The Stokes Theorem. (Sect. 16.7)

- The curl of a vector field in space.
- The curl of conservative fields.
- Stokes' Theorem in space.
- Idea of the proof of Stokes' Theorem.

The curl of a vector field in space.
Definition
The curl of a vector field $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ in \mathbb{R}^{3} is the vector field

$$
\operatorname{curl} \mathbf{F}=\left\langle\left(\partial_{2} F_{3}-\partial_{3} F_{2}\right),\left(\partial_{3} F_{1}-\partial_{1} F_{3}\right),\left(\partial_{1} F_{2}-\partial_{2} F_{1}\right)\right\rangle
$$

The curl of a vector field in space.

Definition
The curl of a vector field $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ in \mathbb{R}^{3} is the vector field

$$
\operatorname{curl} \mathbf{F}=\left\langle\left(\partial_{2} F_{3}-\partial_{3} F_{2}\right),\left(\partial_{3} F_{1}-\partial_{1} F_{3}\right),\left(\partial_{1} F_{2}-\partial_{2} F_{1}\right)\right\rangle
$$

Remark: Since the following formula holds,

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{1} & \partial_{2} & \partial_{3} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
$$

The curl of a vector field in space.

Definition

The curl of a vector field $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ in \mathbb{R}^{3} is the vector field

$$
\operatorname{curl} \mathbf{F}=\left\langle\left(\partial_{2} F_{3}-\partial_{3} F_{2}\right),\left(\partial_{3} F_{1}-\partial_{1} F_{3}\right),\left(\partial_{1} F_{2}-\partial_{2} F_{1}\right)\right\rangle .
$$

Remark: Since the following formula holds,

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{1} & \partial_{2} & \partial_{3} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
$$

$$
\operatorname{curl} \mathbf{F}=\left(\partial_{2} F_{3}-\partial_{3} F_{2}\right) \mathbf{i}-\left(\partial_{1} F_{3}-\partial_{3} F_{1}\right) \mathbf{j}+\left(\partial_{1} F_{2}-\partial_{2} F_{1}\right) \mathbf{k}
$$

The curl of a vector field in space.

Definition

The curl of a vector field $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ in \mathbb{R}^{3} is the vector field

$$
\operatorname{curl} \mathbf{F}=\left\langle\left(\partial_{2} F_{3}-\partial_{3} F_{2}\right),\left(\partial_{3} F_{1}-\partial_{1} F_{3}\right),\left(\partial_{1} F_{2}-\partial_{2} F_{1}\right)\right\rangle .
$$

Remark: Since the following formula holds,

$$
\begin{gathered}
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{1} & \partial_{2} & \partial_{3} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
\operatorname{curl} \mathbf{F}=\left(\partial_{2} F_{3}-\partial_{3} F_{2}\right) \mathbf{i}-\left(\partial_{1} F_{3}-\partial_{3} F_{1}\right) \mathbf{j}+\left(\partial_{1} F_{2}-\partial_{2} F_{1}\right) \mathbf{k},
\end{gathered}
$$

then one also uses the notation

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}
$$

The curl of a vector field in space.

Example

Find the curl of the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$.

The curl of a vector field in space.

Example

Find the curl of the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$.
Solution: Since curl $\mathbf{F}=\nabla \times \mathbf{F}$, we get,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x z & x y z & -y^{2}
\end{array}\right|
$$

The curl of a vector field in space.

Example

Find the curl of the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$.
Solution: Since curl $\mathbf{F}=\nabla \times \mathbf{F}$, we get,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x z & x y z & -y^{2}
\end{array}\right|=
$$

$\left(\partial_{y}\left(-y^{2}\right)-\partial_{z}(x y z)\right) \mathbf{i}$

The curl of a vector field in space.

Example

Find the curl of the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$.
Solution: Since curl $\mathbf{F}=\nabla \times \mathbf{F}$, we get,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x z & x y z & -y^{2}
\end{array}\right|=
$$

$$
\left(\partial_{y}\left(-y^{2}\right)-\partial_{z}(x y z)\right) \mathbf{i}-\left(\partial_{x}\left(-y^{2}\right)-\partial_{z}(x z)\right) \mathbf{j}
$$

The curl of a vector field in space.

Example

Find the curl of the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$.
Solution: Since curl $\mathbf{F}=\nabla \times \mathbf{F}$, we get,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x z & x y z & -y^{2}
\end{array}\right|=
$$

$$
\left(\partial_{y}\left(-y^{2}\right)-\partial_{z}(x y z)\right) \mathbf{i}-\left(\partial_{x}\left(-y^{2}\right)-\partial_{z}(x z)\right) \mathbf{j}+\left(\partial_{x}(x y z)-\partial_{y}(x z)\right) \mathbf{k}
$$

The curl of a vector field in space.

Example

Find the curl of the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$.
Solution: Since curl $\mathbf{F}=\nabla \times \mathbf{F}$, we get,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x z & x y z & -y^{2}
\end{array}\right|=
$$

$\left(\partial_{y}\left(-y^{2}\right)-\partial_{z}(x y z)\right) \mathbf{i}-\left(\partial_{x}\left(-y^{2}\right)-\partial_{z}(x z)\right) \mathbf{j}+\left(\partial_{x}(x y z)-\partial_{y}(x z)\right) \mathbf{k}$,
$=(-2 y-x y) \mathbf{i}-(0-x) \mathbf{j}+(y z-0) \mathbf{k}$,

The curl of a vector field in space.

Example

Find the curl of the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$.
Solution: Since curl $\mathbf{F}=\nabla \times \mathbf{F}$, we get,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x z & x y z & -y^{2}
\end{array}\right|=
$$

$\left(\partial_{y}\left(-y^{2}\right)-\partial_{z}(x y z)\right) \mathbf{i}-\left(\partial_{x}\left(-y^{2}\right)-\partial_{z}(x z)\right) \mathbf{j}+\left(\partial_{x}(x y z)-\partial_{y}(x z)\right) \mathbf{k}$,

$$
=(-2 y-x y) \mathbf{i}-(0-x) \mathbf{j}+(y z-0) \mathbf{k}
$$

We conclude that

$$
\nabla \times \mathbf{F}=\langle-y(2+x), x, y z\rangle
$$

The Stokes Theorem. (Sect. 16.7)

- The curl of a vector field in space.
- The curl of conservative fields.
- Stokes' Theorem in space.
- Idea of the proof of Stokes' Theorem.

The curl of conservative fields.

Recall: A vector field $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is conservative iff there exists a scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

The curl of conservative fields.

Recall: A vector field $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is conservative iff there exists a scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

Theorem
If a vector field \mathbf{F} is conservative, then $\nabla \times \mathbf{F}=\mathbf{0}$.

The curl of conservative fields.

Recall: A vector field $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is conservative iff there exists a scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

Theorem
If a vector field \mathbf{F} is conservative, then $\nabla \times \mathbf{F}=\mathbf{0}$.
Remark:

- This Theorem is usually written as $\nabla \times(\nabla f)=\mathbf{0}$.

The curl of conservative fields.

Recall: A vector field $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is conservative iff there exists a scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

Theorem
If a vector field \mathbf{F} is conservative, then $\nabla \times \mathbf{F}=\mathbf{0}$.
Remark:

- This Theorem is usually written as $\nabla \times(\nabla f)=\mathbf{0}$.
- The converse is true only on simple connected sets.

The curl of conservative fields.

Recall: A vector field $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is conservative iff there exists a scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

Theorem
If a vector field \mathbf{F} is conservative, then $\nabla \times \mathbf{F}=\mathbf{0}$.
Remark:

- This Theorem is usually written as $\nabla \times(\nabla f)=\mathbf{0}$.
- The converse is true only on simple connected sets. That is, if a vector field \mathbf{F} satisfies $\nabla \times \mathbf{F}=\mathbf{0}$ on a simple connected domain D, then there exists a scalar field $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

The curl of conservative fields.

Recall: A vector field $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is conservative iff there exists a scalar field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

Theorem
If a vector field \mathbf{F} is conservative, then $\nabla \times \mathbf{F}=\mathbf{0}$.
Remark:

- This Theorem is usually written as $\nabla \times(\nabla f)=\mathbf{0}$.
- The converse is true only on simple connected sets. That is, if a vector field \mathbf{F} satisfies $\nabla \times \mathbf{F}=\mathbf{0}$ on a simple connected domain D, then there exists a scalar field $f: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\nabla f$.

Proof of the Theorem:

$$
\nabla \times \mathbf{F}=\left\langle\left(\partial_{y} \partial_{z} f-\partial_{z} \partial_{y} f\right),-\left(\partial_{x} \partial_{z} f-\partial_{z} \partial_{x} f\right),\left(\partial_{x} \partial_{y} f-\partial_{y} \partial_{x} f\right)\right\rangle
$$

The curl of conservative fields.
Example
Is the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$ conservative?

The curl of conservative fields.

Example

Is the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$ conservative?
Solution: We have shown that $\nabla \times \mathbf{F}=\langle-y(2+x), x, y z\rangle$.

The curl of conservative fields.

Example

Is the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$ conservative?
Solution: We have shown that $\nabla \times \mathbf{F}=\langle-y(2+x), x, y z\rangle$. Since $\nabla \times \mathbf{F} \neq \mathbf{0}$, then \mathbf{F} is not conservative.

The curl of conservative fields.

Example

Is the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$ conservative?
Solution: We have shown that $\nabla \times \mathbf{F}=\langle-y(2+x), x, y z\rangle$. Since $\nabla \times \mathbf{F} \neq \mathbf{0}$, then \mathbf{F} is not conservative.

Example Is the vector field $\mathbf{F}=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$ conservative in \mathbb{R}^{3} ?

The curl of conservative fields.

Example

Is the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$ conservative?
Solution: We have shown that $\nabla \times \mathbf{F}=\langle-y(2+x), x, y z\rangle$. Since $\nabla \times \mathbf{F} \neq \mathbf{0}$, then \mathbf{F} is not conservative.

Example Is the vector field $\mathbf{F}=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$ conservative in \mathbb{R}^{3} ?

Solution: Notice that

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y^{2} z^{3} & 2 x y z^{3} & 3 x y^{2} z^{2}
\end{array}\right|
$$

The curl of conservative fields.

Example

Is the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$ conservative?
Solution: We have shown that $\nabla \times \mathbf{F}=\langle-y(2+x), x, y z\rangle$. Since $\nabla \times \mathbf{F} \neq \mathbf{0}$, then \mathbf{F} is not conservative.

Example Is the vector field $\mathbf{F}=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$ conservative in \mathbb{R}^{3} ?

Solution: Notice that

$$
\begin{gathered}
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y^{2} z^{3} & 2 x y z^{3} & 3 x y^{2} z^{2}
\end{array}\right| \\
=\left\langle\left(6 x y z^{2}-6 x y z^{2}\right),-\left(3 y^{2} z^{2}-3 y^{2} z^{2}\right),\left(2 y z^{3}-2 y z^{3}\right)\right\rangle=\mathbf{0} .
\end{gathered}
$$

The curl of conservative fields.

