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The curl of a vector field in space.

Definition
The curl of a vector field F = 〈F1,F2,F3〉 in R3 is the vector field

curlF =
〈
(∂2F3 − ∂3F2), (∂3F1 − ∂1F3), (∂1F2 − ∂2F1)

〉
.

Remark: Since the following formula holds,

curlF =

∣∣∣∣∣∣
i j k

∂1 ∂2 ∂3

F1 F2 F3

∣∣∣∣∣∣
curlF = (∂2F3 − ∂3F2) i− (∂1F3 − ∂3F1) j + (∂1F2 − ∂2F1) k,

then one also uses the notation

curlF = ∇× F.



The curl of a vector field in space.

Example

Find the curl of the vector field F = 〈xz , xyz ,−y2〉.

Solution: Since curlF = ∇× F, we get,

∇× F =

∣∣∣∣∣∣
i j k

∂x ∂y ∂z

xz xyz −y2

∣∣∣∣∣∣ =

(
∂y (−y2)−∂z(xyz)

)
i−

(
∂x(−y2)−∂z(xz)

)
j +

(
∂x(xyz)−∂y (xz)

)
k,

=
(
−2y − xy

)
i−

(
0− x

)
j +

(
yz − 0

)
k,

We conclude that

∇× F = 〈−y(2 + x), x , yz〉. C
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The curl of conservative fields.

Recall: A vector field F : R3 → R3 is conservative iff there exists a
scalar field f : R3 → R such that F = ∇f .

Theorem
If a vector field F is conservative, then ∇× F = 0.

Remark:

I This Theorem is usually written as ∇× (∇f ) = 0.

I The converse is true only on simple connected sets.
That is, if a vector field F satisfies ∇× F = 0 on a simple
connected domain D, then there exists a scalar field
f : D ⊂ R3 → R such that F = ∇f .

Proof of the Theorem:

∇× F =
〈(

∂y∂z f − ∂z∂y f
)
,−

(
∂x∂z f − ∂z∂x f

)
,
(
∂x∂y f − ∂y∂x f

)〉

The curl of conservative fields.
Example

Is the vector field F = 〈xz , xyz ,−y2〉 conservative?

Solution: We have shown that ∇× F = 〈−y(2 + x), x , yz〉.
Since ∇× F 6= 0, then F is not conservative. C

Example

Is the vector field F = 〈y2z3, 2xyz3, 3xy2z2〉 conservative in R3?

Solution: Notice that

∇× F =

∣∣∣∣∣∣
i j k

∂x ∂y ∂z

y2z3 2xyz3 3xy2z2

∣∣∣∣∣∣
=

〈
(6xyz2 − 6xyz2),−(3y2z2 − 3y2z2), (2yz3 − 2yz3)

〉
= 0.

Since ∇× F = 0 and R3 is simple connected, then F is
conservative, that is, there exists f in R3 such that F = ∇f . C
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Stokes’ Theorem in space.

Theorem
The circulation of a differentiable vector field F : D ⊂ R3 → R3

around the boundary C of the oriented surface S ⊂ D satisfies the
equation ∮

C

F · dr =

∫∫
S

(∇× F) · n dσ,

where dr points counterclockwise when the unit vector n normal to
S points in the direction to the viewer (right-hand rule).

r (t)

n

C

S

r’ (t)



Stokes’ Theorem in space.

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on the ellipse
S = {(x , y , z) : 4x2 + y2 6 4, z = 0}.

Solution: We compute both sides in

∮
C

F · dr =

∫∫
S

(∇×F) ·n dσ.

S

x

y

z

C

− 2

− 1

1

2

We start computing the circulation

integral on the ellipse x2 + y2

22 = 1.
We need to choose a counterclockwise
parametrization, hence the normal to S
points upwards.

n

x

y

z

C

− 2

− 1

1

2

S

We choose, for t ∈ [0, 2π],

r(t) = 〈cos(t), 2 sin(t), 0〉.

