y+x),(y+2 x)\rangle$. Since $\partial_{x} F_{y}=2$ and $\partial_{y} F_{x}=6$, Green's Theorem implies

$$
\oint_{C}[(6 y+x) d x+(y+2 x) d y]=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(2-6) d x d y .
$$

Since the area of the disk $S=\left\{(x-1)^{2}+(y-3)^{2} \leqslant 4\right\}$ is $\pi\left(2^{2}\right)$,

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=-4 \iint_{S} d x d y
$$

The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral given by $\oint_{C}[(6 y+x) d x+(y+2 x) d y]$ on the circle C defined by $(x-1)^{2}+(y-3)^{2}=4$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$.
Here $\mathbf{F}=\langle(6 y+x),(y+2 x)\rangle$. Since $\partial_{x} F_{y}=2$ and $\partial_{y} F_{x}=6$, Green's Theorem implies

$$
\oint_{C}[(6 y+x) d x+(y+2 x) d y]=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(2-6) d x d y .
$$

Since the area of the disk $S=\left\{(x-1)^{2}+(y-3)^{2} \leqslant 4\right\}$ is $\pi\left(2^{2}\right)$,

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=-4 \iint_{S} d x d y=-4(4 \pi)
$$

The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral given by $\oint_{C}[(6 y+x) d x+(y+2 x) d y]$ on the circle C defined by $(x-1)^{2}+(y-3)^{2}=4$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d x d y$.
Here $\mathbf{F}=\langle(6 y+x),(y+2 x)\rangle$. Since $\partial_{x} F_{y}=2$ and $\partial_{y} F_{x}=6$, Green's Theorem implies

$$
\oint_{C}[(6 y+x) d x+(y+2 x) d y]=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(2-6) d x d y .
$$

Since the area of the disk $S=\left\{(x-1)^{2}+(y-3)^{2} \leqslant 4\right\}$ is $\pi\left(2^{2}\right)$,

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=-4 \iint_{S} d x d y=-4(4 \pi) \quad \Rightarrow \quad \oint_{C} \mathbf{F} \cdot d \mathbf{r}=-16 \pi .
$$

Review for Exam 4.

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area, surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

Surface area, surface integrals (16.5).

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.

Surface area, surface integrals (16.5).

Example
Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution:

Surface area, surface integrals (16.5).

Example
Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution:

We must compute: $I=\iint_{S} g d \sigma$.

Surface area, surface integrals (16.5).

Example
Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.

Solution:

We must compute: $I=\iint_{S} g d \sigma$.
Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$

Surface area, surface integrals (16.5).

Example
Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.

Solution:

We must compute: $I=\iint_{S} g d \sigma$.
Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$
and in this case $f(x, y, z)=y^{2}+4 z-16$.

Surface area, surface integrals (16.5).

Example
Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution:

We must compute: $I=\iint_{S} g d \sigma$.
Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$
and in this case $f(x, y, z)=y^{2}+4 z-16$.

$$
\nabla f=\langle 0,2 y, 4\rangle
$$

Surface area, surface integrals (16.5).

Example
Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution:

We must compute: $I=\iint_{S} g d \sigma$.
Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$
and in this case $f(x, y, z)=y^{2}+4 z-16$.

$$
\nabla f=\langle 0,2 y, 4\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{16+4 y^{2}}
$$

Surface area, surface integrals (16.5).

Example
Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution:

We must compute: $I=\iint_{S} g d \sigma$.
Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$
and in this case $f(x, y, z)=y^{2}+4 z-16$.

$$
\nabla f=\langle 0,2 y, 4\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{16+4 y^{2}}=2 \sqrt{4+y^{2}} .
$$

Surface area, surface integrals (16.5).

Example
Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution:

$$
\text { We must compute: } I=\iint_{S} g d \sigma \text {. }
$$

Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$
and in this case $f(x, y, z)=y^{2}+4 z-16$.

$$
\nabla f=\langle 0,2 y, 4\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{16+4 y^{2}}=2 \sqrt{4+y^{2}} .
$$

Since $R=[0,1] \times[-4,4]$, its normal vector is \mathbf{k} and $|\nabla f \cdot \mathbf{k}|=4$. Then,

Surface area, surface integrals (16.5).

Example
Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution:

$$
\text { We must compute: } I=\iint_{S} g d \sigma \text {. }
$$

Recall $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, with $\mathbf{k} \perp R$
and in this case $f(x, y, z)=y^{2}+4 z-16$.

$$
\nabla f=\langle 0,2 y, 4\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{16+4 y^{2}}=2 \sqrt{4+y^{2}} .
$$

Since $R=[0,1] \times[-4,4]$, its normal vector is \mathbf{k} and $|\nabla f \cdot \mathbf{k}|=4$. Then,

$$
\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y .
$$

Surface area, surface integrals (16.5).

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.

Solution: $\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y$.

Surface area, surface integrals (16.5).

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution: $\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y$.

$$
\iint_{S} g d \sigma=\frac{1}{2} \iint_{R} x\left(4+y^{2}\right) d x d y
$$

Surface area, surface integrals (16.5).

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution: $\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y$.

$$
\iint_{S} g d \sigma=\frac{1}{2} \iint_{R} x\left(4+y^{2}\right) d x d y=\frac{1}{2} \int_{-4}^{4} \int_{0}^{1} x\left(4+y^{2}\right) d x d y
$$

Surface area, surface integrals (16.5).

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution: $\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y$.

$$
\begin{aligned}
& \iint_{S} g d \sigma=\frac{1}{2} \iint_{R} x\left(4+y^{2}\right) d x d y=\frac{1}{2} \int_{-4}^{4} \int_{0}^{1} x\left(4+y^{2}\right) d x d y \\
& \iint_{S} g d \sigma=\frac{1}{2}\left[\int_{-4}^{4}\left(4+y^{2}\right) d y\right]\left[\int_{0}^{1} x d x\right]
\end{aligned}
$$

Surface area, surface integrals (16.5).

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution: $\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y$.

$$
\begin{gathered}
\iint_{S} g d \sigma=\frac{1}{2} \iint_{R} x\left(4+y^{2}\right) d x d y=\frac{1}{2} \int_{-4}^{4} \int_{0}^{1} x\left(4+y^{2}\right) d x d y \\
\iint_{S} g d \sigma=\frac{1}{2}\left[\int_{-4}^{4}\left(4+y^{2}\right) d y\right]\left[\int_{0}^{1} x d x\right]=\left.\left.\frac{1}{2}\left(4 y+\frac{y^{3}}{3}\right)\right|_{-4} ^{4}\left(\frac{x^{2}}{2}\right)\right|_{0} ^{1}
\end{gathered}
$$

Surface area, surface integrals (16.5).

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution: $\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y$.

$$
\begin{aligned}
& \iint_{S} g d \sigma=\frac{1}{2} \iint_{R} x\left(4+y^{2}\right) d x d y=\frac{1}{2} \int_{-4}^{4} \int_{0}^{1} x\left(4+y^{2}\right) d x d y \\
& \iint_{S} g d \sigma=\frac{1}{2}\left[\int_{-4}^{4}\left(4+y^{2}\right) d y\right]\left[\int_{0}^{1} x d x\right]=\left.\left.\frac{1}{2}\left(4 y+\frac{y^{3}}{3}\right)\right|_{-4} ^{4}\left(\frac{x^{2}}{2}\right)\right|_{0} ^{1} \\
& \iint_{S} g d \sigma=\frac{1}{2} 2\left(4^{2}+\frac{4^{3}}{3}\right) \frac{1}{2}
\end{aligned}
$$

Surface area, surface integrals (16.5).

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution: $\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y$.

$$
\begin{aligned}
& \iint_{S} g d \sigma=\frac{1}{2} \iint_{R} x\left(4+y^{2}\right) d x d y=\frac{1}{2} \int_{-4}^{4} \int_{0}^{1} x\left(4+y^{2}\right) d x d y \\
& \iint_{S} g d \sigma=\frac{1}{2}\left[\int_{-4}^{4}\left(4+y^{2}\right) d y\right]\left[\int_{0}^{1} x d x\right]=\left.\left.\frac{1}{2}\left(4 y+\frac{y^{3}}{3}\right)\right|_{-4} ^{4}\left(\frac{x^{2}}{2}\right)\right|_{0} ^{1} \\
& \iint_{S} g d \sigma=\frac{1}{2} 2\left(4^{2}+\frac{4^{3}}{3}\right) \frac{1}{2}=8\left(1+\frac{4}{3}\right)
\end{aligned}
$$

Surface area, surface integrals (16.5).

Example

Integrate the function $g(x, y, z)=x \sqrt{4+y^{2}}$ over the surface cut from the parabolic cylinder $z=4-y^{2} / 4$ by the planes $x=0$, $x=1$ and $z=0$.
Solution: $\iint_{S} g d \sigma=\iint_{R}\left(x \sqrt{4+y^{2}}\right) \frac{2 \sqrt{4+y^{2}}}{4} d x d y$.

$$
\begin{aligned}
& \iint_{S} g d \sigma=\frac{1}{2} \iint_{R} x\left(4+y^{2}\right) d x d y=\frac{1}{2} \int_{-4}^{4} \int_{0}^{1} x\left(4+y^{2}\right) d x d y \\
& \iint_{S} g d \sigma=\frac{1}{2}\left[\int_{-4}^{4}\left(4+y^{2}\right) d y\right]\left[\int_{0}^{1} x d x\right]=\left.\left.\frac{1}{2}\left(4 y+\frac{y^{3}}{3}\right)\right|_{-4} ^{4}\left(\frac{x^{2}}{2}\right)\right|_{0} ^{1} \\
& \iint_{S} g d \sigma=\frac{1}{2} 2\left(4^{2}+\frac{4^{3}}{3}\right) \frac{1}{2}=8\left(1+\frac{4}{3}\right) \quad \Rightarrow \quad \iint_{S} g d \sigma=\frac{56}{3} .
\end{aligned}
$$

Review for Exam 4.

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area, surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and $S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and $S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.

Solution: Recall: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and $S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.

Solution: Recall: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.
The surface S is the cylinder walls and its cover at $z=h$.

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and $S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.

Solution: Recall: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.
The surface S is the cylinder walls and its cover at $z=h$. Therefore, the curve C is the circle $x^{2}+y^{2}=a^{2}$ at $z=0$.

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and $S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.

Solution: Recall: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.
The surface S is the cylinder walls and its cover at $z=h$. Therefore, the curve C is the circle $x^{2}+y^{2}=a^{2}$ at $z=0$. That circle can be parametrized (counterclockwise) as $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and $S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.

Solution: Recall: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.
The surface S is the cylinder walls and its cover at $z=h$. Therefore, the curve C is the circle $x^{2}+y^{2}=a^{2}$ at $z=0$. That circle can be parametrized (counterclockwise) as $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and $S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.

Solution: Recall: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.
The surface S is the cylinder walls and its cover at $z=h$. Therefore, the curve C is the circle $x^{2}+y^{2}=a^{2}$ at $z=0$. That circle can be parametrized (counterclockwise) as $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and
$S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.
Solution: Recall: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.
The surface S is the cylinder walls and its cover at $z=h$. Therefore, the curve C is the circle $x^{2}+y^{2}=a^{2}$ at $z=0$. That circle can be parametrized (counterclockwise) as $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{F}(t)=\left\langle-a \sin (t), a \cos (t), a^{2} \cos ^{2}(t)\right\rangle$ and $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t), 0\rangle$.

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and
$S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.
Solution: $\mathbf{F}(t)=\left\langle-a \sin (t), a \cos (t), a^{2} \cos ^{2}(t)\right\rangle$ and $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t), 0\rangle$. Hence

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and
$S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.
Solution: $\mathbf{F}(t)=\left\langle-a \sin (t), a \cos (t), a^{2} \cos ^{2}(t)\right\rangle$ and $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t), 0\rangle$. Hence

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

$\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{0}^{2 \pi}\left(a^{2} \sin ^{2}(t)+a^{2} \cos ^{2}(t)\right) d t$

The Stokes Theorem (16.7).

Example

Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through the surface S, where $\mathbf{F}=\left\langle-y, x, x^{2}\right\rangle$ and
$S=\left\{x^{2}+y^{2}=a^{2}, z \in[0, h]\right\} \cup\left\{x^{2}+y^{2} \leqslant a^{2}, z=h\right\}$.
Solution: $\mathbf{F}(t)=\left\langle-a \sin (t), a \cos (t), a^{2} \cos ^{2}(t)\right\rangle$ and $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t), 0\rangle$. Hence

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

$\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{0}^{2 \pi}\left(a^{2} \sin ^{2}(t)+a^{2} \cos ^{2}(t)\right) d t=\int_{0}^{2 \pi} a^{2} d t$.
We conclude that $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=2 \pi a^{2}$.

Review for Exam 4.

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area, surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region
$D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region
$D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region
$D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.

$$
\nabla \cdot \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}
$$

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.
$\nabla \cdot \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}=2 x-2 x+3 x$

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.
$\nabla \cdot \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}=2 x-2 x+3 x \quad \Rightarrow \quad \nabla \cdot \mathbf{F}=3 x$.

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.
$\nabla \cdot \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}=2 x-2 x+3 x \quad \Rightarrow \quad \nabla \cdot \mathbf{F}=3 x$.

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v
$$

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.
$\nabla \cdot \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}=2 x-2 x+3 x \quad \Rightarrow \quad \nabla \cdot \mathbf{F}=3 x$.

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v=\iint_{D} 3 x d x d y d z
$$

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.
$\nabla \cdot \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}=2 x-2 x+3 x \quad \Rightarrow \quad \nabla \cdot \mathbf{F}=3 x$.

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v=\iint_{D} 3 x d x d y d z
$$

It is convenient to use spherical coordinates:

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.

$$
\nabla \cdot \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}=2 x-2 x+3 x \quad \Rightarrow \quad \nabla \cdot \mathbf{F}=3 x
$$

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v=\iint_{D} 3 x d x d y d z
$$

It is convenient to use spherical coordinates:

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2}[3 \rho \sin (\phi) \cos (\phi)] \rho^{2} \sin (\phi) d \rho d \phi d \theta
$$

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.