Example

Is the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$ conservative?
Solution: We have shown that $\nabla \times \mathbf{F}=\langle-y(2+x), x, y z\rangle$. Since $\nabla \times \mathbf{F} \neq \mathbf{0}$, then \mathbf{F} is not conservative.

Example Is the vector field $\mathbf{F}=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$ conservative in \mathbb{R}^{3} ?

Solution: Notice that

$$
\begin{gathered}
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y^{2} z^{3} & 2 x y z^{3} & 3 x y^{2} z^{2}
\end{array}\right| \\
=\left\langle\left(6 x y z^{2}-6 x y z^{2}\right),-\left(3 y^{2} z^{2}-3 y^{2} z^{2}\right),\left(2 y z^{3}-2 y z^{3}\right)\right\rangle=\mathbf{0} .
\end{gathered}
$$

Since $\nabla \times \mathbf{F}=\mathbf{0}$ and \mathbb{R}^{3} is simple connected, then \mathbf{F} is conservative,

The curl of conservative fields.

Example

Is the vector field $\mathbf{F}=\left\langle x z, x y z,-y^{2}\right\rangle$ conservative?
Solution: We have shown that $\nabla \times \mathbf{F}=\langle-y(2+x), x, y z\rangle$. Since $\nabla \times \mathbf{F} \neq \mathbf{0}$, then \mathbf{F} is not conservative.

Example Is the vector field $\mathbf{F}=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$ conservative in \mathbb{R}^{3} ?

Solution: Notice that

$$
\begin{gathered}
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y^{2} z^{3} & 2 x y z^{3} & 3 x y^{2} z^{2}
\end{array}\right| \\
=\left\langle\left(6 x y z^{2}-6 x y z^{2}\right),-\left(3 y^{2} z^{2}-3 y^{2} z^{2}\right),\left(2 y z^{3}-2 y z^{3}\right)\right\rangle=\mathbf{0} .
\end{gathered}
$$

Since $\nabla \times \mathbf{F}=\mathbf{0}$ and \mathbb{R}^{3} is simple connected, then \mathbf{F} is conservative, that is, there exists f in \mathbb{R}^{3} such that $\mathbf{F}=\nabla f$.

The Stokes Theorem. (Sect. 16.7)

- The curl of a vector field in space.
- The curl of conservative fields.
- Stokes' Theorem in space.
- Idea of the proof of Stokes' Theorem.

Stokes' Theorem in space.

Theorem

The circulation of a differentiable vector field $\mathbf{F}: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ around the boundary C of the oriented surface $S \subset D$ satisfies the equation

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma,
$$

where $d \mathbf{r}$ points counterclockwise when the unit vector \mathbf{n} normal to S points in the direction to the viewer (right-hand rule).

Stokes' Theorem in space.

Theorem
The circulation of a differentiable vector field $\mathbf{F}: D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ around the boundary C of the oriented surface $S \subset D$ satisfies the equation

$$
\oint_{c} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma,
$$

where $d \mathbf{r}$ points counterclockwise when the unit vector \mathbf{n} normal to S points in the direction to the viewer (right-hand rule).

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: We compute both sides in $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: We compute both sides in $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: We compute both sides in $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.

We start computing the circulation integral on the ellipse $x^{2}+\frac{y^{2}}{2^{2}}=1$.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: We compute both sides in $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.

We start computing the circulation integral on the ellipse $x^{2}+\frac{y^{2}}{2^{2}}=1$. We need to choose a counterclockwise parametrization, hence the normal to S points upwards.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: We compute both sides in $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.

We start computing the circulation integral on the ellipse $x^{2}+\frac{y^{2}}{2^{2}}=1$. We need to choose a counterclockwise parametrization, hence the normal to S points upwards.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: We compute both sides in $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.

We start computing the circulation integral on the ellipse $x^{2}+\frac{y^{2}}{2^{2}}=1$. We need to choose a counterclockwise parametrization, hence the normal to S points upwards.
We choose, for $t \in[0,2 \pi]$,

$$
\mathbf{r}(t)=\langle\cos (t), 2 \sin (t), 0\rangle
$$

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: We compute both sides in $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$.

We start computing the circulation integral on the ellipse $x^{2}+\frac{y^{2}}{2^{2}}=1$. We need to choose a counterclockwise parametrization, hence the normal to S points upwards.
We choose, for $t \in[0,2 \pi]$,

$$
\mathbf{r}(t)=\langle\cos (t), 2 \sin (t), 0\rangle .
$$

Therefore, the right-hand rule normal \mathbf{n} to S is $\mathbf{n}=\langle 0,0,1\rangle$.

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$, with $\mathbf{r}(t)=\langle\cos (t), 2 \sin (t), 0\rangle, t \in[0,2 \pi]$ and $\mathbf{n}=\langle 0,0,1\rangle$.

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$, with $\mathbf{r}(t)=\langle\cos (t), 2 \sin (t), 0\rangle, t \in[0,2 \pi]$ and $\mathbf{n}=\langle 0,0,1\rangle$.
The circulation integral is:

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$, with $\mathbf{r}(t)=\langle\cos (t), 2 \sin (t), 0\rangle, t \in[0,2 \pi]$ and $\mathbf{n}=\langle 0,0,1\rangle$.
The circulation integral is:

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t \\
=\int_{0}^{2 \pi}\left\langle\cos ^{2}(t), 2 \cos (t), 0\right\rangle \cdot\langle-\sin (t), 2 \cos (t), 0\rangle d t .
\end{gathered}
$$

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: Recall: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$, with $\mathbf{r}(t)=\langle\cos (t), 2 \sin (t), 0\rangle, t \in[0,2 \pi]$ and $\mathbf{n}=\langle 0,0,1\rangle$.
The circulation integral is:

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t \\
=\int_{0}^{2 \pi}\left\langle\cos ^{2}(t), 2 \cos (t), 0\right\rangle \cdot\langle-\sin (t), 2 \cos (t), 0\rangle d t . \\
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left[-\cos ^{2}(t) \sin (t)+4 \cos ^{2}(t)\right] d t .
\end{gathered}
$$

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left[-\cos ^{2}(t) \sin (t)+4 \cos ^{2}(t)\right] d t$.

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left[-\cos ^{2}(t) \sin (t)+4 \cos ^{2}(t)\right] d t$.
The substitution on the first term $u=\cos (t)$ and $d u=-\sin (t) d t$,

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left[-\cos ^{2}(t) \sin (t)+4 \cos ^{2}(t)\right] d t$.
The substitution on the first term $u=\cos (t)$ and $d u=-\sin (t) d t$, implies $\int_{0}^{2 \pi}-\cos ^{2}(t) \sin (t) d t=\int_{1}^{1} u^{2} d u=0$.

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left[-\cos ^{2}(t) \sin (t)+4 \cos ^{2}(t)\right] d t$.
The substitution on the first term $u=\cos (t)$ and $d u=-\sin (t) d t$, implies $\int_{0}^{2 \pi}-\cos ^{2}(t) \sin (t) d t=\int_{1}^{1} u^{2} d u=0$.

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} 4 \cos ^{2}(t) d t
$$

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left[-\cos ^{2}(t) \sin (t)+4 \cos ^{2}(t)\right] d t$.
The substitution on the first term $u=\cos (t)$ and $d u=-\sin (t) d t$, implies $\int_{0}^{2 \pi}-\cos ^{2}(t) \sin (t) d t=\int_{1}^{1} u^{2} d u=0$.

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} 4 \cos ^{2}(t) d t=\int_{0}^{2 \pi} 2[1+\cos (2 t)] d t
$$

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left[-\cos ^{2}(t) \sin (t)+4 \cos ^{2}(t)\right] d t$.
The substitution on the first term $u=\cos (t)$ and $d u=-\sin (t) d t$, implies $\int_{0}^{2 \pi}-\cos ^{2}(t) \sin (t) d t=\int_{1}^{1} u^{2} d u=0$.

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} 4 \cos ^{2}(t) d t=\int_{0}^{2 \pi} 2[1+\cos (2 t)] d t
$$

Since $\int_{0}^{2 \pi} \cos (2 t) d t=0$,

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left[-\cos ^{2}(t) \sin (t)+4 \cos ^{2}(t)\right] d t$.
The substitution on the first term $u=\cos (t)$ and $d u=-\sin (t) d t$, implies $\int_{0}^{2 \pi}-\cos ^{2}(t) \sin (t) d t=\int_{1}^{1} u^{2} d u=0$.

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} 4 \cos ^{2}(t) d t=\int_{0}^{2 \pi} 2[1+\cos (2 t)] d t
$$

Since $\int_{0}^{2 \pi} \cos (2 t) d t=0$, we conclude that $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$.

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $\mathbf{n}=\langle 0,0,1\rangle$.

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $\mathbf{n}=\langle 0,0,1\rangle$.
We now compute the right-hand side in Stokes' Theorem.

$$
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma .
$$

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $\mathbf{n}=\langle 0,0,1\rangle$.
We now compute the right-hand side in Stokes' Theorem.

$$
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma .
$$

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x^{2} & 2 x & z^{2}
\end{array}\right|
$$

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $\mathbf{n}=\langle 0,0,1\rangle$.
We now compute the right-hand side in Stokes' Theorem.

$$
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma .
$$

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x^{2} & 2 x & z^{2}
\end{array}\right| \Rightarrow \nabla \times \mathbf{F}=\langle 0,0,2\rangle .
$$

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $\mathbf{n}=\langle 0,0,1\rangle$.
We now compute the right-hand side in Stokes' Theorem.

$$
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma .
$$

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x^{2} & 2 x & z^{2}
\end{array}\right| \Rightarrow \nabla \times \mathbf{F}=\langle 0,0,2\rangle .
$$

S is the flat surface $\left\{x^{2}+\frac{y^{2}}{2^{2}} \leqslant 1, z=0\right\}$,

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $\mathbf{n}=\langle 0,0,1\rangle$.
We now compute the right-hand side in Stokes' Theorem.

$$
I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma .
$$

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x^{2} & 2 x & z^{2}
\end{array}\right| \Rightarrow \nabla \times \mathbf{F}=\langle 0,0,2\rangle .
$$

S is the flat surface $\left\{x^{2}+\frac{y^{2}}{2^{2}} \leqslant 1, z=0\right\}$, so $d \sigma=d x d y$.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{c} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \mathbf{n}=\langle 0,0,1\rangle, \nabla \times \mathbf{F}=\langle 0,0,2\rangle$, and $d \sigma=d x d y$.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{c} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \mathbf{n}=\langle 0,0,1\rangle, \nabla \times \mathbf{F}=\langle 0,0,2\rangle$, and $d \sigma=d x d y$.
Then, $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{-1}^{1} \int_{-2 \sqrt{1-x^{2}}}^{2 \sqrt{1-x^{2}}}\langle 0,0,2\rangle \cdot\langle 0,0,1\rangle d y d x$.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{c} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \mathbf{n}=\langle 0,0,1\rangle, \nabla \times \mathbf{F}=\langle 0,0,2\rangle$, and $d \sigma=d x d y$.
Then, $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{-1}^{1} \int_{-2 \sqrt{1-x^{2}}}^{2 \sqrt{1-x^{2}}}\langle 0,0,2\rangle \cdot\langle 0,0,1\rangle d y d x$.
The right-hand side above is twice the area of the ellipse.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \mathbf{n}=\langle 0,0,1\rangle, \nabla \times \mathbf{F}=\langle 0,0,2\rangle$, and $d \sigma=d x d y$.
Then, $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{-1}^{1} \int_{-2 \sqrt{1-x^{2}}}^{2 \sqrt{1-x^{2}}}\langle 0,0,2\rangle \cdot\langle 0,0,1\rangle d y d x$.
The right-hand side above is twice the area of the ellipse. Since we know that an ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ has area $\pi a b$,

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \mathbf{n}=\langle 0,0,1\rangle, \nabla \times \mathbf{F}=\langle 0,0,2\rangle$, and $d \sigma=d x d y$.
Then, $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{-1}^{1} \int_{-2 \sqrt{1-x^{2}}}^{2 \sqrt{1-x^{2}}}\langle 0,0,2\rangle \cdot\langle 0,0,1\rangle d y d x$.
The right-hand side above is twice the area of the ellipse. Since we know that an ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ has area $\pi a b$, we obtain

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=4 \pi
$$

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on the ellipse $S=\left\{(x, y, z): 4 x^{2}+y^{2} \leqslant 4, z=0\right\}$.

