
Review for Exam 4.

I Sections 16.1-16.5, 16.7, 16.8.

I 50 minutes.

I 5 problems, similar to homework problems.

I No calculators, no notes, no books, no phones.

I No green book needed.



Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.



Conservative fields, potential functions (16.3).
Example

Is the field F = 〈y sin(z), x sin(z), xy cos(z)〉 conservative?
If “yes”, then find the potential function.

Solution: We need to check the equations

∂yFz = ∂zFy , ∂xFz = ∂zFx , ∂xFy = ∂yFx .

∂yFz = x cos(z) = ∂zFy ,

∂xFz = y cos(z) = ∂zFx ,

∂xFy = sin(z) = ∂yFx .

Therefore, F is a conservative field, that means there exists a
scalar field f such that F = ∇f . The equations for f are

∂x f = y sin(z), ∂y f = x sin(z), ∂z f = xy cos(z).
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Integrating in x the first equation we get

f (x , y , z) = xy sin(z) + g(y , z).

Introduce this expression in the second equation above,

∂y f = x sin(z) + ∂yg = x sin(z) ⇒ ∂yg(y , z) = 0,

so g(y , z) = h(z). That is, f (x , y , z) = xy sin(z) + h(z).
Introduce this expression into the last equation above,

∂z f = xy cos(z) + h′(z) = xy cos(z) ⇒ h′(z) = 0 ⇒ h(z) = c .

We conclude that f (x , y , z) = xy sin(z) + c . C
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Conservative fields, potential functions (16.3).

Example

Compute I =

∫
C

y sin(z) dx + x sin(z) dy + xy cos(z) dz , where C

given by r(t) = 〈cos(2πt), 1 + t5, cos2(2πt)π/2〉 for t ∈ [0, 1].

Solution: We know that the field F = 〈y sin(z), x sin(z), xy cos(z)〉
conservative, so there exists f such that F = ∇f , or equivalently

df = y sin(z) dx + x sin(z) dy + xy cos(z) dz .

We have computed f already, f = xy sin(z) + c .
Since F is conservative, the integral I is path independent, and

I =

∫ (1,2,π/2)

(1,1,π/2)

[
y sin(z) dx + x sin(z) dy + xy cos(z) dz

]
I = f (1, 2, π/2)− f (1, 1, π/2) = 2 sin(π/2)− sin(π/2) ⇒ I = 1.
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Conservative fields, potential functions (16.3).

Example

Show that the differential form in the integral below is exact,∫
C

[
3x2 dx +

z2

y
dy + 2z ln(y) dz

]
, y > 0.

Solution: We need to show that the field F =
〈
3x2,

z2

y
, 2z ln(y)

〉
is conservative. It is, since,

∂yFz =
2z

y
= ∂zFy , ∂xFz = 0 = ∂zFx , ∂xFy = 0 = ∂yFx .

Therefore, exists a scalar field f such that F = ∇f , or equivalently,

df = 3x2 dx +
z2

y
dy + 2z ln(y) dz .
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Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.



The Green Theorem in a plane (16.4).

Example

Use the Green Theorem in the plane to evaluate the line integral

given by

∮
C

[
(6y + x) dx + (y + 2x) dy

]
on the circle C defined by

(x − 1)2 + (y − 3)2 = 4.

Solution: Recall:

∮
C

F · dr =

∫∫
S

(
∂xFy − ∂yFx

)
dx dy .

Here F = 〈(6y + x), (y + 2x)〉. Since ∂xFy = 2 and ∂yFx = 6,
Green’s Theorem implies∮

C

[
(6y + x) dx + (y + 2x) dy

]
=

∮
C

F · dr =

∫∫
S

(2− 6) dx dy .

Since the area of the disk S = {(x − 1)2 + (y − 3)2 6 4} is π(22),∮
C

F · dr = −4

∫∫
S

dx dy = −4(4π) ⇒
∮

C

F · dr = −16π.
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Review for Exam 4.

I (16.1) Line integrals.
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Surface area, surface integrals (16.5).
Example

Integrate the function g(x , y , z) = x
√

4 + y2 over the surface cut
from the parabolic cylinder z = 4− y2/4 by the planes x = 0,
x = 1 and z = 0.