Solution:

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2}[3 \rho \sin (\phi) \cos (\phi)] \rho^{2} \sin (\phi) d \rho d \phi d \theta .
$$

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.

Solution:

$$
\begin{gathered}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2}[3 \rho \sin (\phi) \cos (\phi)] \rho^{2} \sin (\phi) d \rho d \phi d \theta . \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\left[\int_{0}^{\pi / 2} \cos (\theta) d \theta\right]\left[\int_{0}^{\pi / 2} \sin ^{2}(\phi) d \phi\right]\left[\int_{0}^{2} 3 \rho^{3} d \rho\right]
\end{gathered}
$$

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.

Solution:

$$
\begin{gathered}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2}[3 \rho \sin (\phi) \cos (\phi)] \rho^{2} \sin (\phi) d \rho d \phi d \theta . \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\left[\int_{0}^{\pi / 2} \cos (\theta) d \theta\right]\left[\int_{0}^{\pi / 2} \sin ^{2}(\phi) d \phi\right]\left[\int_{0}^{2} 3 \rho^{3} d \rho\right] \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\left[\left.\sin (\theta)\right|_{0} ^{\pi / 2}\right]\left[\frac{1}{2} \int_{0}^{\pi / 2}(1-\cos (2 \phi)) d \phi\right]\left[\left.\frac{3}{4} \rho^{4}\right|_{0} ^{2}\right]
\end{gathered}
$$

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.

Solution:

$$
\begin{aligned}
& \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2}[3 \rho \sin (\phi) \cos (\phi)] \rho^{2} \sin (\phi) d \rho d \phi d \theta . \\
& \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\left[\int_{0}^{\pi / 2} \cos (\theta) d \theta\right]\left[\int_{0}^{\pi / 2} \sin ^{2}(\phi) d \phi\right]\left[\int_{0}^{2} 3 \rho^{3} d \rho\right] \\
& \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\left[\left.\sin (\theta)\right|_{0} ^{\pi / 2}\right]\left[\frac{1}{2} \int_{0}^{\pi / 2}(1-\cos (2 \phi)) d \phi\right]\left[\left.\frac{3}{4} \rho^{4}\right|_{0} ^{2}\right] \\
& \quad \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=(1) \frac{1}{2}\left(\frac{\pi}{2}\right)(12)
\end{aligned}
$$

The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field $\mathbf{F}=\left\langle x^{2},-2 x y, 3 x z\right\rangle$ across the boundary of the region $D=\left\{x^{2}+y^{2}+z^{2} \leqslant 4, x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}$.

Solution:

$$
\begin{gathered}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2}[3 \rho \sin (\phi) \cos (\phi)] \rho^{2} \sin (\phi) d \rho d \phi d \theta . \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\left[\int_{0}^{\pi / 2} \cos (\theta) d \theta\right]\left[\int_{0}^{\pi / 2} \sin ^{2}(\phi) d \phi\right]\left[\int_{0}^{2} 3 \rho^{3} d \rho\right] \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\left[\left.\sin (\theta)\right|_{0} ^{\pi / 2}\right]\left[\frac{1}{2} \int_{0}^{\pi / 2}(1-\cos (2 \phi)) d \phi\right]\left[\left.\frac{3}{4} \rho^{4}\right|_{0} ^{2}\right]
\end{gathered}
$$

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=(1) \frac{1}{2}\left(\frac{\pi}{2}\right)(12) \quad \Rightarrow \quad \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=3 \pi .
$$

Review for the Final Exam.

- Monday, December 13, 10:00am - 12:00 noon. (2 hours.)
- Places:
- Sctns 001, 002, 005,006 in E-100 VMC (Vet. Medical Ctr.),
- Sctns 003, 004, in 108 EBH (Ernst Bessey Hall);
- Sctns 007, 008, in 339 CSE (Case Halls).
- Chapters 12-16.
- Problems, similar to homework problems.
- No calculators, no notes, no books, no phones.
- No green book needed.

Review for Final Exam.

- Chapter 16, Sections 16.1-16.5, 16.7, 16.8.
- Chapter 15, Sections 15.1-15.4, 15.6.
- Chapter 14, Sections 14.1-14.7.
- Chapter 13, Sections 13.1, 13.3.
- Chapter 12, Sections 12.1-12.6.

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$. We start with

$$
\nabla \cdot \mathbf{F}=\partial_{x}\left(x y^{2}\right)+\partial_{y}\left(x^{2} y\right)+\partial_{z}(y)
$$

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$. We start with

$$
\nabla \cdot \mathbf{F}=\partial_{x}\left(x y^{2}\right)+\partial_{y}\left(x^{2} y\right)+\partial_{z}(y) \Rightarrow \nabla \cdot \mathbf{F}=y^{2}+x^{2} .
$$

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$. We start with

$$
\nabla \cdot \mathbf{F}=\partial_{x}\left(x y^{2}\right)+\partial_{y}\left(x^{2} y\right)+\partial_{z}(y) \Rightarrow \nabla \cdot \mathbf{F}=y^{2}+x^{2}
$$

The integration region is $D=\left\{x^{2}+y^{2} \leqslant 1, z \in[-1,1]\right\}$.

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$. We start with

$$
\nabla \cdot \mathbf{F}=\partial_{x}\left(x y^{2}\right)+\partial_{y}\left(x^{2} y\right)+\partial_{z}(y) \quad \Rightarrow \quad \nabla \cdot \mathbf{F}=y^{2}+x^{2} .
$$

The integration region is $D=\left\{x^{2}+y^{2} \leqslant 1, z \in[-1,1]\right\}$. So,

$$
I=\iiint_{D}(\nabla \cdot \mathbf{F}) d v
$$

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$. We start with

$$
\nabla \cdot \mathbf{F}=\partial_{x}\left(x y^{2}\right)+\partial_{y}\left(x^{2} y\right)+\partial_{z}(y) \Rightarrow \nabla \cdot \mathbf{F}=y^{2}+x^{2} .
$$

The integration region is $D=\left\{x^{2}+y^{2} \leqslant 1, z \in[-1,1]\right\}$. So,

$$
I=\iiint_{D}(\nabla \cdot \mathbf{F}) d v=\iiint_{D}\left(x^{2}+y^{2}\right) d x d y d z
$$

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$. We start with

$$
\nabla \cdot \mathbf{F}=\partial_{x}\left(x y^{2}\right)+\partial_{y}\left(x^{2} y\right)+\partial_{z}(y) \Rightarrow \nabla \cdot \mathbf{F}=y^{2}+x^{2} .
$$

The integration region is $D=\left\{x^{2}+y^{2} \leqslant 1, z \in[-1,1]\right\}$. So,

$$
I=\iiint_{D}(\nabla \cdot \mathbf{F}) d v=\iiint_{D}\left(x^{2}+y^{2}\right) d x d y d z
$$

We use cylindrical coordinates,

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$. We start with

$$
\nabla \cdot \mathbf{F}=\partial_{x}\left(x y^{2}\right)+\partial_{y}\left(x^{2} y\right)+\partial_{z}(y) \Rightarrow \nabla \cdot \mathbf{F}=y^{2}+x^{2} .
$$

The integration region is $D=\left\{x^{2}+y^{2} \leqslant 1, z \in[-1,1]\right\}$. So,

$$
I=\iiint_{D}(\nabla \cdot \mathbf{F}) d v=\iiint_{D}\left(x^{2}+y^{2}\right) d x d y d z
$$

We use cylindrical coordinates,

$$
I=\int_{0}^{2 \pi} \int_{0}^{1} \int_{-1}^{1} r^{2} d z r d r d \theta
$$

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$. We start with

$$
\nabla \cdot \mathbf{F}=\partial_{x}\left(x y^{2}\right)+\partial_{y}\left(x^{2} y\right)+\partial_{z}(y) \Rightarrow \nabla \cdot \mathbf{F}=y^{2}+x^{2} .
$$

The integration region is $D=\left\{x^{2}+y^{2} \leqslant 1, z \in[-1,1]\right\}$. So,

$$
I=\iiint_{D}(\nabla \cdot \mathbf{F}) d v=\iiint_{D}\left(x^{2}+y^{2}\right) d x d y d z
$$

We use cylindrical coordinates,

$$
\begin{equation*}
I=\int_{0}^{2 \pi} \int_{0}^{1} \int_{-1}^{1} r^{2} d z r d r d \theta=2 \pi\left[\int_{0}^{1} r^{3} d r\right] \tag{2}
\end{equation*}
$$

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$. We start with

$$
\nabla \cdot \mathbf{F}=\partial_{x}\left(x y^{2}\right)+\partial_{y}\left(x^{2} y\right)+\partial_{z}(y) \Rightarrow \nabla \cdot \mathbf{F}=y^{2}+x^{2} .
$$

The integration region is $D=\left\{x^{2}+y^{2} \leqslant 1, z \in[-1,1]\right\}$. So,

$$
I=\iiint_{D}(\nabla \cdot \mathbf{F}) d v=\iiint_{D}\left(x^{2}+y^{2}\right) d x d y d z
$$

We use cylindrical coordinates,

$$
I=\int_{0}^{2 \pi} \int_{0}^{1} \int_{-1}^{1} r^{2} d z r d r d \theta=2 \pi\left[\int_{0}^{1} r^{3} d r\right](2)=4 \pi\left(\left.\frac{r^{4}}{4}\right|_{0} ^{1}\right) .
$$

Chapter 16, Integration in vector fields.

Example

Use the Divergence Theorem to find the flux of $\mathbf{F}=\left\langle x y^{2}, x^{2} y, y\right\rangle$ outward through the surface of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-1$, and $z=1$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$. We start with

$$
\nabla \cdot \mathbf{F}=\partial_{x}\left(x y^{2}\right)+\partial_{y}\left(x^{2} y\right)+\partial_{z}(y) \Rightarrow \nabla \cdot \mathbf{F}=y^{2}+x^{2} .
$$

The integration region is $D=\left\{x^{2}+y^{2} \leqslant 1, z \in[-1,1]\right\}$. So,

$$
I=\iiint_{D}(\nabla \cdot \mathbf{F}) d v=\iiint_{D}\left(x^{2}+y^{2}\right) d x d y d z
$$

We use cylindrical coordinates,

$$
I=\int_{0}^{2 \pi} \int_{0}^{1} \int_{-1}^{1} r^{2} d z r d r d \theta=2 \pi\left[\int_{0}^{1} r^{3} d r\right](2)=4 \pi\left(\left.\frac{r^{4}}{4}\right|_{0} ^{1}\right) .
$$

We conclude that $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\pi$.

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
\text { Recall: } \int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma .
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

Recall: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.
The surface S is the level surface $f=0$ of

$$
f=x+y+z-1
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

Recall: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.
The surface S is the level surface $f=0$ of

$$
f=x+y+z-1
$$

therefore, $\nabla f=\langle 1,1,1\rangle$,

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

Recall: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.
The surface S is the level surface $f=0$ of

$$
f=x+y+z-1
$$

therefore, $\nabla f=\langle 1,1,1\rangle,|\nabla f|=\sqrt{3}$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

Recall: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.
The surface S is the level surface $f=0$ of

$$
f=x+y+z-1
$$

therefore, $\nabla f=\langle 1,1,1\rangle,|\nabla f|=\sqrt{3}$ and
$|\nabla f \cdot \mathbf{k}|=1$.

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

Recall: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.
The surface S is the level surface $f=0$ of

$$
f=x+y+z-1
$$

therefore, $\nabla f=\langle 1,1,1\rangle,|\nabla f|=\sqrt{3}$ and
$|\nabla f \cdot \mathbf{k}|=1$.

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

Recall: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.
The surface S is the level surface $f=0$ of

$$
f=x+y+z-1
$$

therefore, $\nabla f=\langle 1,1,1\rangle,|\nabla f|=\sqrt{3}$ and $|\nabla f \cdot \mathbf{k}|=1$.

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle,
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

Recall: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.
The surface S is the level surface $f=0$ of

$$
f=x+y+z-1
$$

therefore, $\nabla f=\langle 1,1,1\rangle,|\nabla f|=\sqrt{3}$ and $|\nabla f \cdot \mathbf{k}|=1$.

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle, \quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force
$\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

Recall: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.
The surface S is the level surface $f=0$ of

$$
f=x+y+z-1
$$

therefore, $\nabla f=\langle 1,1,1\rangle,|\nabla f|=\sqrt{3}$ and $|\nabla f \cdot \mathbf{k}|=1$.

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle, \quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y=\sqrt{3} d x d y .
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution: $\mathbf{n}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle$ and $d \sigma=\sqrt{3} d x d y$.

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution: $\mathbf{n}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle$ and $d \sigma=\sqrt{3} d x d y$.
We now compute the curl of \mathbf{F},

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution: $\mathbf{n}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle$ and $d \sigma=\sqrt{3} d x d y$.
We now compute the curl of \mathbf{F},

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
2 x z & x y & y z
\end{array}\right|
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution: $\mathbf{n}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle$ and $d \sigma=\sqrt{3} d x d y$.
We now compute the curl of \mathbf{F},

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
2 x z & x y & y z
\end{array}\right|=\langle(z-0),-(0-2 x),(y-0)\rangle
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution: $\mathbf{n}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle$ and $d \sigma=\sqrt{3} d x d y$.
We now compute the curl of \mathbf{F},

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
2 x z & x y & y z
\end{array}\right|=\langle(z-0),-(0-2 x),(y-0)\rangle
$$

so $\nabla \times \mathbf{F}=\langle z, 2 x, y\rangle$.