Solution: $\oint_{c} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \mathbf{n}=\langle 0,0,1\rangle, \nabla \times \mathbf{F}=\langle 0,0,2\rangle$, and $d \sigma=d x d y$.
Then, $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\int_{-1}^{1} \int_{-2 \sqrt{1-x^{2}}}^{2 \sqrt{1-x^{2}}}\langle 0,0,2\rangle \cdot\langle 0,0,1\rangle d y d x$.
The right-hand side above is twice the area of the ellipse. Since we know that an ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ has area $\pi a b$, we obtain

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=4 \pi
$$

This verifies Stokes' Theorem.

Stokes' Theorem in space.

Remark: Stokes' Theorem implies that for any smooth field \mathbf{F} and any two surfaces S_{1}, S_{2} having the same boundary curve C holds,

$$
\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{1} d \sigma_{1}=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}
$$

Stokes' Theorem in space.

Remark: Stokes' Theorem implies that for any smooth field \mathbf{F} and any two surfaces S_{1}, S_{2} having the same boundary curve C holds,

$$
\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{1} d \sigma_{1}=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}
$$

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.

Stokes' Theorem in space.

Remark: Stokes' Theorem implies that for any smooth field \mathbf{F} and any two surfaces S_{1}, S_{2} having the same boundary curve C holds,

$$
\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{1} d \sigma_{1}=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}
$$

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.
Solution: (The previous example was the case $a \rightarrow 0$.)

Stokes' Theorem in space.

Remark: Stokes' Theorem implies that for any smooth field \mathbf{F} and any two surfaces S_{1}, S_{2} having the same boundary curve C holds,

$$
\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{1} d \sigma_{1}=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}
$$

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.
Solution: (The previous example was the case $a \rightarrow 0$.)

We must verify Stokes' Theorem on S_{2},

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}
$$

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any
half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.
Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \nabla \times \mathbf{F}=\langle 0,0,2\rangle, I=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}$.

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \nabla \times \mathbf{F}=\langle 0,0,2\rangle, I=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}$.

S_{2} is the level surface $\mathbb{F}=0$ of

$$
\mathbb{F}(x, y, z)=x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}-1
$$

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \nabla \times \mathbf{F}=\langle 0,0,2\rangle, I=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}$.

S_{2} is the level surface $\mathbb{F}=0$ of

$$
\mathbb{F}(x, y, z)=x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}-1
$$

$$
\mathbf{n}_{2}=\frac{\nabla \mathbb{F}}{|\nabla \mathbb{F}|},
$$

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \nabla \times \mathbf{F}=\langle 0,0,2\rangle, I=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}$.

S_{2} is the level surface $\mathbb{F}=0$ of

$$
\mathbb{F}(x, y, z)=x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}-1 .
$$

$$
\mathbf{n}_{2}=\frac{\nabla \mathbb{F}}{|\nabla \mathbb{F}|}, \quad \nabla \mathbb{F}=\left\langle 2 x, \frac{y}{2}, \frac{2 z}{a^{2}}\right\rangle
$$

Stokes' Theorem in space.

Example
Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \nabla \times \mathbf{F}=\langle 0,0,2\rangle, I=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}$.

S_{2} is the level surface $\mathbb{F}=0$ of

$$
\mathbb{F}(x, y, z)=x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}-1 .
$$

$$
\mathbf{n}_{2}=\frac{\nabla \mathbb{F}}{|\nabla \mathbb{F}|}, \quad \nabla \mathbb{F}=\left\langle 2 x, \frac{y}{2}, \frac{2 z}{a^{2}}\right\rangle, \quad(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2}=2 \frac{2 z / a^{2}}{|\nabla \mathbb{F}|} .
$$

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$. Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \nabla \times \mathbf{F}=\langle 0,0,2\rangle, I=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}$.

S_{2} is the level surface $\mathbb{F}=0$ of

$$
\mathbb{F}(x, y, z)=x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}-1
$$

$$
\begin{aligned}
& \mathbf{n}_{2}=\frac{\nabla \mathbb{F}}{|\nabla \mathbb{F}|}, \quad \nabla \mathbb{F}=\left\langle 2 x, \frac{y}{2}, \frac{2 z}{a^{2}}\right\rangle, \quad(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2}=2 \frac{2 z / a^{2}}{|\nabla \mathbb{F}|} . \\
& \quad d \sigma_{2}=\frac{|\nabla \mathbb{F}|}{|\nabla \mathbb{F} \cdot \mathbf{k}|}
\end{aligned}
$$

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$. Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \nabla \times \mathbf{F}=\langle 0,0,2\rangle, I=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}$.

S_{2} is the level surface $\mathbb{F}=0$ of

$$
\mathbb{F}(x, y, z)=x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}-1
$$

$$
\begin{aligned}
& \mathbf{n}_{2}=\frac{\nabla \mathbb{F}}{|\nabla \mathbb{F}|}, \quad \nabla \mathbb{F}=\left\langle 2 x, \frac{y}{2}, \frac{2 z}{a^{2}}\right\rangle, \quad(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2}=2 \frac{2 z / a^{2}}{|\nabla \mathbb{F}|} . \\
& \quad d \sigma_{2}=\frac{|\nabla \mathbb{F}|}{|\nabla \mathbb{F} \cdot \mathbf{k}|}=\frac{|\nabla \mathbb{F}|}{2 z / a^{2}}
\end{aligned}
$$

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$. Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi, \nabla \times \mathbf{F}=\langle 0,0,2\rangle, I=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}$.

S_{2} is the level surface $\mathbb{F}=0$ of

$$
\mathbb{F}(x, y, z)=x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}-1
$$

$$
\begin{gathered}
\mathbf{n}_{2}=\frac{\nabla \mathbb{F}}{|\nabla \mathbb{F}|}, \quad \nabla \mathbb{F}=\left\langle 2 x, \frac{y}{2}, \frac{2 z}{a^{2}}\right\rangle, \quad(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2}=2 \frac{2 z / a^{2}}{|\nabla \mathbb{F}|} . \\
d \sigma_{2}=\frac{|\nabla \mathbb{F}|}{|\nabla \mathbb{F} \cdot \mathbf{k}|}=\frac{|\nabla \mathbb{F}|}{2 z / a^{2}} \Rightarrow \quad(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=2 .
\end{gathered}
$$

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=2$.

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=2$.
Therefore,

$$
\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=\iint_{S_{1}} 2 d x d y=2(2 \pi)
$$

Stokes' Theorem in space.

Example

Verify Stokes' Theorem for the field $\mathbf{F}=\left\langle x^{2}, 2 x, z^{2}\right\rangle$ on any half-ellipsoid $S_{2}=\left\{(x, y, z): x^{2}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{a^{2}}=1, z \geqslant 0\right\}$.

Solution: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=4 \pi$ and $(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=2$.
Therefore,

$$
\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=\iint_{S_{1}} 2 d x d y=2(2 \pi)
$$

We conclude that $\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{2} d \sigma_{2}=4 \pi$, no matter what is the value of $a>0$.

The Stokes Theorem. (Sect. 16.7)

- The curl of a vector field in space.
- The curl of conservative fields.
- Stokes' Theorem in space.
- Idea of the proof of Stokes' Theorem.

Idea of the proof of Stokes' Theorem.

Split the surface S into n surfaces S_{i}, for $i=1, \cdots, n$, as it is done in the figure for $n=9$.

Idea of the proof of Stokes' Theorem.

Split the surface S into n surfaces S_{i}, for $i=1, \cdots, n$, as it is done in the figure for $n=9$.

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\sum_{i=1}^{n} \oint_{c_{i}} \mathbf{F} \cdot d \mathbf{r}_{i} \\
& \simeq \sum_{i=1}^{n} \oint_{\tilde{c}_{i}} \mathbf{F} \cdot d \tilde{\mathbf{r}}_{i} \quad\left(\tilde{C}_{i}\right. \text { the border of small rectangles) } \\
& =\sum_{i=1}^{n} \iint_{\tilde{R}_{i}}(\nabla \times \mathbf{F}) \cdot \mathbf{n}_{i} d A \text { (Green's Theorem on a plane) } \\
& \simeq \iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
\end{aligned}
$$

The Divergence Theorem. (Sect. 16.8)

- The divergence of a vector field in space.
- The Divergence Theorem in space.
- The meaning of Curls and Divergences.
- Applications in electromagnetism:
- Gauss' law. (Divergence Theorem.)
- Faraday's law. (Stokes Theorem.)

The divergence of a vector field in space.

Definition
The divergence of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}, F_{z}\right\rangle$ is the scalar field

$$
\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}
$$

The divergence of a vector field in space.

Definition
The divergence of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}, F_{z}\right\rangle$ is the scalar field

$$
\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}
$$

Remarks:

- It is also used the notation $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}$.

The divergence of a vector field in space.

Definition

The divergence of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}, F_{z}\right\rangle$ is the scalar field

$$
\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}
$$

Remarks:

- It is also used the notation $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}$.
- The divergence of a vector field measures the expansion (positive divergence) or contraction (negative divergence) of the vector field.

The divergence of a vector field in space.

Definition
The divergence of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}, F_{z}\right\rangle$ is the scalar field

$$
\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}
$$

Remarks:

- It is also used the notation $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}$.
- The divergence of a vector field measures the expansion (positive divergence) or contraction (negative divergence) of the vector field.
- A heated gas expands, so the divergence of its velocity field is positive.

The divergence of a vector field in space.

Definition
The divergence of a vector field $\mathbf{F}=\left\langle F_{x}, F_{y}, F_{z}\right\rangle$ is the scalar field

$$
\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}
$$

Remarks:

- It is also used the notation $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}$.
- The divergence of a vector field measures the expansion (positive divergence) or contraction (negative divergence) of the vector field.
- A heated gas expands, so the divergence of its velocity field is positive.
- A cooled gas contracts, so the divergence of its velocity field is negative.