Solution:

R

z

4

1

4

x

y

S

We must compute: I =

∫∫
S

g dσ.

Recall dσ =
|∇f |
|∇f · k|

dx dy , with k ⊥ R

and in this case f (x , y , z) = y2 + 4z − 16.

∇f = 〈0, 2y , 4〉 ⇒ |∇f | =
√

16 + 4y2 = 2
√

4 + y2.

Since R = [0, 1]× [−4, 4], its normal vector is k and |∇f · k| = 4.
Then, ∫∫

S

g dσ =

∫∫
R

(
x
√

4 + y2
) 2

√
4 + y2

4
dx dy .
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Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.



The Stokes Theorem (16.7).

Example

Use Stokes’ Theorem to find the flux of ∇× F outward through
the surface S , where F = 〈−y , x , x2〉 and
S = {x2 + y2 = a2, z ∈ [0, h]} ∪ {x2 + y2 6 a2, z = h}.

Solution: Recall:

∫∫
S

(∇× F) · n dσ =

∮
C

F · dr.

The surface S is the cylinder walls and its cover at z = h.
Therefore, the curve C is the circle x2 + y2 = a2 at z = 0.
That circle can be parametrized (counterclockwise) as
r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].∫∫

S

(∇× F) · n dσ =

∮
C

F · dr =

∫ 2π

0
F(t) · r′(t) dt,

where F(t) = 〈−a sin(t), a cos(t), a2 cos2(t)〉 and
r′(t) = 〈−a sin(t), a cos(t), 0〉.
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Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.



The Divergence Theorem (16.8).

Example

Use the Divergence Theorem to find the outward flux of the field
F = 〈x2,−2xy , 3xz〉 across the boundary of the region
D = {x2 + y2 + z2 6 4, x > 0, y > 0, z > 0}.

Solution: Recall:

∫∫
S

F · n dσ =

∫∫∫
D

(∇ · F)dv .

∇ · F = ∂xFx + ∂yFy + ∂zFz = 2x − 2x + 3x ⇒ ∇ · F = 3x .∫∫
S

F · n dσ =

∫∫∫
D

(∇ · F)dv =

∫∫
D

3x dx dy dz .

It is convenient to use spherical coordinates:∫∫
S

F ·n dσ =

∫ π/2

0

∫ π/2

0

∫ 2

0

[
3ρ sin(φ) cos(φ)

]
ρ2 sin(φ) dρ dφ dθ.
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Chapter 16, Integration in vector fields.
Example

Use the Divergence Theorem to find the flux of F = 〈xy2, x2y , y〉
outward through the surface of the region enclosed by the cylinder
x2 + y2 = 1 and the planes z = −1, and z = 1.

Solution: Recall:

∫∫
S

F · n dσ =

∫∫∫
D

(∇ · F) dv . We start with

∇ · F = ∂x(xy
2) + ∂y (x2y) + ∂z(y) ⇒ ∇ · F = y2 + x2.

The integration region is D = {x2 + y2 6 1, z ∈ [−1, 1]}. So,

I =

∫∫∫
D

(∇ · F) dv =

∫∫∫
D

(x2 + y2) dx dy dz .

We use cylindrical coordinates,

I =

∫ 2π

0

∫ 1

0

∫ 1

−1
r2 dz r dr dθ = 2π

[∫ 1

0
r3 dr

]
(2) = 4π

( r4

4

∣∣∣1
0

)
.

We conclude that

∫∫
S

F · n dσ = π. C
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Chapter 15, Multiple integrals.

Example

Find the volume of the region bounded by the paraboloid
z = 1− x2 − y2 and the plane z = 0.

Solution:
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Chapter 15, Multiple integrals.

Example

Set up the integrals needed to compute the average of the function
f (x , y , z) = z sin(x) on the bounded region D in the first octant
bounded by the plane z = 4− 2x − y . Do not evaluate the
integrals.

Solution: Recall: f =
1

V (D)

∫∫∫
D

f dv .