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution: $\mathbf{n}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle$ and $d \sigma=\sqrt{3} d x d y$.
We now compute the curl of \mathbf{F},

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
2 x z & x y & y z
\end{array}\right|=\langle(z-0),-(0-2 x),(y-0)\rangle
$$

so $\nabla \times \mathbf{F}=\langle z, 2 x, y\rangle$. Therefore,

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution: $\mathbf{n}=\frac{1}{\sqrt{3}}\langle 1,1,1\rangle$ and $d \sigma=\sqrt{3} d x d y$.
We now compute the curl of \mathbf{F},

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
2 x z & x y & y z
\end{array}\right|=\langle(z-0),-(0-2 x),(y-0)\rangle
$$

so $\nabla \times \mathbf{F}=\langle z, 2 x, y\rangle$. Therefore,

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y .
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
\begin{gathered}
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y \\
\quad I=\iint_{R}(z+2 x+y) d x d y
\end{gathered}
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
\begin{gathered}
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y . \\
I=\iint_{R}(z+2 x+y) d x d y, \quad z=1-x-y,
\end{gathered}
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
\begin{aligned}
& I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y . \\
& \quad I=\iint_{R}(z+2 x+y) d x d y, \quad z=1-x-y, \\
& I=\int_{0}^{1} \int_{0}^{1-x}(1+x) d y d x
\end{aligned}
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
\begin{gathered}
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y . \\
I=\iint_{R}(z+2 x+y) d x d y, \quad z=1-x-y, \\
I=\int_{0}^{1} \int_{0}^{1-x}(1+x) d y d x=\int_{0}^{1}(1+x)(1-x) d x
\end{gathered}
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
\begin{gathered}
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y . \\
I=\iint_{R}(z+2 x+y) d x d y, \quad z=1-x-y \\
I=\int_{0}^{1} \int_{0}^{1-x}(1+x) d y d x=\int_{0}^{1}(1+x)(1-x) d x=\int_{0}^{1}\left(1-x^{2}\right) d x .
\end{gathered}
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
\begin{aligned}
& I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y . \\
& \quad I=\iint_{R}(z+2 x+y) d x d y, \quad z=1-x-y \\
& I=\int_{0}^{1} \int_{0}^{1-x}(1+x) d y d x=\int_{0}^{1}(1+x)(1-x) d x=\int_{0}^{1}\left(1-x^{2}\right) d x . \\
& \quad I=\left.x\right|_{0} ^{1}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}
\end{aligned}
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
\begin{gathered}
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y . \\
I=\iint_{R}(z+2 x+y) d x d y, \quad z=1-x-y \\
I=\int_{0}^{1} \int_{0}^{1-x}(1+x) d y d x=\int_{0}^{1}(1+x)(1-x) d x=\int_{0}^{1}\left(1-x^{2}\right) d x . \\
\quad I=\left.x\right|_{0} ^{1}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=1-\frac{1}{3}
\end{gathered}
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
\begin{gathered}
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y . \\
I=\iint_{R}(z+2 x+y) d x d y, \quad z=1-x-y \\
I=\int_{0}^{1} \int_{0}^{1-x}(1+x) d y d x=\int_{0}^{1}(1+x)(1-x) d x=\int_{0}^{1}\left(1-x^{2}\right) d x . \\
\quad I=\left.x\right|_{0} ^{1}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=1-\frac{1}{3}=\frac{2}{3}
\end{gathered}
$$

Chapter 16, Integration in vector fields.

Example

Use Stokes' Theorem to find the work done by the force $\mathbf{F}=\langle 2 x z, x y, y z\rangle$ along the path C given by the intersection of the plane $x+y+z=1$ with the first octant, counterclockwise when viewed from above.

Solution:

$$
\begin{gathered}
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}\left(\langle z, 2 x, y\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,1,1\rangle\right) \sqrt{3} d x d y . \\
I=\iint_{R}(z+2 x+y) d x d y, \quad z=1-x-y \\
I=\int_{0}^{1} \int_{0}^{1-x}(1+x) d y d x=\int_{0}^{1}(1+x)(1-x) d x=\int_{0}^{1}\left(1-x^{2}\right) d x . \\
I=\left.x\right|_{0} ^{1}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=1-\frac{1}{3}=\frac{2}{3} \Rightarrow \int_{C} \mathbf{F} \cdot d \mathbf{r}=\frac{2}{3} .
\end{gathered}
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

$$
\text { Recall: } A(S)=\iint_{S} d \sigma
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$.

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$. Also recall that

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y .
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$. Also recall that

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

Since $\nabla f=2\langle x, y,-z\rangle$, we get that

$$
|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}},
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$. Also recall that

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

Since $\nabla f=2\langle x, y,-z\rangle$, we get that

$$
|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}, \quad z^{2}=x^{2}+y^{2}
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$. Also recall that

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y .
$$

Since $\nabla f=2\langle x, y,-z\rangle$, we get that

$$
|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}, \quad z^{2}=x^{2}+y^{2} \quad \Rightarrow \quad|\nabla f|=2 \sqrt{2} z .
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$. Also recall that

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y .
$$

Since $\nabla f=2\langle x, y,-z\rangle$, we get that

$$
|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}, \quad z^{2}=x^{2}+y^{2} \quad \Rightarrow \quad|\nabla f|=2 \sqrt{2} z .
$$

Also $|\nabla f \cdot \mathbf{k}|=2 z$,

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$. Also recall that

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y .
$$

Since $\nabla f=2\langle x, y,-z\rangle$, we get that

$$
|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}, \quad z^{2}=x^{2}+y^{2} \quad \Rightarrow \quad|\nabla f|=2 \sqrt{2} z .
$$

Also $|\nabla f \cdot \mathbf{k}|=2 z$, therefore, $d \sigma=\sqrt{2} d x d y$,

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$. Also recall that

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y .
$$

Since $\nabla f=2\langle x, y,-z\rangle$, we get that

$$
|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}, \quad z^{2}=x^{2}+y^{2} \quad \Rightarrow \quad|\nabla f|=2 \sqrt{2} z .
$$

Also $|\nabla f \cdot \mathbf{k}|=2 z$, therefore, $d \sigma=\sqrt{2} d x d y$, and then we obtain

$$
A(S)=\iint_{R} \sqrt{2} d x d y
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$. Also recall that

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y .
$$

Since $\nabla f=2\langle x, y,-z\rangle$, we get that

$$
|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}, \quad z^{2}=x^{2}+y^{2} \quad \Rightarrow \quad|\nabla f|=2 \sqrt{2} z .
$$

Also $|\nabla f \cdot \mathbf{k}|=2 z$, therefore, $d \sigma=\sqrt{2} d x d y$, and then we obtain

$$
A(S)=\iint_{R} \sqrt{2} d x d y=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{2} r d r d \theta
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$. Also recall that

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y .
$$

Since $\nabla f=2\langle x, y,-z\rangle$, we get that

$$
|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}, \quad z^{2}=x^{2}+y^{2} \quad \Rightarrow \quad|\nabla f|=2 \sqrt{2} z .
$$

Also $|\nabla f \cdot \mathbf{k}|=2 z$, therefore, $d \sigma=\sqrt{2} d x d y$, and then we obtain

$$
A(S)=\iint_{R} \sqrt{2} d x d y=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{2} r d r d \theta=\left.2 \pi \sqrt{2} \frac{r^{2}}{2}\right|_{0} ^{1}
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution:

Recall: $A(S)=\iint_{S} d \sigma$. The surface S is the level surface $f=0$ of the function $f=x^{2}+y^{2}-z^{2}$. Also recall that

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y .
$$

Since $\nabla f=2\langle x, y,-z\rangle$, we get that

$$
|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}, \quad z^{2}=x^{2}+y^{2} \quad \Rightarrow \quad|\nabla f|=2 \sqrt{2} z .
$$

Also $|\nabla f \cdot \mathbf{k}|=2 z$, therefore, $d \sigma=\sqrt{2} d x d y$, and then we obtain

$$
A(S)=\iint_{R} \sqrt{2} d x d y=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{2} r d r d \theta=\left.2 \pi \sqrt{2} \frac{r^{2}}{2}\right|_{0} ^{1}=\sqrt{2} \pi .
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution: We now compute the outward flux $I=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution: We now compute the outward flux $I=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
Since

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution: We now compute the outward flux $I=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
Since

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}=\frac{1}{\sqrt{2} z}\langle x, y,-z\rangle .
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution: We now compute the outward flux $I=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
Since

$$
\begin{aligned}
& \mathbf{n}=\frac{\nabla f}{|\nabla f|}=\frac{1}{\sqrt{2} z}\langle x, y,-z\rangle . \\
& I=\iint_{R} \frac{1}{\sqrt{2} z}\left(x^{2}+y^{2}\right) \sqrt{2} d x d y
\end{aligned}
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution: We now compute the outward flux $I=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
Since

$$
\begin{gathered}
\mathbf{n}=\frac{\nabla f}{|\nabla f|}=\frac{1}{\sqrt{2} z}\langle x, y,-z\rangle . \\
I=\iint_{R} \frac{1}{\sqrt{2} z}\left(x^{2}+y^{2}\right) \sqrt{2} d x d y=\iint_{R} \sqrt{x^{2}+y^{2}} d x d y .
\end{gathered}
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution: We now compute the outward flux $I=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
Since

$$
\begin{gathered}
\mathbf{n}=\frac{\nabla f}{|\nabla f|}=\frac{1}{\sqrt{2} z}\langle x, y,-z\rangle . \\
I=\iint_{R} \frac{1}{\sqrt{2} z}\left(x^{2}+y^{2}\right) \sqrt{2} d x d y=\iint_{R} \sqrt{x^{2}+y^{2}} d x d y .
\end{gathered}
$$

Using polar coordinates, we obtain

$$
I=\int_{0}^{2 \pi} \int_{0}^{1} r r d r d \theta
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution: We now compute the outward flux $I=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
Since

$$
\begin{gathered}
\mathbf{n}=\frac{\nabla f}{|\nabla f|}=\frac{1}{\sqrt{2} z}\langle x, y,-z\rangle . \\
I=\iint_{R} \frac{1}{\sqrt{2} z}\left(x^{2}+y^{2}\right) \sqrt{2} d x d y=\iint_{R} \sqrt{x^{2}+y^{2}} d x d y .
\end{gathered}
$$

Using polar coordinates, we obtain

$$
I=\int_{0}^{2 \pi} \int_{0}^{1} r r d r d \theta=\left.2 \pi \frac{r^{3}}{3}\right|_{0} ^{1}
$$

Chapter 16, Integration in vector fields.

Example

Find the area of the cone S given by $z=\sqrt{x^{2}+y^{2}}$ for $z \in[0,1]$. Also find the flux of the field $\mathbf{F}=\langle x, y, 0\rangle$ outward through S.

Solution: We now compute the outward flux $I=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
Since

$$
\begin{gathered}
\mathbf{n}=\frac{\nabla f}{|\nabla f|}=\frac{1}{\sqrt{2} z}\langle x, y,-z\rangle . \\
I=\iint_{R} \frac{1}{\sqrt{2} z}\left(x^{2}+y^{2}\right) \sqrt{2} d x d y=\iint_{R} \sqrt{x^{2}+y^{2}} d x d y .
\end{gathered}
$$

Using polar coordinates, we obtain

$$
I=\int_{0}^{2 \pi} \int_{0}^{1} r r d r d \theta=\left.2 \pi \frac{r^{3}}{3}\right|_{0} ^{1} \Rightarrow I=\frac{2 \pi}{3} .
$$

Review for Final Exam.

- Chapter 16, Sections 16.1-16.5, 16.7, 16.8.
- Chapter 15, Sections 15.1-15.4, 15.6.
- Chapter 14, Sections 14.1-14.7.
- Chapter 13, Sections 13.1, 13.3.
- Chapter 12, Sections 12.1-12.6.

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.

Chapter 15, Multiple integrals.
Example
Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
Solution:

Chapter 15, Multiple integrals.
Example
Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
Solution:

$$
\text { So, } D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}
$$

Chapter 15, Multiple integrals.
Example
Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.

Solution:

$$
\begin{aligned}
& \text { So, } D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\} \text {, } \\
& \text { and } R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}
\end{aligned}
$$

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.

Solution:

So, $D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}$, and $R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}$. We know that

$$
V(D)=\iiint_{D} d v
$$

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.