The divergence of a vector field in space.

Example

Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.

The divergence of a vector field in space.
Example
Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.
Solution: Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$.

The divergence of a vector field in space.

Example

Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.
Solution: Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$.

$$
\partial_{x} F_{x}=2 y z
$$

The divergence of a vector field in space.

Example

Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.
Solution: Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$.

$$
\partial_{x} F_{x}=2 y z, \quad \partial_{y} F_{y}=-x,
$$

The divergence of a vector field in space.

Example

Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.
Solution: Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$.

$$
\partial_{x} F_{x}=2 y z, \quad \partial_{y} F_{y}=-x, \quad \partial_{z} F_{z}=-2 z
$$

The divergence of a vector field in space.

Example

Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.
Solution: Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$.

$$
\partial_{x} F_{x}=2 y z, \quad \partial_{y} F_{y}=-x, \quad \partial_{z} F_{z}=-2 z
$$

Therefore $\nabla \cdot \mathbf{F}=2 y z-x-2 z$,

The divergence of a vector field in space.

Example

Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.
Solution: Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$.

$$
\partial_{x} F_{x}=2 y z, \quad \partial_{y} F_{y}=-x, \quad \partial_{z} F_{z}=-2 z
$$

Therefore $\nabla \cdot \mathbf{F}=2 y z-x-2 z$, that is $\nabla \cdot \mathbf{F}=2 z(y-1)-x$.

The divergence of a vector field in space.

Example

Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.
Solution: Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$.

$$
\partial_{x} F_{x}=2 y z, \quad \partial_{y} F_{y}=-x, \quad \partial_{z} F_{z}=-2 z
$$

Therefore $\nabla \cdot \mathbf{F}=2 y z-x-2 z$, that is $\nabla \cdot \mathbf{F}=2 z(y-1)-x$.
Recall: curl $\mathbf{F}=\nabla \times \mathbf{F}$.

The divergence of a vector field in space.

Example
Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.
Solution: Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$.

$$
\partial_{x} F_{x}=2 y z, \quad \partial_{y} F_{y}=-x, \quad \partial_{z} F_{z}=-2 z
$$

Therefore $\nabla \cdot \mathbf{F}=2 y z-x-2 z$, that is $\nabla \cdot \mathbf{F}=2 z(y-1)-x$.
Recall: curl $\mathbf{F}=\nabla \times \mathbf{F}$.
$\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ 2 x y z & -x y & -z^{2}\end{array}\right|$

The divergence of a vector field in space.

Example

Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.
Solution: Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$.

$$
\partial_{x} F_{x}=2 y z, \quad \partial_{y} F_{y}=-x, \quad \partial_{z} F_{z}=-2 z
$$

Therefore $\nabla \cdot \mathbf{F}=2 y z-x-2 z$, that is $\nabla \cdot \mathbf{F}=2 z(y-1)-x$.
Recall: curl $\mathbf{F}=\nabla \times \mathbf{F}$.
$\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ 2 x y z & -x y & -z^{2}\end{array}\right|=\langle(0-0),-(0-2 x y),(-y-2 x z)\rangle$

The divergence of a vector field in space.

Example

Find the divergence and the curl of $\mathbf{F}=\left\langle 2 x y z,-x y,-z^{2}\right\rangle$.
Solution: Recall: $\operatorname{div} \mathbf{F}=\partial_{x} F_{x}+\partial_{y} F_{y}+\partial_{z} F_{z}$.

$$
\partial_{x} F_{x}=2 y z, \quad \partial_{y} F_{y}=-x, \quad \partial_{z} F_{z}=-2 z
$$

Therefore $\nabla \cdot \mathbf{F}=2 y z-x-2 z$, that is $\nabla \cdot \mathbf{F}=2 z(y-1)-x$.
Recall: curl $\mathbf{F}=\nabla \times \mathbf{F}$.
$\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ 2 x y z & -x y & -z^{2}\end{array}\right|=\langle(0-0),-(0-2 x y),(-y-2 x z)\rangle$
We conclude: $\nabla \times \mathbf{F}=\langle 0,2 x y,-(2 x z+y)\rangle$.

The divergence of a vector field in space.

Example

Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and

$$
\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}} .
$$

The divergence of a vector field in space.

Example

Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and

$$
\left.\rho=|\boldsymbol{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \text {. (Notice: }|\mathbf{F}|=1 / \rho^{2} .\right)
$$

The divergence of a vector field in space.

Example

Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and
$\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)
Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}$,

The divergence of a vector field in space.

Example

Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)
Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}$,

The divergence of a vector field in space.

Example

Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and
$\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)
Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}, F_{z}=\frac{z}{\rho^{3}}$.

The divergence of a vector field in space.

Example

Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and
$\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)
Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}, F_{z}=\frac{z}{\rho^{3}}$.

$$
\partial_{x} F_{x}=\partial_{x}\left[x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\right]
$$

The divergence of a vector field in space.

Example

Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)
Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}, F_{z}=\frac{z}{\rho^{3}}$.

$$
\begin{gathered}
\partial_{x} F_{x}=\partial_{x}\left[x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\right] \\
\partial_{x} F_{x}=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}-\frac{3}{2} x\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}(2 x)
\end{gathered}
$$

The divergence of a vector field in space.
Example
Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)
Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}, F_{z}=\frac{z}{\rho^{3}}$.

$$
\begin{gathered}
\partial_{x} F_{x}=\partial_{x}\left[x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\right] \\
\partial_{x} F_{x}=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}-\frac{3}{2} x\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}(2 x) \\
\partial_{x} F_{x}=\frac{1}{\rho^{3}}-3 \frac{x^{2}}{\rho^{5}}
\end{gathered}
$$

The divergence of a vector field in space.
Example
Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)
Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}, F_{z}=\frac{z}{\rho^{3}}$.

$$
\begin{gathered}
\partial_{x} F_{x}=\partial_{x}\left[x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\right] \\
\partial_{x} F_{x}=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}-\frac{3}{2} x\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}(2 x) \\
\partial_{x} F_{x}=\frac{1}{\rho^{3}}-3 \frac{x^{2}}{\rho^{5}} \Rightarrow \partial_{y} F_{y}=\frac{1}{\rho^{3}}-3 \frac{y^{2}}{\rho^{5}},
\end{gathered}
$$

The divergence of a vector field in space.
Example
Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)
Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}, F_{z}=\frac{z}{\rho^{3}}$.

$$
\begin{gathered}
\partial_{x} F_{x}=\partial_{x}\left[x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\right] \\
\partial_{x} F_{x}=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}-\frac{3}{2} x\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}(2 x) \\
\partial_{x} F_{x}=\frac{1}{\rho^{3}}-3 \frac{x^{2}}{\rho^{5}} \Rightarrow \partial_{y} F_{y}=\frac{1}{\rho^{3}}-3 \frac{y^{2}}{\rho^{5}}, \quad \partial_{z} F_{z}=\frac{1}{\rho^{3}}-3 \frac{z^{2}}{\rho^{5}} .
\end{gathered}
$$

The divergence of a vector field in space.
Example
Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)

Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}, F_{z}=\frac{z}{\rho^{3}}$.

$$
\begin{gathered}
\partial_{x} F_{x}=\partial_{x}\left[x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\right] \\
\partial_{x} F_{x}=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}-\frac{3}{2} x\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}(2 x) \\
\partial_{x} F_{x}=\frac{1}{\rho^{3}}-3 \frac{x^{2}}{\rho^{5}} \Rightarrow \partial_{y} F_{y}=\frac{1}{\rho^{3}}-3 \frac{y^{2}}{\rho^{5}}, \quad \partial_{z} F_{z}=\frac{1}{\rho^{3}}-3 \frac{z^{2}}{\rho^{5}} . \\
\nabla \cdot \mathbf{F}=\frac{3}{\rho^{3}}-3 \frac{\left(x^{2}+y^{2}+z^{2}\right)}{\rho^{5}}
\end{gathered}
$$

The divergence of a vector field in space.
Example
Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)

Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}, F_{z}=\frac{z}{\rho^{3}}$.

$$
\begin{gathered}
\partial_{x} F_{x}=\partial_{x}\left[x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\right] \\
\partial_{x} F_{x}=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}-\frac{3}{2} x\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}(2 x) \\
\partial_{x} F_{x}=\frac{1}{\rho^{3}}-3 \frac{x^{2}}{\rho^{5}} \Rightarrow \partial_{y} F_{y}=\frac{1}{\rho^{3}}-3 \frac{y^{2}}{\rho^{5}}, \quad \partial_{z} F_{z}=\frac{1}{\rho^{3}}-3 \frac{z^{2}}{\rho^{5}} . \\
\nabla \cdot \mathbf{F}=\frac{3}{\rho^{3}}-3 \frac{\left(x^{2}+y^{2}+z^{2}\right)}{\rho^{5}}=\frac{3}{\rho^{3}}-3 \frac{\rho^{2}}{\rho^{5}}
\end{gathered}
$$

The divergence of a vector field in space.

Example
Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)

Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}, F_{z}=\frac{z}{\rho^{3}}$.

$$
\begin{gathered}
\partial_{x} F_{x}=\partial_{x}\left[x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\right] \\
\partial_{x} F_{x}=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}-\frac{3}{2} x\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}(2 x) \\
\partial_{x} F_{x}=\frac{1}{\rho^{3}}-3 \frac{x^{2}}{\rho^{5}} \Rightarrow \partial_{y} F_{y}=\frac{1}{\rho^{3}}-3 \frac{y^{2}}{\rho^{5}}, \quad \partial_{z} F_{z}=\frac{1}{\rho^{3}}-3 \frac{z^{2}}{\rho^{5}} . \\
\nabla \cdot \mathbf{F}=\frac{3}{\rho^{3}}-3 \frac{\left(x^{2}+y^{2}+z^{2}\right)}{\rho^{5}}=\frac{3}{\rho^{3}}-3 \frac{\rho^{2}}{\rho^{5}}=\frac{3}{\rho^{3}}-\frac{3}{\rho^{3}} .
\end{gathered}
$$

The divergence of a vector field in space.

Example
Find the divergence of $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$. (Notice: $|\mathbf{F}|=1 / \rho^{2}$.)

Solution: The field components are $F_{x}=\frac{x}{\rho^{3}}, F_{y}=\frac{y}{\rho^{3}}, F_{z}=\frac{z}{\rho^{3}}$.

$$
\begin{gathered}
\partial_{x} F_{x}=\partial_{x}\left[x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\right] \\
\partial_{x} F_{x}=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}-\frac{3}{2} x\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}(2 x) \\
\partial_{x} F_{x}=\frac{1}{\rho^{3}}-3 \frac{x^{2}}{\rho^{5}} \Rightarrow \partial_{y} F_{y}=\frac{1}{\rho^{3}}-3 \frac{y^{2}}{\rho^{5}}, \quad \partial_{z} F_{z}=\frac{1}{\rho^{3}}-3 \frac{z^{2}}{\rho^{5}} . \\
\nabla \cdot \mathbf{F}=\frac{3}{\rho^{3}}-3 \frac{\left(x^{2}+y^{2}+z^{2}\right)}{\rho^{5}}=\frac{3}{\rho^{3}}-3 \frac{\rho^{2}}{\rho^{5}}=\frac{3}{\rho^{3}}-\frac{3}{\rho^{3}} .
\end{gathered}
$$

We conclude: $\nabla \cdot \mathbf{F}=0$.