Therefore, the right-hand rule normal n
to S is n = 〈0, 0, 1〉.

Stokes’ Theorem in space.
Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on the ellipse
S = {(x , y , z) : 4x2 + y2 6 4, z = 0}.

Solution: Recall:

∮
C

F · dr =

∫∫
S

(∇× F) · n dσ, with

r(t) = 〈cos(t), 2 sin(t), 0〉, t ∈ [0, 2π] and n = 〈0, 0, 1〉.
The circulation integral is:∮

C

F · dr =

∫ 2π

0
F(t) · r′(t) dt

=

∫ 2π

0
〈cos2(t), 2 cos(t), 0〉 · 〈− sin(t), 2 cos(t), 0〉 dt.

∮
C

F · dr =

∫ 2π

0

[
− cos2(t) sin(t) + 4 cos2(t)

]
dt.



Stokes’ Theorem in space.

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on the ellipse
S = {(x , y , z) : 4x2 + y2 6 4, z = 0}.

Solution:

∮
C

F · dr =

∫ 2π

0

[
− cos2(t) sin(t) + 4 cos2(t)

]
dt.

The substitution on the first term u = cos(t) and du = − sin(t) dt,

implies

∫ 2π

0
− cos2(t) sin(t) dt =

∫ 1

1
u2 du = 0.

∮
C

F · dr =

∫ 2π

0
4 cos2(t) dt =

∫ 2π

0
2
[
1 + cos(2t)

]
dt.

Since

∫ 2π

0
cos(2t) dt = 0, we conclude that

∮
C

F · dr = 4π.

Stokes’ Theorem in space.

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on the ellipse
S = {(x , y , z) : 4x2 + y2 6 4, z = 0}.

Solution:

∮
C

F · dr = 4π and n = 〈0, 0, 1〉.

We now compute the right-hand side in Stokes’ Theorem.

n

x

y

z

C

− 2

− 1

1

2

S I =

∫∫
S

(∇× F) · n dσ.

∇× F =

∣∣∣∣∣∣
i j k

∂x ∂y ∂z

x2 2x z2

∣∣∣∣∣∣ ⇒ ∇× F = 〈0, 0, 2〉.

S is the flat surface {x2 + y2

22 6 1, z = 0}, so dσ = dx dy .



Stokes’ Theorem in space.

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on the ellipse
S = {(x , y , z) : 4x2 + y2 6 4, z = 0}.

Solution:

∮
C

F · dr = 4π, n = 〈0, 0, 1〉, ∇× F = 〈0, 0, 2〉, and

dσ = dx dy .

Then,

∫∫
S

(∇× F) · n dσ =

∫ 1

−1

∫ 2
√

1−x2

−2
√

1−x2

〈0, 0, 2〉 · 〈0, 0, 1〉 dy dx .

The right-hand side above is twice the area of the ellipse. Since we
know that an ellipse x2/a2 + y2/b2 = 1 has area πab, we obtain∫∫

S

(∇× F) · n dσ = 4π.

This verifies Stokes’ Theorem. C

Stokes’ Theorem in space.

Remark: Stokes’ Theorem implies that for any smooth field F and
any two surfaces S1, S2 having the same boundary curve C holds,∫∫

S1

(∇× F) · n1 dσ1 =

∫∫
S2

(∇× F) · n2 dσ2.

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on any

half-ellipsoid S2 = {(x , y , z) : x2 +
y2

22
+

z2

a2
= 1, z > 0}.

Solution: (The previous example was the case a → 0.)

2

C

z

2

n n
a

1

y

x
S

S

1

22

We must verify Stokes’ Theorem on S2,∮
C

F · dr =

∫∫
S2

(∇× F) · n2 dσ2.



Stokes’ Theorem in space.
Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on any

half-ellipsoid S2 = {(x , y , z) : x2 +
y2

22
+

z2

a2
= 1, z > 0}.