Solution:

So, $D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}$, and $R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}$. We know that

$$
V(D)=\iiint_{D} d v=\iint_{R} \int_{0}^{1-x^{2}-y^{2}} d z d x d y
$$

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
Solution:

So, $D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}$, and $R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}$. We know that

$$
V(D)=\iiint_{D} d v=\iint_{R} \int_{0}^{1-x^{2}-y^{2}} d z d x d y
$$

Using cylindrical coordinates (r, θ, z), we get

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
Solution:
So, $D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}$,
 and $R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}$. We know that

$$
V(D)=\iiint_{D} d v=\iint_{R} \int_{0}^{1-x^{2}-y^{2}} d z d x d y
$$

Using cylindrical coordinates (r, θ, z), we get

$$
V(D)=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}} d z r d r d \theta
$$

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
Solution:
So, $D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}$,
 and $R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}$. We know that

$$
V(D)=\iiint_{D} d v=\iint_{R} \int_{0}^{1-x^{2}-y^{2}} d z d x d y
$$

Using cylindrical coordinates (r, θ, z), we get

$$
V(D)=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}} d z r d r d \theta=2 \pi \int_{0}^{1}\left(1-r^{2}\right) r d r .
$$

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
Solution:
So, $D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}$,
 and $R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}$. We know that

$$
V(D)=\iiint_{D} d v=\iint_{R} \int_{0}^{1-x^{2}-y^{2}} d z d x d y
$$

Using cylindrical coordinates (r, θ, z), we get

$$
V(D)=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}} d z r d r d \theta=2 \pi \int_{0}^{1}\left(1-r^{2}\right) r d r .
$$

Substituting $u=1-r^{2}$, so $d u=-2 r d r$,

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
Solution:

So, $D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}$, and $R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}$. We know that

$$
V(D)=\iiint_{D} d v=\iint_{R} \int_{0}^{1-x^{2}-y^{2}} d z d x d y .
$$

Using cylindrical coordinates (r, θ, z), we get

$$
V(D)=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}} d z r d r d \theta=2 \pi \int_{0}^{1}\left(1-r^{2}\right) r d r .
$$

Substituting $u=1-r^{2}$, so $d u=-2 r d r$, we obtain
$V(D)=2 \pi \int_{1}^{0} u \frac{(-d u)}{2}$

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
Solution:

So, $D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}$, and $R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}$. We know that

$$
V(D)=\iiint_{D} d v=\iint_{R} \int_{0}^{1-x^{2}-y^{2}} d z d x d y .
$$

Using cylindrical coordinates (r, θ, z), we get

$$
V(D)=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}} d z r d r d \theta=2 \pi \int_{0}^{1}\left(1-r^{2}\right) r d r .
$$

Substituting $u=1-r^{2}$, so $d u=-2 r d r$, we obtain
$V(D)=2 \pi \int_{1}^{0} u \frac{(-d u)}{2}=\pi \int_{0}^{1} u d u$

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
Solution:

So, $D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}$, and $R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}$. We know that

$$
V(D)=\iiint_{D} d v=\iint_{R} \int_{0}^{1-x^{2}-y^{2}} d z d x d y
$$

Using cylindrical coordinates (r, θ, z), we get

$$
V(D)=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}} d z r d r d \theta=2 \pi \int_{0}^{1}\left(1-r^{2}\right) r d r
$$

Substituting $u=1-r^{2}$, so $d u=-2 r d r$, we obtain
$V(D)=2 \pi \int_{1}^{0} u \frac{(-d u)}{2}=\pi \int_{0}^{1} u d u=\left.\pi \frac{u^{2}}{2}\right|_{0} ^{1}$

Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
Solution:
So, $D=\left\{x^{2}+y^{2} \leqslant 1,0 \leqslant z \leqslant 1-x^{2}-y^{2}\right\}$,
 and $R=\left\{x^{2}+y^{2} \leqslant 1, z=0\right\}$. We know that

$$
V(D)=\iiint_{D} d v=\iint_{R} \int_{0}^{1-x^{2}-y^{2}} d z d x d y .
$$

Using cylindrical coordinates (r, θ, z), we get

$$
V(D)=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}} d z r d r d \theta=2 \pi \int_{0}^{1}\left(1-r^{2}\right) r d r .
$$

Substituting $u=1-r^{2}$, so $d u=-2 r d r$, we obtain

$$
V(D)=2 \pi \int_{1}^{0} u \frac{(-d u)}{2}=\pi \int_{0}^{1} u d u=\left.\pi \frac{u^{2}}{2}\right|_{0} ^{1} \Rightarrow V(D)=\frac{\pi}{2} .
$$

Chapter 15, Multiple integrals.

Example

Set up the integrals needed to compute the average of the function $f(x, y, z)=z \sin (x)$ on the bounded region D in the first octant bounded by the plane $z=4-2 x-y$. Do not evaluate the integrals.

Chapter 15, Multiple integrals.

Example

Set up the integrals needed to compute the average of the function $f(x, y, z)=z \sin (x)$ on the bounded region D in the first octant bounded by the plane $z=4-2 x-y$. Do not evaluate the integrals.

Solution: Recall: $\bar{f}=\frac{1}{V(D)} \iiint_{D} f d v$.

Chapter 15, Multiple integrals.

Example

Set up the integrals needed to compute the average of the function $f(x, y, z)=z \sin (x)$ on the bounded region D in the first octant bounded by the plane $z=4-2 x-y$. Do not evaluate the integrals.

Solution: Recall: $\bar{f}=\frac{1}{V(D)} \iiint_{D} f d v$.

Chapter 15, Multiple integrals.

Example

Set up the integrals needed to compute the average of the function $f(x, y, z)=z \sin (x)$ on the bounded region D in the first octant bounded by the plane $z=4-2 x-y$. Do not evaluate the integrals.

Solution: Recall: $\bar{f}=\frac{1}{V(D)} \iiint_{D} f d v$.

Since $V(D)=$

Chapter 15, Multiple integrals.

Example

Set up the integrals needed to compute the average of the function $f(x, y, z)=z \sin (x)$ on the bounded region D in the first octant bounded by the plane $z=4-2 x-y$. Do not evaluate the integrals.

Solution: Recall: $\bar{f}=\frac{1}{V(D)} \iiint_{D} f d v$.

Since $V(D)=\int_{0}^{2}$

Chapter 15, Multiple integrals.

Example

Set up the integrals needed to compute the average of the function $f(x, y, z)=z \sin (x)$ on the bounded region D in the first octant bounded by the plane $z=4-2 x-y$. Do not evaluate the integrals.

Solution: Recall: $\bar{f}=\frac{1}{V(D)} \iiint_{D} f d v$.

Since $V(D)=\int_{0}^{2} \int_{0}^{4-2 x}$

Chapter 15, Multiple integrals.

Example

Set up the integrals needed to compute the average of the function $f(x, y, z)=z \sin (x)$ on the bounded region D in the first octant bounded by the plane $z=4-2 x-y$. Do not evaluate the integrals.

Solution: Recall: $\bar{f}=\frac{1}{V(D)} \iiint_{D} f d v$.

Since $V(D)=\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-2 x-y} d z d y d x$,

Chapter 15, Multiple integrals.

Example

Set up the integrals needed to compute the average of the function $f(x, y, z)=z \sin (x)$ on the bounded region D in the first octant bounded by the plane $z=4-2 x-y$. Do not evaluate the integrals.

Solution: Recall: $\bar{f}=\frac{1}{V(D)} \iiint_{D} f d v$.

Since $V(D)=\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-2 x-y} d z d y d x$,
we conclude that

$$
\bar{f}=\frac{\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-2 x-y} z \sin (x) d z d y d x}{\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-2 x-y} d z d y d x}
$$

Chapter 15, Multiple integrals.

Example

Reverse the order of integration and evaluate the double integral $I=\int_{0}^{4} \int_{y / 2}^{2} e^{x^{2}} d x d y$.

Chapter 15, Multiple integrals.
Example
Reverse the order of integration and evaluate the double integral $I=\int_{0}^{4} \int_{y / 2}^{2} e^{x^{2}} d x d y$

Solution: We see that $y \in[0,4]$ and $x \in[0, y / 2]$, that is,

Chapter 15, Multiple integrals.

Example

Reverse the order of integration and evaluate the double integral
$I=\int_{0}^{4} \int_{y / 2}^{2} e^{x^{2}} d x d y$.
Solution: We see that $y \in[0,4]$ and $x \in[0, y / 2]$, that is,

Chapter 15, Multiple integrals.

Example

Reverse the order of integration and evaluate the double integral $I=\int_{0}^{4} \int_{y / 2}^{2} e^{x^{2}} d x d y$.

Solution: We see that $y \in[0,4]$ and $x \in[0, y / 2]$, that is,

Therefore, reversing the integration order means

$$
I=\int_{0}^{2} \int_{0}^{2 x} e^{x^{2}} d y d x
$$

Chapter 15, Multiple integrals.

Example

Reverse the order of integration and evaluate the double integral $I=\int_{0}^{4} \int_{y / 2}^{2} e^{x^{2}} d x d y$.

Solution: We see that $y \in[0,4]$ and $x \in[0, y / 2]$, that is,

Therefore, reversing the integration order means

$$
I=\int_{0}^{2} \int_{0}^{2 x} e^{x^{2}} d y d x
$$

This integral is simple to compute,

Chapter 15, Multiple integrals.

Example

Reverse the order of integration and evaluate the double integral $I=\int_{0}^{4} \int_{y / 2}^{2} e^{x^{2}} d x d y$.

Solution: We see that $y \in[0,4]$ and $x \in[0, y / 2]$, that is,

Therefore, reversing the integration order means

$$
I=\int_{0}^{2} \int_{0}^{2 x} e^{x^{2}} d y d x
$$

This integral is simple to compute,

$$
I=\int_{0}^{2} e^{x^{2}} x d x
$$

Chapter 15, Multiple integrals.

Example

Reverse the order of integration and evaluate the double integral $I=\int_{0}^{4} \int_{y / 2}^{2} e^{x^{2}} d x d y$.

Solution: We see that $y \in[0,4]$ and $x \in[0, y / 2]$, that is,

Therefore, reversing the integration order means

$$
I=\int_{0}^{2} \int_{0}^{2 x} e^{x^{2}} d y d x
$$

This integral is simple to compute,

$$
I=\int_{0}^{2} e^{x^{2}} x d x, \quad u=x^{2}, \quad d u=2 x d x
$$

Chapter 15, Multiple integrals.

Example

Reverse the order of integration and evaluate the double integral $I=\int_{0}^{4} \int_{y / 2}^{2} e^{x^{2}} d x d y$.

Solution: We see that $y \in[0,4]$ and $x \in[0, y / 2]$, that is,

Therefore, reversing the integration order means

$$
I=\int_{0}^{2} \int_{0}^{2 x} e^{x^{2}} d y d x
$$

This integral is simple to compute,

$$
\begin{aligned}
& I=\int_{0}^{2} e^{x^{2}} x d x, \quad u=x^{2}, \quad d u=2 x d x, \\
& I=\int_{0}^{4} e^{u} d u
\end{aligned}
$$

Chapter 15, Multiple integrals.

Example

Reverse the order of integration and evaluate the double integral $I=\int_{0}^{4} \int_{y / 2}^{2} e^{x^{2}} d x d y$.

Solution: We see that $y \in[0,4]$ and $x \in[0, y / 2]$, that is,

Therefore, reversing the integration order means

$$
I=\int_{0}^{2} \int_{0}^{2 x} e^{x^{2}} d y d x
$$

This integral is simple to compute,

$$
\begin{gathered}
I=\int_{0}^{2} e^{x^{2}} x d x, \quad u=x^{2}, \quad d u=2 x d x, \\
I=\int_{0}^{4} e^{u} d u \Rightarrow \quad I=e^{4}-1 .
\end{gathered}
$$

Review for the Final Exam.

- Monday, December 13, 10:00am - 12:00 noon. (2 hours.)
- Places:
- Sctns 001, 002, 005, 006 in E-100 VMC (Vet. Medical Ctr.),
- Sctns 003, 004, in 108 EBH (Ernst Bessey Hall);
- Sctns 007, 008, in 339 CSE (Case Halls).
- Chapters 12-16.
- ~ 12 Problems, similar to homework problems.
- No calculators, no notes, no books, no phones.

Plan for today: Practice final exam: April 30, 2001.

Remark on Chapter 16.

Remark: The normal form of Green's Theorem is a two-dimensional restriction of the Divergence Theorem.

Remark on Chapter 16.

Remark: The normal form of Green's Theorem is a two-dimensional restriction of the Divergence Theorem.

- The Divergence Theorem: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.

Remark on Chapter 16.

Remark: The normal form of Green's Theorem is a two-dimensional restriction of the Divergence Theorem.

- The Divergence Theorem: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.
- Normal form of Green's Thrm: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{S}(\nabla \cdot \mathbf{F}) d A$.

Remark on Chapter 16.

Remark: The normal form of Green's Theorem is a two-dimensional restriction of the Divergence Theorem.

- The Divergence Theorem: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.
- Normal form of Green's Thrm: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{S}(\nabla \cdot \mathbf{F}) d A$.

Remark: The tangential form of Green's Theorem is a particular case of the Stokes Theorem when C, S are flat (on $z=0$ plane).

Remark on Chapter 16.

Remark: The normal form of Green's Theorem is a two-dimensional restriction of the Divergence Theorem.

- The Divergence Theorem: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.
- Normal form of Green's Thrm: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{S}(\nabla \cdot \mathbf{F}) d A$.

Remark: The tangential form of Green's Theorem is a particular case of the Stokes Theorem when C, S are flat (on $z=0$ plane).

- The Stokes Theorem: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.

Remark on Chapter 16.

Remark: The normal form of Green's Theorem is a two-dimensional restriction of the Divergence Theorem.

- The Divergence Theorem: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D}(\nabla \cdot \mathbf{F}) d v$.
- Normal form of Green's Thrm: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{S}(\nabla \cdot \mathbf{F}) d A$.

Remark: The tangential form of Green's Theorem is a particular case of the Stokes Theorem when C, S are flat (on $z=0$ plane).

- The Stokes Theorem: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.
- Tang. form of Green's Thrm: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A$.

Practice final exam: April 30, 2001. Prbl. 1.

Example
Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Practice final exam: April 30, 2001. Prbl. 1.

Example

Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$,

Practice final exam: April 30, 2001. Prbl. 1.

Example

Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$, hence $\overrightarrow{A B}=\langle 5,3,1\rangle$.

Practice final exam: April 30, 2001. Prbl. 1.

Example

Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$, hence $\overrightarrow{A B}=\langle 5,3,1\rangle$. In the same way $\overrightarrow{A C}=\langle 7,7,4\rangle$.

Practice final exam: April 30, 2001. Prbl. 1.

Example

Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$, hence $\overrightarrow{A B}=\langle 5,3,1\rangle$. In the same way $\overrightarrow{A C}=\langle 7,7,4\rangle$.

- $\overrightarrow{A B}+\overrightarrow{A C}$

Practice final exam: April 30, 2001. Prbl. 1.

Example

Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$, hence $\overrightarrow{A B}=\langle 5,3,1\rangle$. In the same way $\overrightarrow{A C}=\langle 7,7,4\rangle$.

- $\overrightarrow{A B}+\overrightarrow{A C}=\langle 12,10,5\rangle$.

Practice final exam: April 30, 2001. Prbl. 1.

Example

Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$, hence $\overrightarrow{A B}=\langle 5,3,1\rangle$. In the same way $\overrightarrow{A C}=\langle 7,7,4\rangle$.