The Divergence Theorem. (Sect. 16.8)

- The divergence of a vector field in space.
- The Divergence Theorem in space.
- The meaning of Curls and Divergences.
- Applications in electromagnetism:
- Gauss' law. (Divergence Theorem.)
- Faraday's law. (Stokes Theorem.)

The Divergence Theorem in space.

Theorem
The flux of a differentiable vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ across a closed oriented surface $S \subset \mathbb{R}^{3}$ in the direction of the surface outward unit normal vector \mathbf{n} satisfies the equation

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V
$$

where $V \subset \mathbb{R}^{3}$ is the region enclosed by the surface S.

The Divergence Theorem in space.

Theorem

The flux of a differentiable vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ across a closed oriented surface $S \subset \mathbb{R}^{3}$ in the direction of the surface outward unit normal vector \mathbf{n} satisfies the equation

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V
$$

where $V \subset \mathbb{R}^{3}$ is the region enclosed by the surface S.
Remarks:

- The volume integral of the divergence of a field \mathbf{F} in a volume V in space equals the outward flux (normal flow) of \mathbf{F} across the boundary S of V.

The Divergence Theorem in space.

Theorem

The flux of a differentiable vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ across a closed oriented surface $S \subset \mathbb{R}^{3}$ in the direction of the surface outward unit normal vector \mathbf{n} satisfies the equation

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V
$$

where $V \subset \mathbb{R}^{3}$ is the region enclosed by the surface S.
Remarks:

- The volume integral of the divergence of a field \mathbf{F} in a volume V in space equals the outward flux (normal flow) of \mathbf{F} across the boundary S of V.
- The expansion part of the field \mathbf{F} in V minus the contraction part of the field \mathbf{F} in V equals the net normal flow of \mathbf{F} across S out of the region V.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V$.
We start with the flux integral across S.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V$.
We start with the flux integral across S. The surface S is the level surface $f=0$ of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-R^{2}$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V$.
We start with the flux integral across S. The surface S is the level surface $f=0$ of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-R^{2}$. Its outward unit normal vector \mathbf{n} is

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|},
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V$.
We start with the flux integral across S. The surface S is the level surface $f=0$ of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-R^{2}$. Its outward unit normal vector \mathbf{n} is

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}, \quad \nabla f=\langle 2 x, 2 y, 2 z\rangle
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V$.
We start with the flux integral across S. The surface S is the level surface $f=0$ of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-R^{2}$. Its outward unit normal vector \mathbf{n} is

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}, \quad \nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V$.
We start with the flux integral across S. The surface S is the level surface $f=0$ of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-R^{2}$. Its outward unit normal vector \mathbf{n} is

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}, \quad \nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}=2 R
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V$.
We start with the flux integral across S. The surface S is the level surface $f=0$ of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-R^{2}$. Its outward unit normal vector \mathbf{n} is

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}, \quad \nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}=2 R
$$

We conclude that $\mathbf{n}=\frac{1}{R}\langle x, y, z\rangle$, where $z=z(x, y)$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V$.
We start with the flux integral across S. The surface S is the level surface $f=0$ of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-R^{2}$. Its outward unit normal vector \mathbf{n} is

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}, \quad \nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}=2 R
$$

We conclude that $\mathbf{n}=\frac{1}{R}\langle x, y, z\rangle$, where $z=z(x, y)$.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$,

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.
Solution: Recall: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V$.
We start with the flux integral across S. The surface S is the level surface $f=0$ of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}-R^{2}$. Its outward unit normal vector \mathbf{n} is

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}, \quad \nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}=2 R
$$

We conclude that $\mathbf{n}=\frac{1}{R}\langle x, y, z\rangle$, where $z=z(x, y)$.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, then $d \sigma=\frac{R}{z} d x d y$, with $z=z(x, y)$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\mathbf{n}=\frac{1}{R}\langle x, y, z\rangle, d \sigma=\frac{R}{z} d x d y$, with $z=z(x, y)$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\mathbf{n}=\frac{1}{R}\langle x, y, z\rangle, d \sigma=\frac{R}{z} d x d y$, with $z=z(x, y)$.

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{S}\left(\langle x, y, z\rangle \cdot \frac{1}{R}\langle x, y, z\rangle\right) d \sigma .
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\mathbf{n}=\frac{1}{R}\langle x, y, z\rangle, d \sigma=\frac{R}{z} d x d y$, with $z=z(x, y)$.

$$
\begin{aligned}
& \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{S}\left(\langle x, y, z\rangle \cdot \frac{1}{R}\langle x, y, z\rangle\right) d \sigma . \\
& \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\frac{1}{R} \iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d \sigma
\end{aligned}
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\mathbf{n}=\frac{1}{R}\langle x, y, z\rangle, d \sigma=\frac{R}{z} d x d y$, with $z=z(x, y)$.

$$
\begin{gathered}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{S}\left(\langle x, y, z\rangle \cdot \frac{1}{R}\langle x, y, z\rangle\right) d \sigma . \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\frac{1}{R} \iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d \sigma=R \iint_{S} d \sigma .
\end{gathered}
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: Recall: $\mathbf{n}=\frac{1}{R}\langle x, y, z\rangle, d \sigma=\frac{R}{z} d x d y$, with $z=z(x, y)$.

$$
\begin{gathered}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{S}\left(\langle x, y, z\rangle \cdot \frac{1}{R}\langle x, y, z\rangle\right) d \sigma . \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\frac{1}{R} \iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d \sigma=R \iint_{S} d \sigma .
\end{gathered}
$$

The integral on the sphere S can be written as the sum of the integral on the upper half plus the integral on the lower half, both integrated on the disk $R=\left\{x^{2}+y^{2} \leqslant R^{2}, z=0\right\}$, that is,

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 R \iint_{R} \frac{R}{z} d x d y .
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 R \iint_{R} \frac{R}{z} d x d y$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 R \iint_{R} \frac{R}{z} d x d y$.
Using polar coordinates on $\{z=0\}$, we get

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 \int_{0}^{2 \pi} \int_{0}^{R} \frac{R^{2}}{\sqrt{R^{2}-r^{2}}} r d r d \theta
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 R \iint_{R} \frac{R}{z} d x d y$.
Using polar coordinates on $\{z=0\}$, we get

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 \int_{0}^{2 \pi} \int_{0}^{R} \frac{R^{2}}{\sqrt{R^{2}-r^{2}}} r d r d \theta .
$$

The substitution $u=R^{2}-r^{2}$ implies $d u=-2 r d r$,

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 R \iint_{R} \frac{R}{z} d x d y$.
Using polar coordinates on $\{z=0\}$, we get

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 \int_{0}^{2 \pi} \int_{0}^{R} \frac{R^{2}}{\sqrt{R^{2}-r^{2}}} r d r d \theta .
$$

The substitution $u=R^{2}-r^{2}$ implies $d u=-2 r d r$, so,

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{2} \int_{R^{2}}^{0} u^{-1 / 2} \frac{(-d u)}{2}
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.
Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 R \iint_{R} \frac{R}{z} d x d y$.
Using polar coordinates on $\{z=0\}$, we get

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 \int_{0}^{2 \pi} \int_{0}^{R} \frac{R^{2}}{\sqrt{R^{2}-r^{2}}} r d r d \theta .
$$

The substitution $u=R^{2}-r^{2}$ implies $d u=-2 r d r$, so,

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{2} \int_{R^{2}}^{0} u^{-1 / 2} \frac{(-d u)}{2}=2 \pi R^{2} \int_{0}^{R^{2}} u^{-1 / 2} d u
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.
Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 R \iint_{R} \frac{R}{z} d x d y$.
Using polar coordinates on $\{z=0\}$, we get

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 \int_{0}^{2 \pi} \int_{0}^{R} \frac{R^{2}}{\sqrt{R^{2}-r^{2}}} r d r d \theta .
$$

The substitution $u=R^{2}-r^{2}$ implies $d u=-2 r d r$, so,

$$
\begin{aligned}
& \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{2} \int_{R^{2}}^{0} u^{-1 / 2} \frac{(-d u)}{2}=2 \pi R^{2} \int_{0}^{R^{2}} u^{-1 / 2} d u \\
& \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 \pi R^{2}\left(\left.2 u^{1 / 2}\right|_{0} ^{R^{2}}\right)
\end{aligned}
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.
Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 R \iint_{R} \frac{R}{z} d x d y$.
Using polar coordinates on $\{z=0\}$, we get

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 \int_{0}^{2 \pi} \int_{0}^{R} \frac{R^{2}}{\sqrt{R^{2}-r^{2}}} r d r d \theta .
$$

The substitution $u=R^{2}-r^{2}$ implies $d u=-2 r d r$, so,

$$
\begin{aligned}
& \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{2} \int_{R^{2}}^{0} u^{-1 / 2} \frac{(-d u)}{2}=2 \pi R^{2} \int_{0}^{R^{2}} u^{-1 / 2} d u \\
& \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=2 \pi R^{2}\left(\left.2 u^{1 / 2}\right|_{0} ^{R^{2}}\right) \quad \Rightarrow \quad \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{3} .
\end{aligned}
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{3}$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{3}$.
We now compute the volume integral $\iiint_{V} \nabla \cdot \mathbf{F} d V$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{3}$.
We now compute the volume integral $\iiint_{V} \nabla \cdot \mathbf{F} d V$. The divergence of \mathbf{F} is $\nabla \cdot \mathbf{F}=1+1+1$,

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{3}$.
We now compute the volume integral $\iiint_{V} \nabla \cdot \mathbf{F} d V$. The divergence of \mathbf{F} is $\nabla \cdot \mathbf{F}=1+1+1$, that is, $\nabla \cdot \mathbf{F}=3$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{3}$.
We now compute the volume integral $\iiint_{V} \nabla \cdot \mathbf{F} d V$. The divergence of \mathbf{F} is $\nabla \cdot \mathbf{F}=1+1+1$, that is, $\nabla \cdot \mathbf{F}=3$. Therefore

$$
\iiint_{V} \nabla \cdot \mathbf{F} d V=3 \iiint_{V} d V
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{3}$.
We now compute the volume integral $\iiint_{V} \nabla \cdot \mathbf{F} d V$. The divergence of \mathbf{F} is $\nabla \cdot \mathbf{F}=1+1+1$, that is, $\nabla \cdot \mathbf{F}=3$. Therefore

$$
\iiint_{V} \nabla \cdot \mathbf{F} d V=3 \iiint_{V} d V=3\left(\frac{4}{3} \pi R^{3}\right)
$$

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{3}$.
We now compute the volume integral $\iiint_{V} \nabla \cdot \mathbf{F} d V$. The divergence of \mathbf{F} is $\nabla \cdot \mathbf{F}=1+1+1$, that is, $\nabla \cdot \mathbf{F}=3$. Therefore

$$
\iiint_{V} \nabla \cdot \mathbf{F} d V=3 \iiint_{V} d V=3\left(\frac{4}{3} \pi R^{3}\right)
$$

We obtain $\iiint_{V} \nabla \cdot \mathbf{F} d V=4 \pi R^{3}$.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field $\mathbf{F}=\langle x, y, z\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.
Solution: $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=4 \pi R^{3}$.
We now compute the volume integral $\iiint_{V} \nabla \cdot \mathbf{F} d V$. The divergence of \mathbf{F} is $\nabla \cdot \mathbf{F}=1+1+1$, that is, $\nabla \cdot \mathbf{F}=3$. Therefore

$$
\iiint_{V} \nabla \cdot \mathbf{F} d V=3 \iiint_{V} d V=3\left(\frac{4}{3} \pi R^{3}\right)
$$

We obtain $\iiint_{V} \nabla \cdot \mathbf{F} d V=4 \pi R^{3}$.
We have verified the Divergence Theorem in this case.