D

z

x

y
R

2x + y + z = 4

2x + y = 42

4

4

Since V (D) =

∫ 2

0

∫ 4−2x

0

∫ 4−2x−y

0
dz dy dx ,

we conclude that

f =

∫ 2

0

∫ 4−2x

0

∫ 4−2x−y

0
z sin(x) dz dy dx∫ 2

0

∫ 4−2x

0

∫ 4−2x−y

0
dz dy dx

.
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Chapter 15, Multiple integrals.
Example

Reverse the order of integration and evaluate the double integral

I =

∫ 4

0

∫ 2

y/2
ex2

dx dy .

Solution: We see that y ∈ [0, 4] and x ∈ [0, y/2], that is,

y = 2x

y

x2

4
Therefore, reversing the integration order
means

I =

∫ 2

0

∫ 2x

0
ex2

dy dx .

This integral is simple to compute,

I =

∫ 2

0
ex2

x dx , u = x2, du = 2x dx ,

I =

∫ 4

0
eu du ⇒ I = e4 − 1.
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Review for the Final Exam.

I Monday, December 13, 10:00am - 12:00 noon. (2 hours.)
I Places:

I Sctns 001, 002, 005, 006 in E-100 VMC (Vet. Medical Ctr.),
I Sctns 003, 004, in 108 EBH (Ernst Bessey Hall);
I Sctns 007, 008, in 339 CSE (Case Halls).

I Chapters 12-16.

I ∼ 12 Problems, similar to homework problems.

I No calculators, no notes, no books, no phones.

Plan for today: Practice final exam: April 30, 2001.



Remark on Chapter 16.

Remark: The normal form of Green’s Theorem is a
two-dimensional restriction of the Divergence Theorem.

I The Divergence Theorem:

∫∫
S

F · n dσ =

∫∫∫
D

(∇ · F) dv .

I Normal form of Green’s Thrm:

∮
C

F · n ds =

∫∫
S

(∇ · F) dA.

Remark: The tangential form of Green’s Theorem is a particular
case of the Stokes Theorem when C , S are flat (on z = 0 plane).

I The Stokes Theorem:

∮
C

F · dr =

∫∫
S

(∇× F) · n dσ.

I Tang. form of Green’s Thrm:

∮
C

F · dr =

∫∫
S

(∇× F) · k dA.
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Practice final exam: April 30, 2001. Prbl. 1.

Example

Given A = (1, 2, 3), B = (6, 5, 4) and C = (8, 9, 7), find the
following:

I
−→
AB and

−→
AC .

Solution:
−→
AB = 〈(6− 1), (5− 2), (4− 3)〉, hence

−→
AB = 〈5, 3, 1〉. In the same way

−→
AC = 〈7, 7, 4〉.

I
−→
AB +

−→
AC = 〈12, 10, 5〉.

I
−→
AB ·

−→
AC = 35 + 21 + 4.

I
−→
AB ×

−→
AC =

∣∣∣∣∣∣
i j k
5 3 1
7 7 4

∣∣∣∣∣∣ = 〈(12− 7),−(20− 7), (35− 21)〉,

hence
−→
AB ×

−→
AC = 〈5,−13, 14〉.
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Practice final exam: April 30, 2001. Prbl. 2.

Example

Find the parametric equation of the line through the point
(1, 0,−1) and perpendicular to the plane 2x − 3y + 5x = 35. Then
find the intersection of the line and the plane.

Solution: The normal vector to the plane 〈2,−3, 5〉 is the tangent
vector to the line. Therefore,

r(t) = 〈1, 0,−1〉+ t 〈2,−3, 5〉,
so the parametric equations of the line are

x(t) = 1 + 2t, y(t) = −3t, z(t) = −1 + 5t.

The intersection point has a t solution of

2(1+2t)−3(−3t)+5(−1+5t) = 35 ⇒ 2+4t+9t−5+25t = 35

38t = 38 ⇒ t = 1 ⇒ r(1) = 〈3,−3, 4〉.
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vector to the line. Therefore,

r(t) = 〈1, 0,−1〉+ t 〈2,−3, 5〉,
so the parametric equations of the line are

x(t) = 1 + 2t, y(t) = −3t, z(t) = −1 + 5t.