- $\overrightarrow{A B}+\overrightarrow{A C}=\langle 12,10,5\rangle$.
- $\overrightarrow{A B} \cdot \overrightarrow{A C}$

Practice final exam: April 30, 2001. Prbl. 1.

Example
Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$, hence $\overrightarrow{A B}=\langle 5,3,1\rangle$. In the same way $\overrightarrow{A C}=\langle 7,7,4\rangle$.

- $\overrightarrow{A B}+\overrightarrow{A C}=\langle 12,10,5\rangle$.
- $\overrightarrow{A B} \cdot \overrightarrow{A C}=35+21+4$.

Practice final exam: April 30, 2001. Prbl. 1.

Example
Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$, hence $\overrightarrow{A B}=\langle 5,3,1\rangle$. In the same way $\overrightarrow{A C}=\langle 7,7,4\rangle$.

- $\overrightarrow{A B}+\overrightarrow{A C}=\langle 12,10,5\rangle$.
- $\overrightarrow{A B} \cdot \overrightarrow{A C}=35+21+4$.
- $\overrightarrow{A B} \times \overrightarrow{A C}$

Practice final exam: April 30, 2001. Prbl. 1.

Example
Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$, hence $\overrightarrow{A B}=\langle 5,3,1\rangle$. In the same way $\overrightarrow{A C}=\langle 7,7,4\rangle$.

- $\overrightarrow{A B}+\overrightarrow{A C}=\langle 12,10,5\rangle$.
- $\overrightarrow{A B} \cdot \overrightarrow{A C}=35+21+4$.
- $\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 3 & 1 \\ 7 & 7 & 4\end{array}\right|$

Practice final exam: April 30, 2001. Prbl. 1.

Example
Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$, hence $\overrightarrow{A B}=\langle 5,3,1\rangle$. In the same way $\overrightarrow{A C}=\langle 7,7,4\rangle$.

- $\overrightarrow{A B}+\overrightarrow{A C}=\langle 12,10,5\rangle$.
- $\overrightarrow{A B} \cdot \overrightarrow{A C}=35+21+4$.
$\stackrel{\rightharpoonup}{A B} \times \overrightarrow{A C}=\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 3 & 1 \\ 7 & 7 & 4\end{array}\right|=\langle(12-7),-(20-7),(35-21)\rangle$,

Practice final exam: April 30, 2001. Prbl. 1.

Example
Given $A=(1,2,3), B=(6,5,4)$ and $C=(8,9,7)$, find the following:

- $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Solution: $\overrightarrow{A B}=\langle(6-1),(5-2),(4-3)\rangle$, hence $\overrightarrow{A B}=\langle 5,3,1\rangle$. In the same way $\overrightarrow{A C}=\langle 7,7,4\rangle$.

- $\overrightarrow{A B}+\overrightarrow{A C}=\langle 12,10,5\rangle$.
- $\overrightarrow{A B} \cdot \overrightarrow{A C}=35+21+4$.
- $\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 3 & 1 \\ 7 & 7 & 4\end{array}\right|=\langle(12-7),-(20-7),(35-21)\rangle$,
hence $\overrightarrow{A B} \times \overrightarrow{A C}=\langle 5,-13,14\rangle$.

Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point
$(1,0,-1)$ and perpendicular to the plane $2 x-3 y+5 x=35$. Then find the intersection of the line and the plane.

Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point
$(1,0,-1)$ and perpendicular to the plane $2 x-3 y+5 x=35$. Then find the intersection of the line and the plane.

Solution: The normal vector to the plane $\langle 2,-3,5\rangle$ is the tangent vector to the line.

Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point
$(1,0,-1)$ and perpendicular to the plane $2 x-3 y+5 x=35$. Then find the intersection of the line and the plane.

Solution: The normal vector to the plane $\langle 2,-3,5\rangle$ is the tangent vector to the line. Therefore,

$$
\mathbf{r}(t)=\langle 1,0,-1\rangle+t\langle 2,-3,5\rangle,
$$

Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point
$(1,0,-1)$ and perpendicular to the plane $2 x-3 y+5 x=35$. Then find the intersection of the line and the plane.

Solution: The normal vector to the plane $\langle 2,-3,5\rangle$ is the tangent vector to the line. Therefore,

$$
\mathbf{r}(t)=\langle 1,0,-1\rangle+t\langle 2,-3,5\rangle,
$$

so the parametric equations of the line are

$$
x(t)=1+2 t, \quad y(t)=-3 t, \quad z(t)=-1+5 t .
$$

Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point
$(1,0,-1)$ and perpendicular to the plane $2 x-3 y+5 x=35$. Then find the intersection of the line and the plane.

Solution: The normal vector to the plane $\langle 2,-3,5\rangle$ is the tangent vector to the line. Therefore,

$$
\mathbf{r}(t)=\langle 1,0,-1\rangle+t\langle 2,-3,5\rangle,
$$

so the parametric equations of the line are

$$
x(t)=1+2 t, \quad y(t)=-3 t, \quad z(t)=-1+5 t
$$

The intersection point has a t solution of

$$
2(1+2 t)-3(-3 t)+5(-1+5 t)=35
$$

Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point
$(1,0,-1)$ and perpendicular to the plane $2 x-3 y+5 x=35$. Then find the intersection of the line and the plane.

Solution: The normal vector to the plane $\langle 2,-3,5\rangle$ is the tangent vector to the line. Therefore,

$$
\mathbf{r}(t)=\langle 1,0,-1\rangle+t\langle 2,-3,5\rangle,
$$

so the parametric equations of the line are

$$
x(t)=1+2 t, \quad y(t)=-3 t, \quad z(t)=-1+5 t .
$$

The intersection point has a t solution of
$2(1+2 t)-3(-3 t)+5(-1+5 t)=35 \Rightarrow 2+4 t+9 t-5+25 t=35$

Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point
$(1,0,-1)$ and perpendicular to the plane $2 x-3 y+5 x=35$. Then find the intersection of the line and the plane.

Solution: The normal vector to the plane $\langle 2,-3,5\rangle$ is the tangent vector to the line. Therefore,

$$
\mathbf{r}(t)=\langle 1,0,-1\rangle+t\langle 2,-3,5\rangle,
$$

so the parametric equations of the line are

$$
x(t)=1+2 t, \quad y(t)=-3 t, \quad z(t)=-1+5 t
$$

The intersection point has a t solution of

$$
2(1+2 t)-3(-3 t)+5(-1+5 t)=35 \Rightarrow 2+4 t+9 t-5+25 t=35
$$

$$
38 t=38
$$

Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point
$(1,0,-1)$ and perpendicular to the plane $2 x-3 y+5 x=35$. Then find the intersection of the line and the plane.

Solution: The normal vector to the plane $\langle 2,-3,5\rangle$ is the tangent vector to the line. Therefore,

$$
\mathbf{r}(t)=\langle 1,0,-1\rangle+t\langle 2,-3,5\rangle,
$$

so the parametric equations of the line are

$$
x(t)=1+2 t, \quad y(t)=-3 t, \quad z(t)=-1+5 t
$$

The intersection point has a t solution of
$2(1+2 t)-3(-3 t)+5(-1+5 t)=35 \Rightarrow 2+4 t+9 t-5+25 t=35$

$$
38 t=38 \quad \Rightarrow \quad t=1
$$

Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point
$(1,0,-1)$ and perpendicular to the plane $2 x-3 y+5 x=35$. Then find the intersection of the line and the plane.

Solution: The normal vector to the plane $\langle 2,-3,5\rangle$ is the tangent vector to the line. Therefore,

$$
\mathbf{r}(t)=\langle 1,0,-1\rangle+t\langle 2,-3,5\rangle,
$$

so the parametric equations of the line are

$$
x(t)=1+2 t, \quad y(t)=-3 t, \quad z(t)=-1+5 t .
$$

The intersection point has a t solution of
$2(1+2 t)-3(-3 t)+5(-1+5 t)=35 \Rightarrow 2+4 t+9 t-5+25 t=35$

$$
38 t=38 \Rightarrow t=1 \quad \Rightarrow \quad \mathbf{r}(1)=\langle 3,-3,4\rangle .
$$

Practice final exam: April 30, 2001. Prbl. 3.

Example

The velocity of a particle is given by $\mathbf{v}(t)=\left\langle t^{2},\left(t^{3}+1\right)\right\rangle$, and the particle is at $\langle 2,1\rangle$ for $t=0$.

- Where is the particle at $t=2$?

Practice final exam: April 30, 2001. Prbl. 3.

Example

The velocity of a particle is given by $\mathbf{v}(t)=\left\langle t^{2},\left(t^{3}+1\right)\right\rangle$, and the particle is at $\langle 2,1\rangle$ for $t=0$.

- Where is the particle at $t=2$?

Solution: $\mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+r_{x}\right),\left(\frac{t^{4}}{4}+t+r_{y}\right)\right\rangle$.

Practice final exam: April 30, 2001. Prbl. 3.

Example

The velocity of a particle is given by $\mathbf{v}(t)=\left\langle t^{2},\left(t^{3}+1\right)\right\rangle$, and the particle is at $\langle 2,1\rangle$ for $t=0$.

- Where is the particle at $t=2$?

Solution: $\mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+r_{x}\right),\left(\frac{t^{4}}{4}+t+r_{y}\right)\right\rangle$. Since

$$
\mathbf{r}(0)=\langle 2,1\rangle, \text { we get that } \mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+2\right),\left(\frac{t^{4}}{4}+t+1\right)\right\rangle
$$

Practice final exam: April 30, 2001. Prbl. 3.

Example

The velocity of a particle is given by $\mathbf{v}(t)=\left\langle t^{2},\left(t^{3}+1\right)\right\rangle$, and the particle is at $\langle 2,1\rangle$ for $t=0$.

- Where is the particle at $t=2$?

Solution: $\mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+r_{x}\right),\left(\frac{t^{4}}{4}+t+r_{y}\right)\right\rangle$. Since

$$
\mathbf{r}(0)=\langle 2,1\rangle \text {, we get that } \mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+2\right),\left(\frac{t^{4}}{4}+t+1\right)\right\rangle
$$

Hence $\mathbf{r}(2)=\langle 8 / 3+2,7\rangle$.

Practice final exam: April 30, 2001. Prbl. 3.

Example

The velocity of a particle is given by $\mathbf{v}(t)=\left\langle t^{2},\left(t^{3}+1\right)\right\rangle$, and the particle is at $\langle 2,1\rangle$ for $t=0$.

- Where is the particle at $t=2$?

Solution: $\mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+r_{x}\right),\left(\frac{t^{4}}{4}+t+r_{y}\right)\right\rangle$. Since

$$
\mathbf{r}(0)=\langle 2,1\rangle, \text { we get that } \mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+2\right),\left(\frac{t^{4}}{4}+t+1\right)\right\rangle
$$

Hence $\mathbf{r}(2)=\langle 8 / 3+2,7\rangle$.

- Find an expression for the particle arc length for $t \in[0,2]$.

Practice final exam: April 30, 2001. Prbl. 3.

Example

The velocity of a particle is given by $\mathbf{v}(t)=\left\langle t^{2},\left(t^{3}+1\right)\right\rangle$, and the particle is at $\langle 2,1\rangle$ for $t=0$.

- Where is the particle at $t=2$?

Solution: $\mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+r_{x}\right),\left(\frac{t^{4}}{4}+t+r_{y}\right)\right\rangle$. Since

$$
\mathbf{r}(0)=\langle 2,1\rangle, \text { we get that } \mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+2\right),\left(\frac{t^{4}}{4}+t+1\right)\right\rangle
$$

Hence $\mathbf{r}(2)=\langle 8 / 3+2,7\rangle$.

- Find an expression for the particle arc length for $t \in[0,2]$.

Solution: $s(t)=\int_{0}^{t} \sqrt{\tau^{4}+\left(\tau^{3}+1\right)^{2}} d \tau$.

Practice final exam: April 30, 2001. Prbl. 3.

Example

The velocity of a particle is given by $\mathbf{v}(t)=\left\langle t^{2},\left(t^{3}+1\right)\right\rangle$, and the particle is at $\langle 2,1\rangle$ for $t=0$.

- Where is the particle at $t=2$?

Solution: $\mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+r_{x}\right),\left(\frac{t^{4}}{4}+t+r_{y}\right)\right\rangle$. Since

$$
\mathbf{r}(0)=\langle 2,1\rangle, \text { we get that } \mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+2\right),\left(\frac{t^{4}}{4}+t+1\right)\right\rangle
$$

Hence $\mathbf{r}(2)=\langle 8 / 3+2,7\rangle$.

- Find an expression for the particle arc length for $t \in[0,2]$.

Solution: $s(t)=\int_{0}^{t} \sqrt{\tau^{4}+\left(\tau^{3}+1\right)^{2}} d \tau$.

- Find the particle acceleration.

Practice final exam: April 30, 2001. Prbl. 3.

Example

The velocity of a particle is given by $\mathbf{v}(t)=\left\langle t^{2},\left(t^{3}+1\right)\right\rangle$, and the particle is at $\langle 2,1\rangle$ for $t=0$.

- Where is the particle at $t=2$?

Solution: $\mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+r_{x}\right),\left(\frac{t^{4}}{4}+t+r_{y}\right)\right\rangle$. Since

$$
\mathbf{r}(0)=\langle 2,1\rangle, \text { we get that } \mathbf{r}(t)=\left\langle\left(\frac{t^{3}}{3}+2\right),\left(\frac{t^{4}}{4}+t+1\right)\right\rangle
$$

Hence $\mathbf{r}(2)=\langle 8 / 3+2,7\rangle$.

- Find an expression for the particle arc length for $t \in[0,2]$.

Solution: $s(t)=\int_{0}^{t} \sqrt{\tau^{4}+\left(\tau^{3}+1\right)^{2}} d \tau$.

- Find the particle acceleration.

Solution: $\mathbf{a}(t)=\left\langle 2 t, 3 t^{2}\right\rangle$.