The Divergence Theorem in space.

Example

Find the flux of the field $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$ across the boundary of the region between the spheres of radius $R_{1}>R_{0}>0$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.

The Divergence Theorem in space.

Example

Find the flux of the field $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$ across the boundary of the region between the spheres of radius $R_{1}>R_{0}>0$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.

Solution: We use the Divergence Theorem

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V .
$$

The Divergence Theorem in space.

Example

Find the flux of the field $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$ across the boundary of the region between the spheres of radius $R_{1}>R_{0}>0$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.

Solution: We use the Divergence Theorem

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V .
$$

Since $\nabla \cdot \mathbf{F}=0$,

The Divergence Theorem in space.

Example

Find the flux of the field $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$ across the boundary of the region between the spheres of radius $R_{1}>R_{0}>0$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.

Solution: We use the Divergence Theorem

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V .
$$

Since $\nabla \cdot \mathbf{F}=0$, then $\iiint_{V}(\nabla \cdot \mathbf{F}) d V=0$.

The Divergence Theorem in space.

Example

Find the flux of the field $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$ across the boundary of the region between the spheres of radius $R_{1}>R_{0}>0$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.

Solution: We use the Divergence Theorem

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V .
$$

Since $\nabla \cdot \mathbf{F}=0$, then $\iiint_{V}(\nabla \cdot \mathbf{F}) d V=0$. Therefore

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=0 .
$$

The Divergence Theorem in space.

Example

Find the flux of the field $\mathbf{F}=\frac{\mathbf{r}}{\rho^{3}}$ across the boundary of the region between the spheres of radius $R_{1}>R_{0}>0$, where $\mathbf{r}=\langle x, y, z\rangle$, and $\rho=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.

Solution: We use the Divergence Theorem

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{V}(\nabla \cdot \mathbf{F}) d V .
$$

Since $\nabla \cdot \mathbf{F}=0$, then $\iiint_{V}(\nabla \cdot \mathbf{F}) d V=0$. Therefore

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=0 .
$$

The flux along any surface S vanishes as long as $\mathbf{0}$ is not included in the region surrounded by S. (\mathbf{F} is not differentiable at $\mathbf{0}$.)

The Divergence Theorem. (Sect. 16.8)

- The divergence of a vector field in space.
- The Divergence Theorem in space.
- The meaning of Curls and Divergences.
- Applications in electromagnetism:
- Gauss' law. (Divergence Theorem.)
- Faraday's law. (Stokes Theorem.)

The meaning of Curls and Divergences.

Remarks: The meaning of the Curl and the Divergence of a vector field \mathbf{F} is best given through the Stokes and Divergence Theorems.

The meaning of Curls and Divergences.

Remarks: The meaning of the Curl and the Divergence of a vector field \mathbf{F} is best given through the Stokes and Divergence Theorems.

- $\nabla \times \mathbf{F}=\lim _{S \rightarrow\{P\}} \frac{1}{A(S)} \oint_{C} \mathbf{F} \cdot d \mathbf{r}$,
where S is a surface containing the point P with boundary given by the loop C and $A(S)$ is the area of that surface.

The meaning of Curls and Divergences.

Remarks: The meaning of the Curl and the Divergence of a vector field \mathbf{F} is best given through the Stokes and Divergence Theorems.

- $\nabla \times \mathbf{F}=\lim _{S \rightarrow\{P\}} \frac{1}{A(S)} \oint_{C} \mathbf{F} \cdot d \mathbf{r}$,
where S is a surface containing the point P with boundary given by the loop C and $A(S)$ is the area of that surface.
- $\nabla \cdot \mathbf{F}=\lim _{R \rightarrow\{p\}} \frac{1}{V(R)} \iint_{S} \mathbf{F} \cdot \mathbf{n d} \sigma$,
where R is a region in space containing the point P with boundary given by the closed orientable surface S and $V(R)$ is the volume of that region.

The Divergence Theorem. (Sect. 16.8)

- The divergence of a vector field in space.
- The Divergence Theorem in space.
- The meaning of Curls and Divergences.
- Applications in electromagnetism:
- Gauss' law. (Divergence Theorem.)
- Faraday's law. (Stokes Theorem.)

Applications in electromagnetism: Gauss' Law.

Gauss' law: Let $q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the charge density in space, and $\mathbf{E}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the electric field generated by that charge. Then

$$
\iiint_{R} q d V=k \iint_{S} \mathbf{E} \cdot \mathbf{n} d \sigma
$$

that is, the total charge in a region R in space with closed orientable surface S is proportional to the integral of the electric field \mathbf{E} on this surface S.

Applications in electromagnetism: Gauss' Law.

Gauss' law: Let $q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the charge density in space, and $\mathbf{E}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the electric field generated by that charge. Then

$$
\iiint_{R} q d V=k \iint_{S} \mathbf{E} \cdot \mathbf{n} d \sigma
$$

that is, the total charge in a region R in space with closed orientable surface S is proportional to the integral of the electric field \mathbf{E} on this surface S.

The Divergence Theorem relates surface integrals with volume integrals, that is, $\iint_{S} \mathbf{E} \cdot \mathbf{n} d \sigma=\iiint_{R}(\nabla \cdot \mathbf{E}) d V$.

Applications in electromagnetism: Gauss' Law.

Gauss' law: Let $q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the charge density in space, and $\mathbf{E}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the electric field generated by that charge. Then

$$
\iiint_{R} q d V=k \iint_{S} \mathbf{E} \cdot \mathbf{n} d \sigma
$$

that is, the total charge in a region R in space with closed orientable surface S is proportional to the integral of the electric field \mathbf{E} on this surface S.

The Divergence Theorem relates surface integrals with volume integrals, that is, $\iint_{S} \mathbf{E} \cdot \mathbf{n} d \sigma=\iiint_{R}(\nabla \cdot \mathbf{E}) d V$.
Using the Divergence Theorem we obtain the differential form of Gauss' law,

$$
\nabla \cdot \mathbf{E}=\frac{1}{k} q .
$$

Applications in electromagnetism: Faraday's Law.

Faraday's law: Let $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the magnetic field across an orientable surface S with boundary given by the loop C, and let $\mathbf{E}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ measured on that loop. Then

$$
\frac{d}{d t} \iint_{S} \mathbf{B} \cdot \mathbf{n} d \sigma=-\oint_{C} \mathbf{E} \cdot d \mathbf{r}
$$

that is, the time variation of the magnetic flux across S is the negative of the electromotive force on the loop.

Applications in electromagnetism: Faraday's Law.

Faraday's law: Let $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the magnetic field across an orientable surface S with boundary given by the loop C, and let $\mathbf{E}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ measured on that loop. Then

$$
\frac{d}{d t} \iint_{S} \mathbf{B} \cdot \mathbf{n} d \sigma=-\oint_{C} \mathbf{E} \cdot d \mathbf{r},
$$

that is, the time variation of the magnetic flux across S is the negative of the electromotive force on the loop.
The Stokes Theorem relates line integrals with surface integrals, that is, $\oint_{C} \mathbf{E} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{E}) \cdot \mathbf{n} d \sigma$.

Applications in electromagnetism: Faraday's Law.

Faraday's law: Let $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the magnetic field across an orientable surface S with boundary given by the loop C, and let $\mathbf{E}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ measured on that loop. Then

$$
\frac{d}{d t} \iint_{S} \mathbf{B} \cdot \mathbf{n} d \sigma=-\oint_{C} \mathbf{E} \cdot d \mathbf{r},
$$

that is, the time variation of the magnetic flux across S is the negative of the electromotive force on the loop.

The Stokes Theorem relates line integrals with surface integrals, that is, $\oint_{c} \mathbf{E} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{E}) \cdot \mathbf{n} d \sigma$.
Using the Stokes Theorem we obtain the differential form of Faraday's law,

$$
\partial_{t} \mathbf{B}=-\nabla \times \mathbf{E} .
$$

Review for Exam 4.

- Sections 16.1-16.5, 16.7, 16.8.
- 50 minutes.
- 5 problems, similar to homework problems.
- No calculators, no notes, no books, no phones.
- No green book needed.

Review for Exam 4.

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area, surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: We have to compute $I=\int_{C} f d s$,

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: We have to compute $I=\int_{C} f d s$, by that we mean

$$
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: We have to compute $I=\int_{C} f d s$, by that we mean

$$
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

where $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is a parametrization of the path C.

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: We have to compute $I=\int_{C} f d s$, by that we mean

$$
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

where $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is a parametrization of the path C. In this case the path is given by the parabola $y=x^{2} / 2$,

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: We have to compute $I=\int_{C} f d s$, by that we mean

$$
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

where $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is a parametrization of the path C. In this case the path is given by the parabola $y=x^{2} / 2$, so a simple parametrization is to use $x=t$,

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: We have to compute $I=\int_{C} f d s$, by that we mean

$$
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

where $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is a parametrization of the path C. In this case the path is given by the parabola $y=x^{2} / 2$, so a simple parametrization is to use $x=t$, that is,

$$
\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle, \quad t \in[0,2]
$$

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: We have to compute $I=\int_{C} f d s$, by that we mean

$$
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

where $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is a parametrization of the path C. In this case the path is given by the parabola $y=x^{2} / 2$, so a simple parametrization is to use $x=t$, that is,

$$
\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle, \quad t \in[0,2] \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle 1, t\rangle
$$

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

$$
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

$$
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2} \frac{t^{3}}{t^{2} / 2} \sqrt{1+t^{2}} d t
$$

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

$$
\begin{aligned}
\int_{C} f d s & =\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2} \frac{t^{3}}{t^{2} / 2} \sqrt{1+t^{2}} d t \\
\int_{C} f d s & =\int_{0}^{2} 2 t \sqrt{1+t^{2}} d t
\end{aligned}
$$

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

$$
\begin{gathered}
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2} \frac{t^{3}}{t^{2} / 2} \sqrt{1+t^{2}} d t \\
\int_{C} f d s=\int_{0}^{2} 2 t \sqrt{1+t^{2}} d t, \quad u=1+t^{2}, \quad d u=2 t d t
\end{gathered}
$$

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

$$
\begin{aligned}
& \int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2} \frac{t^{3}}{t^{2} / 2} \sqrt{1+t^{2}} d t \\
& \int_{C} f d s=\int_{0}^{2} 2 t \sqrt{1+t^{2}} d t, \quad u=1+t^{2}, \quad d u=2 t d t \\
& \quad \int_{C} f d s=\int_{1}^{5} u^{1 / 2} d u
\end{aligned}
$$

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

$$
\begin{gathered}
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2} \frac{t^{3}}{t^{2} / 2} \sqrt{1+t^{2}} d t \\
\int_{C} f d s=\int_{0}^{2} 2 t \sqrt{1+t^{2}} d t, \quad u=1+t^{2}, \quad d u=2 t d t \\
\quad \int_{C} f d s=\int_{1}^{5} u^{1 / 2} d u=\left.\frac{2}{3} u^{3 / 2}\right|_{1} ^{5}
\end{gathered}
$$

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

$$
\begin{gathered}
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2} \frac{t^{3}}{t^{2} / 2} \sqrt{1+t^{2}} d t \\
\int_{C} f d s=\int_{0}^{2} 2 t \sqrt{1+t^{2}} d t, \quad u=1+t^{2}, \quad d u=2 t d t \\
\int_{C} f d s=\int_{1}^{5} u^{1 / 2} d u=\left.\frac{2}{3} u^{3 / 2}\right|_{1} ^{5}=\frac{2}{3}\left(5^{3 / 2}-1\right)
\end{gathered}
$$

Line integrals (16.1).