Solution:
∮

C

F · dr = 4π, ∇× F = 〈0, 0, 2〉, I =

∫∫
S2

(∇× F) · n2 dσ2.

2

C

z

2

n n
a

1

y

x
S

S

1

22
S2 is the level surface F = 0 of

F(x , y , z) = x2 +
y2

22
+

z2

a2
− 1.

n2 =
∇F
|∇F|

, ∇F =
〈
2x ,

y

2
,
2z

a2

〉
, (∇× F) · n2 = 2

2z/a2

|∇F|
.

dσ2 =
|∇F|
|∇F · k|

=
|∇F|
2z/a2

⇒ (∇× F) · n2 dσ2 = 2.

Stokes’ Theorem in space.

Example

Verify Stokes’ Theorem for the field F = 〈x2, 2x , z2〉 on any

half-ellipsoid S2 = {(x , y , z) : x2 +
y2

22
+

z2

a2
= 1, z > 0}.

Solution:

∮
C

F · dr = 4π and (∇× F) · n2 dσ2 = 2.

Therefore,∫∫
S2

(∇× F) · n2 dσ2 =

∫∫
S1

2 dx dy = 2(2π).

We conclude that

∫∫
S2

(∇× F) · n2 dσ2 = 4π, no matter what is

the value of a > 0. C
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Idea of the proof of Stokes’ Theorem.

Split the surface S into n surfaces Si ,
for i = 1, · · · , n, as it is done in the
figure for n = 9.

C

S

∮
C

F · dr =
n∑

i=1

∮
Ci

F · dri

'
n∑

i=1

∮
C̃ i

F · d r̃i (C̃i the border of small rectangles);

=
n∑

i=1

∫∫
R̃i

(∇× F) · ni dA (Green’s Theorem on a plane);

'
∫∫

S

(∇× F) · n dσ.
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The divergence of a vector field in space.

Definition
The divergence of a vector field F = 〈Fx ,Fy ,Fz〉 is the scalar field

divF = ∂xFx + ∂yFy + ∂zFz .

Remarks:

I It is also used the notation divF = ∇ · F.

I The divergence of a vector field measures the expansion
(positive divergence) or contraction (negative divergence) of
the vector field.

I A heated gas expands, so the divergence of its velocity field is
positive.

I A cooled gas contracts, so the divergence of its velocity field
is negative.



The divergence of a vector field in space.

Example

Find the divergence and the curl of F = 〈2xyz ,−xy ,−z2〉.

Solution: Recall: divF = ∂xFx + ∂yFy + ∂zFz .

∂xFx = 2yz , ∂yFy = −x , ∂zFz = −2z .

Therefore ∇ · F = 2yz − x − 2z , that is ∇ · F = 2z(y − 1)− x .

Recall: curlF = ∇× F.

∇× F =

∣∣∣∣∣∣
i j k

∂x ∂y ∂z

2xyz −xy −z2

∣∣∣∣∣∣ = 〈(0− 0),−(0− 2xy), (−y − 2xz)〉

We conclude: ∇× F = 〈0, 2xy ,−(2xz + y)〉. C

The divergence of a vector field in space.
Example

Find the divergence of F =
r

ρ3
, where r = 〈x , y , z〉, and

ρ = |r| =
√

x2 + y2 + z2. (Notice: |F| = 1/ρ2.)

Solution: The field components are Fx =
x

ρ3
, Fy =

y

ρ3
, Fz =

z

ρ3
.

∂xFx = ∂x

[
x
(
x2 + y2 + z2

)−3/2]
∂xFx =

(
x2 + y2 + z2

)−3/2 − 3

2
x
(
x2 + y2 + z2

)−5/2
(2x)

∂xFx =
1

ρ3
− 3

x2

ρ5
⇒ ∂yFy =

1

ρ3
− 3

y2

ρ5
, ∂zFz =

1

ρ3
− 3

z2

ρ5
.