Practice final exam: April 30, 2001. Prbl. 4.
Example

- Draw a rough sketch of the surface $z=2 x^{2}+3 y^{2}+5$.

Practice final exam: April 30, 2001. Prbl. 4.

Example

- Draw a rough sketch of the surface $z=2 x^{2}+3 y^{2}+5$.

Solution: This is a paraboloid along the vertical direction, opens up, with vertex at $z=5$ on the z-axis, and the x-radius is a bit longer than the y-radius.

Practice final exam: April 30, 2001. Prbl. 4.

Example

- Draw a rough sketch of the surface $z=2 x^{2}+3 y^{2}+5$.

Solution: This is a paraboloid along the vertical direction, opens up, with vertex at $z=5$ on the z-axis, and the x-radius is a bit longer than the y-radius.

- Find the equation of the tangent plane to the surface at the point (1, 1, 10).

Practice final exam: April 30, 2001. Prbl. 4.

Example

- Draw a rough sketch of the surface $z=2 x^{2}+3 y^{2}+5$.

Solution: This is a paraboloid along the vertical direction, opens up, with vertex at $z=5$ on the z-axis, and the x-radius is a bit longer than the y-radius.

- Find the equation of the tangent plane to the surface at the point (1, 1, 10).

Solution: Introduce $f(x, y)=2 x^{2}+3 y^{2}+5$,

Practice final exam: April 30, 2001. Prbl. 4.

Example

- Draw a rough sketch of the surface $z=2 x^{2}+3 y^{2}+5$.

Solution: This is a paraboloid along the vertical direction, opens up, with vertex at $z=5$ on the z-axis, and the x-radius is a bit longer than the y-radius.

- Find the equation of the tangent plane to the surface at the point (1, 1, 10).
Solution: Introduce $f(x, y)=2 x^{2}+3 y^{2}+5$, then

$$
L_{(1,1)}(x, y)=\partial_{x} f(1,1)(x-1)+\partial_{y} f(1,1)(y-1)+f(1,1) .
$$

Practice final exam: April 30, 2001. Prbl. 4.

Example

- Draw a rough sketch of the surface $z=2 x^{2}+3 y^{2}+5$.

Solution: This is a paraboloid along the vertical direction, opens up, with vertex at $z=5$ on the z-axis, and the x-radius is a bit longer than the y-radius.

- Find the equation of the tangent plane to the surface at the point (1, 1, 10).
Solution: Introduce $f(x, y)=2 x^{2}+3 y^{2}+5$, then

$$
L_{(1,1)}(x, y)=\partial_{x} f(1,1)(x-1)+\partial_{y} f(1,1)(y-1)+f(1,1) .
$$

Since $f(1,1)=10$, and $\partial_{x} f=4 x, \partial_{y} f=6 y$,

Practice final exam: April 30, 2001. Prbl. 4.

Example

- Draw a rough sketch of the surface $z=2 x^{2}+3 y^{2}+5$.

Solution: This is a paraboloid along the vertical direction, opens up, with vertex at $z=5$ on the z-axis, and the x-radius is a bit longer than the y-radius.

- Find the equation of the tangent plane to the surface at the point ($1,1,10$).
Solution: Introduce $f(x, y)=2 x^{2}+3 y^{2}+5$, then

$$
L_{(1,1)}(x, y)=\partial_{x} f(1,1)(x-1)+\partial_{y} f(1,1)(y-1)+f(1,1) .
$$

Since $f(1,1)=10$, and $\partial_{x} f=4 x, \partial_{y} f=6 y$, then

$$
z=L_{(1,1)}(x, y)=4(x-1)+6(y-1)+10 .
$$

Practice final exam: April 30, 2001. Prbl. 5.

Example
Let $w=f(x, y)$ and $x=s^{2}+t^{2}, y=s t^{2}$. If $\partial_{x} f=x-y$ and $\partial_{y} f=y-x$, find $\partial_{s} w$ and $\partial_{t} w$ in terms of s and t.

Practice final exam: April 30, 2001. Prbl. 5.

Example

Let $w=f(x, y)$ and $x=s^{2}+t^{2}, y=s t^{2}$. If $\partial_{x} f=x-y$ and $\partial_{y} f=y-x$, find $\partial_{s} w$ and $\partial_{t} w$ in terms of s and t.

Solution:
$\partial_{s} w=\partial_{x} f \partial_{s} x+\partial_{y} f \partial_{s} y$

Practice final exam: April 30, 2001. Prbl. 5.

Example

Let $w=f(x, y)$ and $x=s^{2}+t^{2}, y=s t^{2}$. If $\partial_{x} f=x-y$ and $\partial_{y} f=y-x$, find $\partial_{s} w$ and $\partial_{t} w$ in terms of s and t.

Solution:

$$
\partial_{s} w=\partial_{x} f \partial_{s} x+\partial_{y} f \partial_{s} y=(x-y) 2 s+(y-x) t^{2}
$$

Practice final exam: April 30, 2001. Prbl. 5.

Example

Let $w=f(x, y)$ and $x=s^{2}+t^{2}, y=s t^{2}$. If $\partial_{x} f=x-y$ and $\partial_{y} f=y-x$, find $\partial_{s} w$ and $\partial_{t} w$ in terms of s and t.

Solution:

$$
\partial_{s} w=\partial_{x} f \partial_{s} x+\partial_{y} f \partial_{s} y=(x-y) 2 s+(y-x) t^{2}=(x-y)\left(2 s-t^{2}\right) .
$$

Practice final exam: April 30, 2001. Prbl. 5.

Example

Let $w=f(x, y)$ and $x=s^{2}+t^{2}, y=s t^{2}$. If $\partial_{x} f=x-y$ and $\partial_{y} f=y-x$, find $\partial_{s} w$ and $\partial_{t} w$ in terms of s and t.

Solution:
$\partial_{s} w=\partial_{x} f \partial_{s} x+\partial_{y} f \partial_{s} y=(x-y) 2 s+(y-x) t^{2}=(x-y)\left(2 s-t^{2}\right)$.
Therefore, $\partial_{s} w=\left(s^{2}+t^{2}-s t^{2}\right)\left(2 s-t^{2}\right)$.

Practice final exam: April 30, 2001. Prbl. 5.

Example

Let $w=f(x, y)$ and $x=s^{2}+t^{2}, y=s t^{2}$. If $\partial_{x} f=x-y$ and $\partial_{y} f=y-x$, find $\partial_{s} w$ and $\partial_{t} w$ in terms of s and t.
Solution:
$\partial_{s} w=\partial_{x} f \partial_{s} x+\partial_{y} f \partial_{s} y=(x-y) 2 s+(y-x) t^{2}=(x-y)\left(2 s-t^{2}\right)$.
Therefore, $\partial_{s} w=\left(s^{2}+t^{2}-s t^{2}\right)\left(2 s-t^{2}\right)$.
$\partial_{t} w=\partial_{x} f \partial_{t} x+\partial_{y} f \partial_{t} y$

Practice final exam: April 30, 2001. Prbl. 5.

Example

Let $w=f(x, y)$ and $x=s^{2}+t^{2}, y=s t^{2}$. If $\partial_{x} f=x-y$ and $\partial_{y} f=y-x$, find $\partial_{s} w$ and $\partial_{t} w$ in terms of s and t.
Solution:
$\partial_{s} w=\partial_{x} f \partial_{s} x+\partial_{y} f \partial_{s} y=(x-y) 2 s+(y-x) t^{2}=(x-y)\left(2 s-t^{2}\right)$.
Therefore, $\partial_{s} w=\left(s^{2}+t^{2}-s t^{2}\right)\left(2 s-t^{2}\right)$.
$\partial_{t} w=\partial_{x} f \partial_{t} x+\partial_{y} f \partial_{t} y=(x-y) 2 t+(y-x) 2 s t$

Practice final exam: April 30, 2001. Prbl. 5.

Example

Let $w=f(x, y)$ and $x=s^{2}+t^{2}, y=s t^{2}$. If $\partial_{x} f=x-y$ and $\partial_{y} f=y-x$, find $\partial_{s} w$ and $\partial_{t} w$ in terms of s and t.
Solution:
$\partial_{s} w=\partial_{x} f \partial_{s} x+\partial_{y} f \partial_{s} y=(x-y) 2 s+(y-x) t^{2}=(x-y)\left(2 s-t^{2}\right)$.
Therefore, $\partial_{s} w=\left(s^{2}+t^{2}-s t^{2}\right)\left(2 s-t^{2}\right)$.

$$
\partial_{t} w=\partial_{x} f \partial_{t} x+\partial_{y} f \partial_{t} y=(x-y) 2 t+(y-x) 2 s t=(x-y)(2 t-2 s t) .
$$

Practice final exam: April 30, 2001. Prbl. 5.

Example
Let $w=f(x, y)$ and $x=s^{2}+t^{2}, y=s t^{2}$. If $\partial_{x} f=x-y$ and $\partial_{y} f=y-x$, find $\partial_{s} w$ and $\partial_{t} w$ in terms of s and t.
Solution:
$\partial_{s} w=\partial_{x} f \partial_{s} x+\partial_{y} f \partial_{s} y=(x-y) 2 s+(y-x) t^{2}=(x-y)\left(2 s-t^{2}\right)$.
Therefore, $\partial_{s} w=\left(s^{2}+t^{2}-s t^{2}\right)\left(2 s-t^{2}\right)$.
$\partial_{t} w=\partial_{x} f \partial_{t} x+\partial_{y} f \partial_{t} y=(x-y) 2 t+(y-x) 2 s t=(x-y)(2 t-2 s t)$.
Therefore, $\partial_{t} w=\left(s^{2}+t^{2}-s t^{2}\right) 2 t(1-s)$.

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left\{\begin{array}{r}
x+2 y=0 \\
2 x+y^{3}=0
\end{array}\right.
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{aligned}
& \nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle \Rightarrow\left\{\begin{array}{r}
x+2 y=0 \\
2 x+y^{3}=0
\end{array}\right. \\
& -4 y+y^{3}=0
\end{aligned}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{aligned}
& \nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle \Rightarrow\left\{\begin{array}{r}
x+2 y=0 \\
2 x+y^{3}=0
\end{array}\right. \\
& -4 y+y^{3}=0 \Rightarrow\left\{\begin{array}{c}
y=0
\end{array}\right. \\
&
\end{aligned}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{aligned}
& \nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle \Rightarrow\left\{\begin{array}{r}
x+2 y=0 \\
2 x+y^{3}=0
\end{array}\right. \\
& -4 y+y^{3}=0 \Rightarrow\left\{\begin{array}{c}
y=0 \Rightarrow x=0
\end{array}\right. \\
&
\end{aligned}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{aligned}
& \nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left\{\begin{array}{r}
x+2 y=0 \\
2 x+y^{3}=0
\end{array}\right. \\
& -4 y+y^{3}=0 \Rightarrow\left\{\begin{array}{r}
y=0 \Rightarrow x=0 \quad \Rightarrow \quad P_{0}=(0,0)
\end{array}\right.
\end{aligned}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{aligned}
& \nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left\{\begin{array}{r}
x+2 y=0 \\
2 x+y^{3}=0
\end{array}\right. \\
& -4 y+y^{3}=0 \Rightarrow\left\{\begin{array}{c}
y=0 \Rightarrow x=0 \\
y= \pm 2
\end{array}\right.
\end{aligned}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{aligned}
& \nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left\{\begin{array}{r}
x+2 y=0 \\
2 x+y^{3}=0
\end{array}\right. \\
& -4 y+y^{3}=0 \Rightarrow\left\{\begin{aligned}
y=0 \Rightarrow x=0 & \Rightarrow \quad P_{0}=(0,0) \\
y= \pm 2 \Rightarrow x=\mp 4 & \Rightarrow
\end{aligned}\right.
\end{aligned}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{aligned}
& \nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left\{\begin{array}{r}
x+2 y=0 \\
2 x+y^{3}=0
\end{array}\right. \\
& -4 y+y^{3}=0 \Rightarrow\left\{\begin{aligned}
y=0 \Rightarrow x=0 & \Rightarrow
\end{aligned} \begin{array}{rl}
y=(0,0) \\
y= \pm 2 \Rightarrow x=\mp 4 & \Rightarrow
\end{array} \begin{array}{l}
P_{1}=(4,-2) \\
P_{2}=(-4,2)
\end{array}\right.
\end{aligned}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{aligned}
& \nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left\{\begin{array}{c}
x+2 y=0 \\
2 x+y^{3}=0
\end{array}\right. \\
& -4 y+y^{3}=0 \Rightarrow\left\{\begin{aligned}
y=0 \Rightarrow x=0 & \Rightarrow \\
y= \pm 2 \Rightarrow x=\mp 4 & \Rightarrow\left\{\begin{array}{l}
P_{1}=(4,-2) \\
P_{2}=(-4,2)
\end{array}\right.
\end{aligned}\right.
\end{aligned}
$$

Since $f_{x x}=4, f_{y y}=12 y^{2}$, and $f_{x y}=8$,

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{aligned}
& \nabla f=\left\langle(4 x+8 y),\left(8 x+4 y^{3}\right)\right\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left\{\begin{array}{c}
x+2 y=0 \\
2 x+y^{3}=0
\end{array}\right. \\
& -4 y+y^{3}=0 \Rightarrow\left\{\begin{aligned}
& y=0 \Rightarrow x=0 \Rightarrow \\
& y= \pm 2=(0,0)
\end{aligned}\right. \\
& \begin{array}{l}
P_{0}=(2) \neq 4
\end{array} \quad \Rightarrow\left\{\begin{array}{l}
P_{1}=(4,-2) \\
P_{2}=(-4,2)
\end{array}\right.
\end{aligned}
$$

Since $f_{x x}=4, f_{y y}=12 y^{2}$, and $f_{x y}=8$, we conclude that $D=3(16) y^{2}-4(16)$.