Example

Integrate the function $f(x, y)=x^{3} / y$ along the plane curve C given by $y=x^{2} / 2$ for $x \in[0,2]$, from the point $(0,0)$ to $(2,2)$.

Solution: $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}\right\rangle$ for $t \in[0,2]$, and $\mathbf{r}^{\prime}(t)=\langle 1, t\rangle$.

$$
\begin{gathered}
\int_{C} f d s=\int_{t_{0}}^{t_{1}} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{2} \frac{t^{3}}{t^{2} / 2} \sqrt{1+t^{2}} d t \\
\int_{C} f d s=\int_{0}^{2} 2 t \sqrt{1+t^{2}} d t, \quad u=1+t^{2}, \quad d u=2 t d t \\
\int_{C} f d s=\int_{1}^{5} u^{1 / 2} d u=\left.\frac{2}{3} u^{3 / 2}\right|_{1} ^{5}=\frac{2}{3}\left(5^{3 / 2}-1\right)
\end{gathered}
$$

We conclude that $\int_{C} f d s=\frac{2}{3}(5 \sqrt{5}-1)$.

Review for Exam 4.

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area, surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: The formula for the work done by a force on a particle moving along C given by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: The formula for the work done by a force on a particle moving along C given by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: The formula for the work done by a force on a particle moving along C given by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

In this case $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: The formula for the work done by a force on a particle moving along C given by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t .
$$

In this case $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. We now need to evaluate \mathbf{F} along the curve, that is,

$$
\mathbf{F}(t)=\mathbf{F}(x(t), y(t), z(t))
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: The formula for the work done by a force on a particle moving along C given by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t .
$$

In this case $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. We now need to evaluate \mathbf{F} along the curve, that is,

$$
\mathbf{F}(t)=\mathbf{F}(x(t), y(t), z(t))=\left\langle\left(t^{2}\right) t, t\left(t^{3}\right),-\left(t^{3}\right) t^{2}\right\rangle
$$

We obtain $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. The Work done by the force on the particle is

$$
W=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. The Work done by the force on the particle is

$$
W=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2}\left\langle t^{3}, t^{4},-t^{5}\right\rangle \cdot\left\langle 3 t^{2}, 2 t, 1\right\rangle d t
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. The Work done by the force on the particle is

$$
\begin{aligned}
& W=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2}\left\langle t^{3}, t^{4},-t^{5}\right\rangle \cdot\left\langle 3 t^{2}, 2 t, 1\right\rangle d t \\
& W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t
\end{aligned}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. The Work done by the force on the particle is

$$
\begin{aligned}
& W=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2}\left\langle t^{3}, t^{4},-t^{5}\right\rangle \cdot\left\langle 3 t^{2}, 2 t, 1\right\rangle d t \\
& W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t=\int_{0}^{2} 4 t^{5} d t
\end{aligned}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. The Work done by the force on the particle is

$$
\begin{aligned}
& W=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2}\left\langle t^{3}, t^{4},-t^{5}\right\rangle \cdot\left\langle 3 t^{2}, 2 t, 1\right\rangle d t \\
& W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t=\int_{0}^{2} 4 t^{5} d t=\left.\frac{4}{6} t^{6}\right|_{0} ^{2}
\end{aligned}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. The Work done by the force on the particle is

$$
\begin{aligned}
& W=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2}\left\langle t^{3}, t^{4},-t^{5}\right\rangle \cdot\left\langle 3 t^{2}, 2 t, 1\right\rangle d t \\
& W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t=\int_{0}^{2} 4 t^{5} d t=\left.\frac{4}{6} t^{6}\right|_{0} ^{2}=\frac{2}{3} 2^{6} .
\end{aligned}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force $\mathbf{F}=\langle y z, z x,-x y\rangle$ in a moving particle along the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ for $t \in[0,2]$.

Solution: $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{5}\right\rangle$ and $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 1\right\rangle$ for $t \in[0,2]$. The Work done by the force on the particle is

$$
\begin{aligned}
& W=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2}\left\langle t^{3}, t^{4},-t^{5}\right\rangle \cdot\left\langle 3 t^{2}, 2 t, 1\right\rangle d t \\
& W=\int_{0}^{2}\left(3 t^{5}+2 t^{5}-t^{5}\right) d t=\int_{0}^{2} 4 t^{5} d t=\left.\frac{4}{6} t^{6}\right|_{0} ^{2}=\frac{2}{3} 2^{6} .
\end{aligned}
$$

We conclude that $W=2^{7} / 3$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: The flow (also called circulation) of the field \mathbf{F} along a curve C parametrized by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: The flow (also called circulation) of the field \mathbf{F} along a curve C parametrized by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

We use $t=x$ as the parameter of the curve \mathbf{r},

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: The flow (also called circulation) of the field \mathbf{F} along a curve C parametrized by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

We use $t=x$ as the parameter of the curve \mathbf{r}, so we obtain

$$
\mathbf{r}(t)=\left\langle t, t^{2}, t\right\rangle, \quad t \in[0,1]
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: The flow (also called circulation) of the field \mathbf{F} along a curve C parametrized by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

We use $t=x$ as the parameter of the curve \mathbf{r}, so we obtain

$$
\mathbf{r}(t)=\left\langle t, t^{2}, t\right\rangle, \quad t \in[0,1] \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle .
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: The flow (also called circulation) of the field \mathbf{F} along a curve C parametrized by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

We use $t=x$ as the parameter of the curve \mathbf{r}, so we obtain

$$
\begin{aligned}
\mathbf{r}(t) & =\left\langle t, t^{2}, t\right\rangle, \quad t \in[0,1] \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle . \\
\mathbf{F}(t) & =\left\langle t\left(t^{2}\right),\left(t^{2}\right)^{2},-t^{2}(t)\right\rangle
\end{aligned}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: The flow (also called circulation) of the field \mathbf{F} along a curve C parametrized by $\mathbf{r}(t)$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t .
$$

We use $t=x$ as the parameter of the curve \mathbf{r}, so we obtain

$$
\begin{gathered}
\mathbf{r}(t)=\left\langle t, t^{2}, t\right\rangle, \quad t \in[0,1] \quad \Rightarrow \quad \mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle . \\
\mathbf{F}(t)=\left\langle t\left(t^{2}\right),\left(t^{2}\right)^{2},-t^{2}(t)\right\rangle \quad \Rightarrow \quad \mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle .
\end{gathered}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: $\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle$ for $t \in[0,1]$ and $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: $\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle$ for $t \in[0,1]$ and $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle$.

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: $\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle$ for $t \in[0,1]$ and $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle$.

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}\left\langle t^{3}, t^{4},-t^{3}\right\rangle \cdot\langle 1,2 t, 1\rangle d t
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: $\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle$ for $t \in[0,1]$ and $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle$.

$$
\begin{aligned}
& \int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}\left\langle t^{3}, t^{4},-t^{3}\right\rangle \cdot\langle 1,2 t, 1\rangle d t, \\
& \int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(t^{3}+2 t^{5}-t^{3}\right) d t
\end{aligned}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: $\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle$ for $t \in[0,1]$ and $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle$.

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}\left\langle t^{3}, t^{4},-t^{3}\right\rangle \cdot\langle 1,2 t, 1\rangle d t \\
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(t^{3}+2 t^{5}-t^{3}\right) d t=\int_{0}^{1} 2 t^{5} d t
\end{gathered}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: $\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle$ for $t \in[0,1]$ and $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle$.

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}\left\langle t^{3}, t^{4},-t^{3}\right\rangle \cdot\langle 1,2 t, 1\rangle d t, \\
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(t^{3}+2 t^{5}-t^{3}\right) d t=\int_{0}^{1} 2 t^{5} d t=\left.\frac{2}{6} t^{6}\right|_{0} ^{1} .
\end{gathered}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field $\mathbf{F}=\left\langle x y, y^{2},-y z\right\rangle$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve of intersection of the cylinder $y=x^{2}$ with the plane $z=x$.

Solution: $\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle$ for $t \in[0,1]$ and $\mathbf{F}(t)=\left\langle t^{3}, t^{4},-t^{3}\right\rangle$.