The intersection point has a t solution of

2(1+2t)−3(−3t)+5(−1+5t) = 35 ⇒ 2+4t+9t−5+25t = 35

38t = 38

⇒ t = 1 ⇒ r(1) = 〈3,−3, 4〉.
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Practice final exam: April 30, 2001. Prbl. 3.

Example

The velocity of a particle is given by v(t) = 〈t2, (t3 + 1)〉, and the
particle is at 〈2, 1〉 for t = 0.

I Where is the particle at t = 2?

Solution: r(t) =
〈( t3

3
+ rx

)
,
( t4

4
+ t + ry

)〉
. Since

r(0) = 〈2, 1〉, we get that r(t) =
〈( t3

3
+ 2

)
,
( t4

4
+ t + 1

)〉
.

Hence r(2) = 〈8/3 + 2, 7〉.
I Find an expression for the particle arc length for t ∈ [0, 2].

Solution: s(t) =

∫ t

0

√
τ4 + (τ3 + 1)2 dτ .

I Find the particle acceleration.

Solution: a(t) = 〈2t, 3t2〉.
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Practice final exam: April 30, 2001. Prbl. 4.
Example

I Draw a rough sketch of the surface z = 2x2 + 3y2 + 5.

Solution: This is a paraboloid along the vertical direction,
opens up, with vertex at z = 5 on the z-axis, and the x-radius
is a bit longer than the y -radius.

I Find the equation of the tangent plane to the surface at the
point (1, 1, 10).

Solution: Introduce f (x , y) = 2x2 + 3y2 + 5, then

L(1,1)(x , y) = ∂x f (1, 1) (x − 1) + ∂y f (1, 1) (y − 1) + f (1, 1).

Since f (1, 1) = 10, and ∂x f = 4x , ∂y f = 6y , then

z = L(1,1)(x , y) = 4(x − 1) + 6(y − 1) + 10.
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Practice final exam: April 30, 2001. Prbl. 5.

Example

Let w = f (x , y) and x = s2 + t2, y = st2. If ∂x f = x − y and
∂y f = y − x , find ∂sw and ∂tw in terms of s and t.

Solution:

∂sw = ∂x f ∂sx+∂y f ∂sy = (x−y)2s+(y−x)t2 = (x−y)(2s−t2).

Therefore, ∂sw = (s2 + t2 − st2)(2s − t2).

∂tw = ∂x f ∂tx+∂y f ∂ty = (x−y)2t+(y−x)2st = (x−y)(2t−2st).

Therefore, ∂tw = (s2 + t2 − st2)2t(1− s).
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Practice final exam: April 30, 2001. Prbl. 6.

Example

Find all critical points of the function f (x , y) = 2x2 + 8xy + y4

and determine whether they re local maximum, minimum of saddle
points.

Solution:

∇f = 〈(4x + 8y), (8x + 4y3)〉 = 〈0, 0〉 ⇒

{
x + 2y = 0,

2x + y3 = 0.

−4y + y3 = 0 ⇒


y = 0 ⇒ x = 0 ⇒ P0 = (0, 0)

y = ±2 ⇒ x = ∓4 ⇒

{
P1 = (4,−2)

P2 = (−4, 2)

Since fxx = 4, fyy = 12y2, and fxy = 8, we conclude that
D = 3(16)y2 − 4(16).
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Practice final exam: April 30, 2001. Prbl. 7.

Example

Evaluate the integral I =

∫ 1

0

∫ √
x

x
y dy dx by reversing the order

of integration.

Solution: The integration region is the set in the square
[0, 1]× [0, 1] in between the curves y = x and y =

√
x . Therefore,

I =

∫ 1

0

∫ y

y2

y dx dy =

∫ 1

0
y(y − y2) dy =

∫ 1

0
(y2 − y3) dy

I =
(y3

3
− y4

4

)∣∣∣1
0

=
1

3
− 1

4
⇒ I =

1

12
.
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Practice final exam: April 30, 2001. Prbl. 8.