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
P_{0}=(0,0), P_{1}=(4,-2), P_{2}=(-4,2), D=3(16) y^{2}-4(16) .
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{gathered}
P_{0}=(0,0), P_{1}=(4,-2), P_{2}=(-4,2), D=3(16) y^{2}-4(16) . \\
D(0,0)=-4(16)<0
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{gathered}
P_{0}=(0,0), P_{1}=(4,-2), P_{2}=(-4,2), D=3(16) y^{2}-4(16) . \\
D(0,0)=-4(16)<0 \quad \Rightarrow \quad P_{0}=(0,0) \text { saddle point. }
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{gathered}
P_{0}=(0,0), P_{1}=(4,-2), P_{2}=(-4,2), D=3(16) y^{2}-4(16) . \\
D(0,0)=-4(16)<0 \quad \Rightarrow \quad P_{0}=(0,0) \text { saddle point. } \\
D(4,-2)=12(16)-4(16)>0, \quad f_{x x}=4
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{gathered}
P_{0}=(0,0), P_{1}=(4,-2), P_{2}=(-4,2), D=3(16) y^{2}-4(16) . \\
D(0,0)=-4(16)<0 \quad \Rightarrow \quad P_{0}=(0,0) \text { saddle point. }
\end{gathered}
$$

$$
D(4,-2)=12(16)-4(16)>0, \quad f_{x x}=4 \Rightarrow P_{1}=(4,-2) \mathrm{min} .
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{gathered}
P_{0}=(0,0), P_{1}=(4,-2), P_{2}=(-4,2), D=3(16) y^{2}-4(16) \\
D(0,0)=-4(16)<0 \quad \Rightarrow \quad P_{0}=(0,0) \text { saddle point. } \\
D(4,-2)=12(16)-4(16)>0, \quad f_{x x}=4 \Rightarrow P_{1}=(4,-2) \mathrm{min} . \\
D(-4,2)=12(16)-4(16)>0, \quad f_{x x}=4
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function $f(x, y)=2 x^{2}+8 x y+y^{4}$ and determine whether they re local maximum, minimum of saddle points.

Solution:

$$
\begin{gathered}
P_{0}=(0,0), P_{1}=(4,-2), P_{2}=(-4,2), D=3(16) y^{2}-4(16) \\
D(0,0)=-4(16)<0 \Rightarrow \quad P_{0}=(0,0) \text { saddle point. } \\
D(4,-2)=12(16)-4(16)>0, \quad f_{x x}=4 \Rightarrow P_{1}=(4,-2) \mathrm{min} \\
D(-4,2)=12(16)-4(16)>0, \quad f_{x x}=4 \Rightarrow P_{1}=(-4,2) \mathrm{min}
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 7.

Example

Evaluate the integral $I=\int_{0}^{1} \int_{x}^{\sqrt{x}} y d y d x$ by reversing the order of integration.

Practice final exam: April 30, 2001. Prbl. 7.

Example

Evaluate the integral $I=\int_{0}^{1} \int_{x}^{\sqrt{x}} y d y d x$ by reversing the order of integration.

Solution: The integration region is the set in the square $[0,1] \times[0,1]$ in between the curves $y=x$ and $y=\sqrt{x}$.

Practice final exam: April 30, 2001. Prbl. 7.

Example

Evaluate the integral $I=\int_{0}^{1} \int_{x}^{\sqrt{x}} y d y d x$ by reversing the order of integration.

Solution: The integration region is the set in the square $[0,1] \times[0,1]$ in between the curves $y=x$ and $y=\sqrt{x}$. Therefore,

$$
I=\int_{0}^{1} \int_{y^{2}}^{y} y d x d y
$$

Practice final exam: April 30, 2001. Prbl. 7.

Example

Evaluate the integral $I=\int_{0}^{1} \int_{x}^{\sqrt{x}} y d y d x$ by reversing the order of integration.

Solution: The integration region is the set in the square $[0,1] \times[0,1]$ in between the curves $y=x$ and $y=\sqrt{x}$. Therefore,

$$
I=\int_{0}^{1} \int_{y^{2}}^{y} y d x d y=\int_{0}^{1} y\left(y-y^{2}\right) d y
$$

Practice final exam: April 30, 2001. Prbl. 7.

Example

Evaluate the integral $I=\int_{0}^{1} \int_{x}^{\sqrt{x}} y d y d x$ by reversing the order of integration.

Solution: The integration region is the set in the square $[0,1] \times[0,1]$ in between the curves $y=x$ and $y=\sqrt{x}$. Therefore,

$$
I=\int_{0}^{1} \int_{y^{2}}^{y} y d x d y=\int_{0}^{1} y\left(y-y^{2}\right) d y=\int_{0}^{1}\left(y^{2}-y^{3}\right) d y
$$

Practice final exam: April 30, 2001. Prbl. 7.

Example

Evaluate the integral $I=\int_{0}^{1} \int_{x}^{\sqrt{x}} y d y d x$ by reversing the order of integration.

Solution: The integration region is the set in the square $[0,1] \times[0,1]$ in between the curves $y=x$ and $y=\sqrt{x}$. Therefore,

$$
\begin{gathered}
I=\int_{0}^{1} \int_{y^{2}}^{y} y d x d y=\int_{0}^{1} y\left(y-y^{2}\right) d y=\int_{0}^{1}\left(y^{2}-y^{3}\right) d y \\
\quad I=\left.\left(\frac{y^{3}}{3}-\frac{y^{4}}{4}\right)\right|_{0} ^{1}
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 7.

Example

Evaluate the integral $I=\int_{0}^{1} \int_{x}^{\sqrt{x}} y d y d x$ by reversing the order of integration.

Solution: The integration region is the set in the square $[0,1] \times[0,1]$ in between the curves $y=x$ and $y=\sqrt{x}$. Therefore,

$$
\begin{gathered}
I=\int_{0}^{1} \int_{y^{2}}^{y} y d x d y=\int_{0}^{1} y\left(y-y^{2}\right) d y=\int_{0}^{1}\left(y^{2}-y^{3}\right) d y \\
\quad I=\left.\left(\frac{y^{3}}{3}-\frac{y^{4}}{4}\right)\right|_{0} ^{1}=\frac{1}{3}-\frac{1}{4}
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 7.

Example

Evaluate the integral $I=\int_{0}^{1} \int_{x}^{\sqrt{x}} y d y d x$ by reversing the order of integration.

Solution: The integration region is the set in the square $[0,1] \times[0,1]$ in between the curves $y=x$ and $y=\sqrt{x}$. Therefore,

$$
\begin{gathered}
I=\int_{0}^{1} \int_{y^{2}}^{y} y d x d y=\int_{0}^{1} y\left(y-y^{2}\right) d y=\int_{0}^{1}\left(y^{2}-y^{3}\right) d y \\
I=\left.\left(\frac{y^{3}}{3}-\frac{y^{4}}{4}\right)\right|_{0} ^{1}=\frac{1}{3}-\frac{1}{4} \Rightarrow \quad I=\frac{1}{12} .
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 8.

Example

Find the work done by the force $\mathbf{F}=\langle y z, x z,-x y\rangle$ on a particle moving along the path $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Practice final exam: April 30, 2001. Prbl. 8.

Example

Find the work done by the force $\mathbf{F}=\langle y z, x z,-x y\rangle$ on a particle moving along the path $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution:

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

Practice final exam: April 30, 2001. Prbl. 8.

Example

Find the work done by the force $\mathbf{F}=\langle y z, x z,-x y\rangle$ on a particle moving along the path $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution:

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$.

Practice final exam: April 30, 2001. Prbl. 8.

Example

Find the work done by the force $\mathbf{F}=\langle y z, x z,-x y\rangle$ on a particle moving along the path $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution:

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$. Hence

$$
W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t
$$

Practice final exam: April 30, 2001. Prbl. 8.

Example

Find the work done by the force $\mathbf{F}=\langle y z, x z,-x y\rangle$ on a particle moving along the path $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution:

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$. Hence

$$
W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t=\int_{0}^{2} 4 t^{5} d t
$$

Practice final exam: April 30, 2001. Prbl. 8.

Example

Find the work done by the force $\mathbf{F}=\langle y z, x z,-x y\rangle$ on a particle moving along the path $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution:

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$. Hence

$$
W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t=\int_{0}^{2} 4 t^{5} d t=\left.\frac{4}{6} t^{6}\right|_{0} ^{2}
$$

Practice final exam: April 30, 2001. Prbl. 8.

Example

Find the work done by the force $\mathbf{F}=\langle y z, x z,-x y\rangle$ on a particle moving along the path $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution:

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$. Hence

$$
W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t=\int_{0}^{2} 4 t^{5} d t=\left.\frac{4}{6} t^{6}\right|_{0} ^{2}=\frac{2}{3} 2^{6}
$$

Practice final exam: April 30, 2001. Prbl. 8.

Example

Find the work done by the force $\mathbf{F}=\langle y z, x z,-x y\rangle$ on a particle moving along the path $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution:

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$. Hence

$$
W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t=\int_{0}^{2} 4 t^{5} d t=\left.\frac{4}{6} t^{6}\right|_{0} ^{2}=\frac{2}{3} 2^{6} .
$$

Therefore, $W=2^{7} / 3$.

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: The field \mathbf{F} is conservative, since

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: The field \mathbf{F} is conservative, since

$$
\partial_{x} F_{y}=\cos (z)-z e^{x}=\partial_{y} F_{x},
$$

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: The field \mathbf{F} is conservative, since

$$
\begin{gathered}
\partial_{x} F_{y}=\cos (z)-z e^{x}=\partial_{y} F_{x}, \\
\partial_{x} F_{z}=-x y \sin (z)-y e^{x}=\partial_{z} F_{x},
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: The field \mathbf{F} is conservative, since

$$
\begin{gathered}
\partial_{x} F_{y}=\cos (z)-z e^{x}=\partial_{y} F_{x}, \\
\partial_{x} F_{z}=-x y \sin (z)-y e^{x}=\partial_{z} F_{x}, \\
\partial_{y} F_{z}=-x \sin (z)-e^{x}=\partial_{z} F_{y} .
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: The field \mathbf{F} is conservative, since

$$
\begin{gathered}
\partial_{x} F_{y}=\cos (z)-z e^{x}=\partial_{y} F_{x}, \\
\partial_{x} F_{z}=-x y \sin (z)-y e^{x}=\partial_{z} F_{x}, \\
\partial_{y} F_{z}=-x \sin (z)-e^{x}=\partial_{z} F_{y} .
\end{gathered}
$$

The potential function is a scalar function f solution of

$$
\partial_{x} f=y \cos (z)-y z e^{x}, \partial_{y} f=x \cos (z)-z e^{x}, \partial_{z} f=-x y \sin (z)-y e^{x} .
$$

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall:

$$
\partial_{x} f=y \cos (z)-y z e^{x}, \partial_{y} f=x \cos (z)-z e^{x}, \partial_{z} f=-x y \sin (z)-y e^{x} .
$$

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall:

$$
\partial_{x} f=y \cos (z)-y z e^{x}, \partial_{y} f=x \cos (z)-z e^{x}, \partial_{z} f=-x y \sin (z)-y e^{x} .
$$

The x-integral of the first equation implies
$f=x y \cos (z)-y z e^{x}+g(y, z)$.

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall:

$$
\partial_{x} f=y \cos (z)-y z e^{x}, \partial_{y} f=x \cos (z)-z e^{x}, \partial_{z} f=-x y \sin (z)-y e^{x} .
$$

The x-integral of the first equation implies $f=x y \cos (z)-y z e^{x}+g(y, z)$. Introduce f into the second equation above,

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall:

$$
\partial_{x} f=y \cos (z)-y z e^{x}, \partial_{y} f=x \cos (z)-z e^{x}, \partial_{z} f=-x y \sin (z)-y e^{x} .
$$

The x-integral of the first equation implies $f=x y \cos (z)-y z e^{x}+g(y, z)$. Introduce f into the second equation above,

$$
x \cos (z)-z e^{x}+\partial_{y} g=x \cos (z)-z e^{x}
$$

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall:

$$
\partial_{x} f=y \cos (z)-y z e^{x}, \partial_{y} f=x \cos (z)-z e^{x}, \partial_{z} f=-x y \sin (z)-y e^{x} .
$$

The x-integral of the first equation implies $f=x y \cos (z)-y z e^{x}+g(y, z)$. Introduce f into the second equation above,

$$
x \cos (z)-z e^{x}+\partial_{y} g=x \cos (z)-z e^{x} \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall:

$$
\partial_{x} f=y \cos (z)-y z e^{x}, \partial_{y} f=x \cos (z)-z e^{x}, \partial_{z} f=-x y \sin (z)-y e^{x} .
$$

The x-integral of the first equation implies $f=x y \cos (z)-y z e^{x}+g(y, z)$. Introduce f into the second equation above,

$$
x \cos (z)-z e^{x}+\partial_{y} g=x \cos (z)-z e^{x} \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so we conclude $g(y, z)=h(z)$,

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall:

$$
\partial_{x} f=y \cos (z)-y z e^{x}, \partial_{y} f=x \cos (z)-z e^{x}, \partial_{z} f=-x y \sin (z)-y e^{x} .
$$

The x-integral of the first equation implies $f=x y \cos (z)-y z e^{x}+g(y, z)$. Introduce f into the second equation above,

$$
x \cos (z)-z e^{x}+\partial_{y} g=x \cos (z)-z e^{x} \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so we conclude $g(y, z)=h(z)$, hence $f=x y \cos (z)-y z e^{x}+h(z)$.

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall: $f=x y \cos (z)-y z e^{x}+h(z)$.