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}\left\langle t^{3}, t^{4},-t^{3}\right\rangle \cdot\langle 1,2 t, 1\rangle d t \\
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(t^{3}+2 t^{5}-t^{3}\right) d t=\int_{0}^{1} 2 t^{5} d t=\left.\frac{2}{6} t^{6}\right|_{0} ^{1}
\end{gathered}
$$

We conclude that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\frac{1}{3}$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: The flux (also normal flow) of the field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ across a loop C parametrized by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t .
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: The flux (also normal flow) of the field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ across a loop C parametrized by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\oint_{c} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t .
$$

Recall that $\mathbf{n}=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left\langle y^{\prime}(y),-x^{\prime}(t)\right\rangle$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: The flux (also normal flow) of the field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ across a loop C parametrized by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\oint_{c} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t .
$$

Recall that $\mathbf{n}=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left\langle y^{\prime}(y),-x^{\prime}(t)\right\rangle$ and $d s=\left|\mathbf{r}^{\prime}(t)\right| d t$,

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: The flux (also normal flow) of the field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ across a loop C parametrized by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\oint_{c} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t .
$$

Recall that $\mathbf{n}=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left\langle y^{\prime}(y),-x^{\prime}(t)\right\rangle$ and $d s=\left|\mathbf{r}^{\prime}(t)\right| d t$, therefore

$$
\mathbf{F} \cdot \mathbf{n} d s=\left(\left\langle F_{x}, F_{y}\right\rangle \cdot \frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left\langle y^{\prime}(y),-x^{\prime}(t)\right\rangle\right)\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: The flux (also normal flow) of the field $\mathbf{F}=\left\langle F_{x}, F_{y}\right\rangle$ across a loop C parametrized by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
\oint_{c} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t .
$$

Recall that $\mathbf{n}=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left\langle y^{\prime}(y),-x^{\prime}(t)\right\rangle$ and $d s=\left|\mathbf{r}^{\prime}(t)\right| d t$, therefore

$$
\mathbf{F} \cdot \mathbf{n} d s=\left(\left\langle F_{x}, F_{y}\right\rangle \cdot \frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left\langle y^{\prime}(y),-x^{\prime}(t)\right\rangle\right)\left|\mathbf{r}^{\prime}(t)\right| d t
$$

so we obtain $\mathbf{F} \cdot \mathbf{n} d s=\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t$.
We evaluate \mathbf{F} along the loop,

$$
\mathbf{F}(t)=\langle-a \cos (t), a[\cos (t)-\sin (t)]\rangle
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t$.
We evaluate \mathbf{F} along the loop,

$$
\mathbf{F}(t)=\langle-a \cos (t), a[\cos (t)-\sin (t)]\rangle
$$

and compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t)\rangle$.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution: $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t$.
We evaluate \mathbf{F} along the loop,

$$
\mathbf{F}(t)=\langle-a \cos (t), a[\cos (t)-\sin (t)]\rangle
$$

and compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t)\rangle$. Therefore,

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}[-a \cos (t) a \cos (t)-a(\cos (t)-\sin (t))(-a) \sin (t)] d t
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t)$, $a \sin (t)\rangle$ for $t \in[0,2 \pi]$.
Solution: $\oint_{c} \mathbf{F} \cdot \mathbf{n} d s=\int_{t_{0}}^{t_{1}}\left[\mathbf{F}_{x} y^{\prime}(t)-F_{y} x^{\prime}(t)\right] d t$.
We evaluate \mathbf{F} along the loop,

$$
\mathbf{F}(t)=\langle-a \cos (t), a[\cos (t)-\sin (t)]\rangle,
$$

and compute $\mathbf{r}^{\prime}(t)=\langle-a \sin (t), a \cos (t)\rangle$. Therefore,

$$
\begin{aligned}
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}[-a \cos (t) a \cos (t)-a(\cos (t)-\sin (t))(-a) \sin (t)] d t \\
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}\left[-a^{2} \cos ^{2}(t)+a^{2} \sin (t) \cos (t)-a^{2} \sin ^{2}(t)\right] d t
\end{aligned}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution:

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}\left[-a^{2} \cos ^{2}(t)+a^{2} \sin (t) \cos (t)-a^{2} \sin ^{2}(t)\right] d t .
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution:

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}\left[-a^{2} \cos ^{2}(t)+a^{2} \sin (t) \cos (t)-a^{2} \sin ^{2}(t)\right] d t . \\
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=a^{2} \int_{0}^{2 \pi}[-1+\sin (t) \cos (t)] d t
\end{gathered}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution:

$$
\begin{aligned}
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}\left[-a^{2} \cos ^{2}(t)+a^{2} \sin (t) \cos (t)-a^{2} \sin ^{2}(t)\right] d t . \\
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=a^{2} \int_{0}^{2 \pi}[-1+\sin (t) \cos (t)] d t, \\
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=a^{2} \int_{0}^{2 \pi}\left[-1+\frac{1}{2} \sin (2 t)\right] d t .
\end{aligned}
$$

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution:

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s= & \int_{0}^{2 \pi}\left[-a^{2} \cos ^{2}(t)+a^{2} \sin (t) \cos (t)-a^{2} \sin ^{2}(t)\right] d t \\
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=a^{2} \int_{0}^{2 \pi}[-1+\sin (t) \cos (t)] d t \\
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=a^{2} \int_{0}^{2 \pi}\left[-1+\frac{1}{2} \sin (2 t)\right] d t
\end{aligned}
$$

Since $\int_{0}^{2 \pi} \sin (2 t) d t=0$,

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field $\mathbf{F}=\langle-x,(x-y)\rangle$ across loop C given by the circle $\mathbf{r}(t)=\langle a \cos (t), a \sin (t)\rangle$ for $t \in[0,2 \pi]$.

Solution:

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s= & \int_{0}^{2 \pi}\left[-a^{2} \cos ^{2}(t)+a^{2} \sin (t) \cos (t)-a^{2} \sin ^{2}(t)\right] d t . \\
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=a^{2} \int_{0}^{2 \pi}[-1+\sin (t) \cos (t)] d t \\
& \oint_{C} \mathbf{F} \cdot \mathbf{n} d s=a^{2} \int_{0}^{2 \pi}\left[-1+\frac{1}{2} \sin (2 t)\right] d t
\end{aligned}
$$

Since $\int_{0}^{2 \pi} \sin (2 t) d t=0$, we obtain $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=-2 \pi a^{2}$.

Review for Exam 4.

- (16.1) Line integrals.
- (16.2) Vector fields, work, circulation, flux (plane).
- (16.3) Conservative fields, potential functions.
- (16.4) The Green Theorem in a plane.
- (16.5) Surface area, surface integrals.
- (16.7) The Stokes Theorem.
- (16.8) The Divergence Theorem.

Conservative fields, potential functions (16.3).
Example
Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.

Conservative fields, potential functions (16.3).

Example
Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} .
$$

Conservative fields, potential functions (16.3).

Example
Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} . \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y},
\end{gathered}
$$

Conservative fields, potential functions (16.3).

Example
Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x}
\end{gathered}
$$

Conservative fields, potential functions (16.3).

Example
Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x} \\
\partial_{x} F_{y}=\sin (z)=\partial_{y} F_{x}
\end{gathered}
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x} \\
\partial_{x} F_{y}=\sin (z)=\partial_{y} F_{x}
\end{gathered}
$$

Therefore, \mathbf{F} is a conservative field,

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x} \\
\partial_{x} F_{y}=\sin (z)=\partial_{y} F_{x}
\end{gathered}
$$

Therefore, \mathbf{F} is a conservative field, that means there exists a scalar field f such that $\mathbf{F}=\nabla f$.

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: We need to check the equations

$$
\begin{gathered}
\partial_{y} F_{z}=\partial_{z} F_{y}, \quad \partial_{x} F_{z}=\partial_{z} F_{x}, \quad \partial_{x} F_{y}=\partial_{y} F_{x} \\
\partial_{y} F_{z}=x \cos (z)=\partial_{z} F_{y} \\
\partial_{x} F_{z}=y \cos (z)=\partial_{z} F_{x} \\
\partial_{x} F_{y}=\sin (z)=\partial_{y} F_{x}
\end{gathered}
$$

Therefore, \mathbf{F} is a conservative field, that means there exists a scalar field f such that $\mathbf{F}=\nabla f$. The equations for f are

$$
\partial_{x} f=y \sin (z), \quad \partial_{y} f=x \sin (z), \quad \partial_{z} f=x y \cos (z) .
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$.

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z)
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$.

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0,
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$.

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$. Introduce this expression into the last equation above,

$$
\partial_{z} f=x y \cos (z)+h^{\prime}(z)=x y \cos (z)
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$. Introduce this expression into the last equation above,

$$
\partial_{z} f=x y \cos (z)+h^{\prime}(z)=x y \cos (z) \Rightarrow h^{\prime}(z)=0
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$.
Introduce this expression into the last equation above,

$$
\partial_{z} f=x y \cos (z)+h^{\prime}(z)=x y \cos (z) \Rightarrow h^{\prime}(z)=0 \Rightarrow h(z)=c
$$

Conservative fields, potential functions (16.3).

Example

Is the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative?
If "yes", then find the potential function.
Solution: $\partial_{x} f=y \sin (z), \partial_{y} f=x \sin (z), \partial_{z} f=x y \cos (z)$. Integrating in x the first equation we get

$$
f(x, y, z)=x y \sin (z)+g(y, z)
$$

Introduce this expression in the second equation above,

$$
\partial_{y} f=x \sin (z)+\partial_{y} g=x \sin (z) \quad \Rightarrow \quad \partial_{y} g(y, z)=0
$$

so $g(y, z)=h(z)$. That is, $f(x, y, z)=x y \sin (z)+h(z)$.
Introduce this expression into the last equation above,

$$
\partial_{z} f=x y \cos (z)+h^{\prime}(z)=x y \cos (z) \Rightarrow h^{\prime}(z)=0 \Rightarrow h(z)=c
$$

We conclude that $f(x, y, z)=x y \sin (z)+c$.

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative,

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$,

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z .
$$

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z
$$

We have computed f already, $f=x y \sin (z)+c$.

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z
$$

We have computed f already, $f=x y \sin (z)+c$. Since \mathbf{F} is conservative, the integral $/$ is path independent,

Conservative fields, potential functions (16.3).

Example

Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z .
$$

We have computed f already, $f=x y \sin (z)+c$.
Since \mathbf{F} is conservative, the integral $/$ is path independent, and

$$
I=\int_{(1,1, \pi / 2)}^{(1,2, \pi / 2)}[y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z]
$$

Conservative fields, potential functions (16.3).

Example
Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z .
$$

We have computed f already, $f=x y \sin (z)+c$.
Since \mathbf{F} is conservative, the integral / is path independent, and

$$
\begin{aligned}
& \quad I=\int_{(1,1, \pi / 2)}^{(1,2, \pi / 2)}[y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z] \\
& I=f(1,2, \pi / 2)-f(1,1, \pi / 2)
\end{aligned}
$$

Conservative fields, potential functions (16.3).

Example
Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z .
$$

We have computed f already, $f=x y \sin (z)+c$.
Since \mathbf{F} is conservative, the integral / is path independent, and

$$
\begin{gathered}
\quad I=\int_{(1,1, \pi / 2)}^{(1,2, \pi / 2)}[y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z] \\
I=f(1,2, \pi / 2)-f(1,1, \pi / 2)=2 \sin (\pi / 2)-\sin (\pi / 2)
\end{gathered}
$$

Conservative fields, potential functions (16.3).

Example
Compute $I=\int_{C} y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z$, where C given by $\mathbf{r}(t)=\left\langle\cos (2 \pi t), 1+t^{5}, \cos ^{2}(2 \pi t) \pi / 2\right\rangle$ for $t \in[0,1]$.

Solution: We know that the field $\mathbf{F}=\langle y \sin (z), x \sin (z), x y \cos (z)\rangle$ conservative, so there exists f such that $\mathbf{F}=\nabla f$, or equivalently

$$
d f=y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z .
$$

We have computed f already, $f=x y \sin (z)+c$.
Since \mathbf{F} is conservative, the integral $/$ is path independent, and

$$
\begin{gathered}
I=\int_{(1,1, \pi / 2)}^{(1,2, \pi / 2)}[y \sin (z) d x+x \sin (z) d y+x y \cos (z) d z] \\
I=f(1,2, \pi / 2)-f(1,1, \pi / 2)=2 \sin (\pi / 2)-\sin (\pi / 2) \Rightarrow I=1 .
\end{gathered}
$$