Example

Find the work done by the force F = 〈yz , xz ,−xy〉 on a particle
moving along the path r(t) = 〈t3, t2, t〉 for t ∈ [0, 2].

Solution:

W =

∫
C

F · dr =

∫ 2

0
F(t) · r′(t) dt,

where F(t) = 〈t3, t4,−t5〉 and r′(t) = 〈3t2, 2t, 1〉. Hence

W =

∫ 2

0
(3t5 + 2t5 − t5) dt =

∫ 2

0
4t5 dt =

4

6
t6

∣∣∣2
0

=
2

3
26.

Therefore, W = 27/3.
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Practice final exam: April 30, 2001. Prbl. 9.

Example

Show that the force field
F = 〈(y cos(z)− yzex), (x cos(z)− zex), (−xy sin(z)− yex)〉 is
conservative. Then find its potential function. Then evaluate

I =

∫
C

F · dr for r(t) = 〈t, t2, πt3〉.

Solution: The field F is conservative, since

∂xFy = cos(z)− zex = ∂yFx ,

∂xFz = −xy sin(z)− yex = ∂zFx ,

∂yFz = −x sin(z)− ex = ∂zFy .

The potential function is a scalar function f solution of

∂x f = y cos(z)− yzex , ∂y f = x cos(z)− zex , ∂z f = −xy sin(z)− yex .
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Example

Use the Green Theorem to evaluate the integral

∫
C

Fx dx + Fy dy

where Fx = y + ex and Fy = 2x2 + cos(y) and C is the triangle
with vertices (0, 0), (0, 2) and (1, 1) traversed counterclockwise.

Solution: Denoting F = 〈Fx ,Fy 〉, Green’s Theorem says∫
C

F · dr =

∫∫
S

(∇× F) · k dA =

∫∫
S

(∂xFy − ∂yFx) dA.

∫
C

F · dr =

∫∫
S

(4x − 1) dx dy =

∫ 1

0

∫ 2−y

y
(4x − 1) dx dy .

A straightforward calculation gives

∫
C

F · dr = 3.
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Example

Find the surface area of the portion of the paraboloid
z = 4− x2 − y2 that lies above the plane z = 0. Use polar
coordinates to evaluate the integral.

Solution:

A(S) =

∫∫
S

dσ, dσ =
|∇f |
|∇f · k|

dx dy

where f = x2 + y2 + z − 4. Therefore,

∇f = 〈2x , 2y , 1〉 ⇒ |∇f | =
√

1 + 4x2 + 4y2, ∇f · k = 1.

A(S) =

∫ 2π

0

∫ 2

0

√
1 + 4r2 r dr dθ, u = 1 + 4r2, du = 8r dr .

The finally obtain A(S) = (π/6)(173/2 − 1).
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∇f = 〈2x , 2y , 1〉

⇒ |∇f | =
√

1 + 4x2 + 4y2, ∇f · k = 1.

A(S) =

∫ 2π

0

∫ 2

0

√
1 + 4r2 r dr dθ, u = 1 + 4r2, du = 8r dr .

The finally obtain A(S) = (π/6)(173/2 − 1).
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Example

Use the Stokes Theorem to evaluate I =

∫∫
S

[
∇× (y i)

]
· n dσ

where S is the hemisphere x2 + y2 + z2 = 1, with z > 0.

Solution: F = 〈y , 0, 0〉. The border of the hemisphere is given by
the circle x2 + y2 = 1, with z = 0. This circle can be parametrized
for t ∈ [0, 2π] as

r(t) = 〈cos(t), sin(t), 0〉 ⇒ r′(t) = 〈− sin(t), cos(t), 0〉,

and we also have F(t) = 〈sin(t), 0, 0〉. Therefore,∫∫
S

(
∇× F

)
· n dσ =

∮ 2π

0
F(t) · r′(t) dt = −

∫ 2π

0
sin2(t) dt

∫∫
S

(
∇× F

)
· n dσ = −1

2

∫ 2π

0

[
1− cos(2t)

]
dt.
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