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall: $f=x y \cos (z)-y z e^{x}+h(z)$.
Introduce f into the equation $\partial_{z} f=-x y \sin (z)-y e^{x}$, that is,

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall: $f=x y \cos (z)-y z e^{x}+h(z)$.
Introduce f into the equation $\partial_{z} f=-x y \sin (z)-y e^{x}$, that is,

$$
-x y \sin (z)-e^{x}+h^{\prime}(z)=-x y \sin (z)-y e^{x}
$$

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall: $f=x y \cos (z)-y z e^{x}+h(z)$.
Introduce f into the equation $\partial_{z} f=-x y \sin (z)-y e^{x}$, that is,

$$
-x y \sin (z)-e^{x}+h^{\prime}(z)=-x y \sin (z)-y e^{x} \quad \Rightarrow \quad h^{\prime}(z)=0 .
$$

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall: $f=x y \cos (z)-y z e^{x}+h(z)$.
Introduce f into the equation $\partial_{z} f=-x y \sin (z)-y e^{x}$, that is,

$$
-x y \sin (z)-e^{x}+h^{\prime}(z)=-x y \sin (z)-y e^{x} \quad \Rightarrow \quad h^{\prime}(z)=0 .
$$

So, $h(z)=c$, a constant, hence $f=x y \cos (z)-y z e^{x}+c$.

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall: $f=x y \cos (z)-y z e^{x}+h(z)$.
Introduce f into the equation $\partial_{z} f=-x y \sin (z)-y e^{x}$, that is,

$$
-x y \sin (z)-e^{x}+h^{\prime}(z)=-x y \sin (z)-y e^{x} \quad \Rightarrow \quad h^{\prime}(z)=0 .
$$

So, $h(z)=c$, a constant, hence $f=x y \cos (z)-y z e^{x}+c$.
Finally $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{(0,0,0)}^{(1,1, \pi)} d f$

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall: $f=x y \cos (z)-y z e^{x}+h(z)$.
Introduce f into the equation $\partial_{z} f=-x y \sin (z)-y e^{x}$, that is,

$$
-x y \sin (z)-e^{x}+h^{\prime}(z)=-x y \sin (z)-y e^{x} \quad \Rightarrow \quad h^{\prime}(z)=0 .
$$

So, $h(z)=c$, a constant, hence $f=x y \cos (z)-y z e^{x}+c$.
Finally $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{(0,0,0)}^{(1,1, \pi)} d f=f(1,1, \pi)-f(0,0,0)$.

Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
$\mathbf{F}=\left\langle\left(y \cos (z)-y z e^{x}\right),\left(x \cos (z)-z e^{x}\right),\left(-x y \sin (z)-y e^{x}\right)\right\rangle$ is conservative. Then find its potential function. Then evaluate
$I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{r}(t)=\left\langle t, t^{2}, \pi t^{3}\right\rangle$.
Solution: Recall: $f=x y \cos (z)-y z e^{x}+h(z)$.
Introduce f into the equation $\partial_{z} f=-x y \sin (z)-y e^{x}$, that is,

$$
-x y \sin (z)-e^{x}+h^{\prime}(z)=-x y \sin (z)-y e^{x} \quad \Rightarrow \quad h^{\prime}(z)=0 .
$$

So, $h(z)=c$, a constant, hence $f=x y \cos (z)-y z e^{x}+c$.
Finally $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{(0,0,0)}^{(1,1, \pi)} d f=f(1,1, \pi)-f(0,0,0)$.
So we conclude that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=-(1+\pi e)$.

Practice final exam: April 30, 2001. Prbl. 10.

Example

Use the Green Theorem to evaluate the integral $\int_{C} F_{x} d x+F_{y} d y$ where $F_{x}=y+e^{x}$ and $F_{y}=2 x^{2}+\cos (y)$ and C is the triangle with vertices $(0,0),(0,2)$ and $(1,1)$ traversed counterclockwise.

Practice final exam: April 30, 2001. Prbl. 10.

Example

Use the Green Theorem to evaluate the integral $\int_{C} F_{x} d x+F_{y} d y$ where $F_{x}=y+e^{x}$ and $F_{y}=2 x^{2}+\cos (y)$ and C is the triangle with vertices $(0,0),(0,2)$ and $(1,1)$ traversed counterclockwise.

Solution: Denoting $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$,

Practice final exam: April 30, 2001. Prbl. 10.

Example

Use the Green Theorem to evaluate the integral $\int_{C} F_{x} d x+F_{y} d y$ where $F_{x}=y+e^{x}$ and $F_{y}=2 x^{2}+\cos (y)$ and C is the triangle with vertices $(0,0),(0,2)$ and $(1,1)$ traversed counterclockwise.

Solution: Denoting $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$, Green's Theorem says

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A
$$

Practice final exam: April 30, 2001. Prbl. 10.

Example

Use the Green Theorem to evaluate the integral $\int_{C} F_{x} d x+F_{y} d y$ where $F_{x}=y+e^{x}$ and $F_{y}=2 x^{2}+\cos (y)$ and C is the triangle with vertices $(0,0),(0,2)$ and $(1,1)$ traversed counterclockwise.

Solution: Denoting $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$, Green's Theorem says

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d A .
$$

Practice final exam: April 30, 2001. Prbl. 10.

Example

Use the Green Theorem to evaluate the integral $\int_{C} F_{x} d x+F_{y} d y$ where $F_{x}=y+e^{x}$ and $F_{y}=2 x^{2}+\cos (y)$ and C is the triangle with vertices $(0,0),(0,2)$ and $(1,1)$ traversed counterclockwise.

Solution: Denoting $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$, Green's Theorem says

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d A . \\
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{S}(4 x-1) d x d y
\end{aligned}
$$

Practice final exam: April 30, 2001. Prbl. 10.

Example

Use the Green Theorem to evaluate the integral $\int_{C} F_{x} d x+F_{y} d y$ where $F_{x}=y+e^{x}$ and $F_{y}=2 x^{2}+\cos (y)$ and C is the triangle with vertices $(0,0),(0,2)$ and $(1,1)$ traversed counterclockwise.

Solution: Denoting $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$, Green's Theorem says

$$
\begin{aligned}
& \int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d A \\
& \int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(4 x-1) d x d y=\int_{0}^{1} \int_{y}^{2-y}(4 x-1) d x d y .
\end{aligned}
$$

Practice final exam: April 30, 2001. Prbl. 10.

Example

Use the Green Theorem to evaluate the integral $\int_{C} F_{x} d x+F_{y} d y$ where $F_{x}=y+e^{x}$ and $F_{y}=2 x^{2}+\cos (y)$ and C is the triangle with vertices $(0,0),(0,2)$ and $(1,1)$ traversed counterclockwise.

Solution: Denoting $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$, Green's Theorem says

$$
\begin{aligned}
& \int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A=\iint_{S}\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) d A . \\
& \int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(4 x-1) d x d y=\int_{0}^{1} \int_{y}^{2-y}(4 x-1) d x d y .
\end{aligned}
$$

A straightforward calculation gives $\int_{C} \mathbf{F} \cdot d \mathbf{r}=3$.

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$. Use polar coordinates to evaluate the integral.

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$. Use polar coordinates to evaluate the integral.

Solution:

$$
A(S)=\iint_{S} d \sigma
$$

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$. Use polar coordinates to evaluate the integral.

Solution:

$$
A(S)=\iint_{S} d \sigma, \quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$. Use polar coordinates to evaluate the integral.

Solution:

$$
A(S)=\iint_{S} d \sigma, \quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

where $f=x^{2}+y^{2}+z-4$.

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$. Use polar coordinates to evaluate the integral.

Solution:

$$
A(S)=\iint_{S} d \sigma, \quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

where $f=x^{2}+y^{2}+z-4$. Therefore,

$$
\nabla f=\langle 2 x, 2 y, 1\rangle
$$

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$. Use polar coordinates to evaluate the integral.

Solution:

$$
A(S)=\iint_{S} d \sigma, \quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

where $f=x^{2}+y^{2}+z-4$. Therefore,

$$
\nabla f=\langle 2 x, 2 y, 1\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{1+4 x^{2}+4 y^{2}}
$$

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$. Use polar coordinates to evaluate the integral.

Solution:

$$
A(S)=\iint_{S} d \sigma, \quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

where $f=x^{2}+y^{2}+z-4$. Therefore,

$$
\nabla f=\langle 2 x, 2 y, 1\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{1+4 x^{2}+4 y^{2}}, \quad \nabla f \cdot \mathbf{k}=1
$$

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$. Use polar coordinates to evaluate the integral.

Solution:

$$
A(S)=\iint_{S} d \sigma, \quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

where $f=x^{2}+y^{2}+z-4$. Therefore,

$$
\nabla f=\langle 2 x, 2 y, 1\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{1+4 x^{2}+4 y^{2}}, \quad \nabla f \cdot \mathbf{k}=1 .
$$

$$
A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta
$$

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$. Use polar coordinates to evaluate the integral.

Solution:

$$
A(S)=\iint_{S} d \sigma, \quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

where $f=x^{2}+y^{2}+z-4$. Therefore,

$$
\nabla f=\langle 2 x, 2 y, 1\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{1+4 x^{2}+4 y^{2}}, \quad \nabla f \cdot \mathbf{k}=1 .
$$

$$
A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta, \quad u=1+4 r^{2}, \quad d u=8 r d r
$$

Practice final exam: April 30, 2001. Prbl. 11.

Example

Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$. Use polar coordinates to evaluate the integral.

Solution:

$$
A(S)=\iint_{S} d \sigma, \quad d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

where $f=x^{2}+y^{2}+z-4$. Therefore,

$$
\nabla f=\langle 2 x, 2 y, 1\rangle \quad \Rightarrow \quad|\nabla f|=\sqrt{1+4 x^{2}+4 y^{2}}, \quad \nabla f \cdot \mathbf{k}=1 .
$$

$$
A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta, \quad u=1+4 r^{2}, \quad d u=8 r d r
$$

The finally obtain $A(S)=(\pi / 6)\left(17^{3 / 2}-1\right)$.

Practice final exam: April 30, 2001. Prbl. 12.

Example
Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Practice final exam: April 30, 2001. Prbl. 12.

Example
Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Solution: $\mathbf{F}=\langle y, 0,0\rangle$.

Practice final exam: April 30, 2001. Prbl. 12.

Example

 Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.Solution: $\mathbf{F}=\langle y, 0,0\rangle$. The border of the hemisphere is given by the circle $x^{2}+y^{2}=1$, with $z=0$.

Practice final exam: April 30, 2001. Prbl. 12.

Example

Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Solution: $\mathbf{F}=\langle y, 0,0\rangle$. The border of the hemisphere is given by the circle $x^{2}+y^{2}=1$, with $z=0$. This circle can be parametrized for $t \in[0,2 \pi]$ as

$$
\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle
$$

Practice final exam: April 30, 2001. Prbl. 12.

Example

Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Solution: $\mathbf{F}=\langle y, 0,0\rangle$. The border of the hemisphere is given by the circle $x^{2}+y^{2}=1$, with $z=0$. This circle can be parametrized for $t \in[0,2 \pi]$ as

$$
\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 0\rangle
$$

Practice final exam: April 30, 2001. Prbl. 12.

Example

Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Solution: $\mathbf{F}=\langle y, 0,0\rangle$. The border of the hemisphere is given by the circle $x^{2}+y^{2}=1$, with $z=0$. This circle can be parametrized for $t \in[0,2 \pi]$ as

$$
\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 0\rangle
$$

and we also have $\mathbf{F}(t)=\langle\sin (t), 0,0\rangle$.

Practice final exam: April 30, 2001. Prbl. 12.

Example

Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Solution: $\mathbf{F}=\langle y, 0,0\rangle$. The border of the hemisphere is given by the circle $x^{2}+y^{2}=1$, with $z=0$. This circle can be parametrized for $t \in[0,2 \pi]$ as

$$
\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 0\rangle,
$$

and we also have $\mathbf{F}(t)=\langle\sin (t), 0,0\rangle$. Therefore,

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

Practice final exam: April 30, 2001. Prbl. 12.

Example

Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Solution: $\mathbf{F}=\langle y, 0,0\rangle$. The border of the hemisphere is given by the circle $x^{2}+y^{2}=1$, with $z=0$. This circle can be parametrized for $t \in[0,2 \pi]$ as

$$
\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 0\rangle,
$$

and we also have $\mathbf{F}(t)=\langle\sin (t), 0,0\rangle$. Therefore,

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=-\int_{0}^{2 \pi} \sin ^{2}(t) d t
$$

Practice final exam: April 30, 2001. Prbl. 12.

Example

Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Solution: $\mathbf{F}=\langle y, 0,0\rangle$. The border of the hemisphere is given by the circle $x^{2}+y^{2}=1$, with $z=0$. This circle can be parametrized for $t \in[0,2 \pi]$ as

$$
\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 0\rangle,
$$

and we also have $\mathbf{F}(t)=\langle\sin (t), 0,0\rangle$. Therefore,

$$
\begin{gathered}
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=-\int_{0}^{2 \pi} \sin ^{2}(t) d t \\
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=-\frac{1}{2} \int_{0}^{2 \pi}[1-\cos (2 t)] d t .
\end{gathered}
$$

Practice final exam: April 30, 2001. Prbl. 12.

Example

Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Solution: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=-\frac{1}{2} \int_{0}^{2 \pi}[1-\cos (2 t)] d t$.

Practice final exam: April 30, 2001. Prbl. 12.

Example

Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Solution: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=-\frac{1}{2} \int_{0}^{2 \pi}[1-\cos (2 t)] d t$.
Recall that

$$
\int_{0}^{2 \pi} \cos (2 t) d t=\frac{1}{2}\left(\left.\sin (2 t)\right|_{0} ^{2 \pi}\right)=0
$$

Practice final exam: April 30, 2001. Prbl. 12.

Example

Use the Stokes Theorem to evaluate $I=\iint_{S}[\nabla \times(y \mathbf{i})] \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, with $z \geqslant 0$.

Solution: $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=-\frac{1}{2} \int_{0}^{2 \pi}[1-\cos (2 t)] d t$.
Recall that

$$
\int_{0}^{2 \pi} \cos (2 t) d t=\frac{1}{2}\left(\left.\sin (2 t)\right|_{0} ^{2 \pi}\right)=0
$$

Therefore, we obtain

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=-\pi .
$$