∇ · F =
3

ρ3
− 3

(x2 + y2 + z2)

ρ5
=

3

ρ3
− 3

ρ2

ρ5
=

3

ρ3
− 3

ρ3
.

We conclude: ∇ · F = 0. C
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The Divergence Theorem in space.

Theorem
The flux of a differentiable vector field F : R3 → R3 across a
closed oriented surface S ⊂ R3 in the direction of the surface
outward unit normal vector n satisfies the equation∫∫

S

F · n dσ =

∫∫∫
V

(∇ · F) dV ,

where V ⊂ R3 is the region enclosed by the surface S.

Remarks:

I The volume integral of the divergence of a field F in a volume
V in space equals the outward flux (normal flow) of F across
the boundary S of V .

I The expansion part of the field F in V minus the contraction
part of the field F in V equals the net normal flow of F across
S out of the region V .



The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field F = 〈x , y , z〉 over the
sphere x2 + y2 + z2 = R2.

Solution: Recall:

∫∫
S

F · n dσ =

∫∫∫
V

(∇ · F) dV .

We start with the flux integral across S . The surface S is the level
surface f = 0 of the function f (x , y , z) = x2 + y2 + z2 − R2. Its
outward unit normal vector n is

n =
∇f

|∇f |
, ∇f = 〈2x , 2y , 2z〉, |∇f | = 2

√
x2 + y2 + z2 = 2R,

We conclude that n =
1

R
〈x , y , z〉, where z = z(x , y).

Since dσ =
|∇f |
|∇f · k|

dx dy , then dσ =
R

z
dx dy , with z = z(x , y).

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field F = 〈x , y , z〉 over the
sphere x2 + y2 + z2 = R2.

Solution: Recall: n =
1

R
〈x , y , z〉, dσ =

R

z
dx dy , with z = z(x , y).∫∫

S

F · n dσ =

∫∫
S

(
〈x , y , z〉 · 1

R
〈x , y , z〉

)
dσ.∫∫

S

F · n dσ =
1

R

∫∫
S

(
x2 + y2 + z2

)
dσ = R

∫∫
S

dσ.

The integral on the sphere S can be written as the sum of the
integral on the upper half plus the integral on the lower half, both
integrated on the disk R = {x2 + y2 6 R2, z = 0}, that is,∫∫

S

F · n dσ = 2R

∫∫
R

R

z
dx dy .



The Divergence Theorem in space.
Example

Verify the Divergence Theorem for the field F = 〈x , y , z〉 over the
sphere x2 + y2 + z2 = R2.

Solution:

∫∫
S

F · n dσ = 2R

∫∫
R

R

z
dx dy .

Using polar coordinates on {z = 0}, we get∫∫
S

F · n dσ = 2

∫ 2π

0

∫ R

0

R2

√
R2 − r2

r dr dθ.

The substitution u = R2 − r2 implies du = −2r dr , so,∫∫
S

F · n dσ = 4πR2

∫ 0

R2

u−1/2 (−du)

2
= 2πR2

∫ R2

0
u−1/2du

∫∫
S

F · n dσ = 2πR2
(
2u1/2

∣∣∣R2

0

)
⇒

∫∫
S

F · n dσ = 4πR3.

The Divergence Theorem in space.

Example

Verify the Divergence Theorem for the field F = 〈x , y , z〉 over the
sphere x2 + y2 + z2 = R2.

Solution:

∫∫
S

F · n dσ = 4πR3.

We now compute the volume integral

∫∫∫
V

∇ · F dV . The

divergence of F is ∇ · F = 1 + 1 + 1, that is, ∇ · F = 3. Therefore∫∫∫
V

∇ · F dV = 3

∫∫∫
V

dV = 3
(4

3
πR3

)
We obtain

∫∫∫
V

∇ · F dV = 4πR3.

We have verified the Divergence Theorem in this case. C



The Divergence Theorem in space.

Example

Find the flux of the field F =
r

ρ3
across the boundary of the region

between the spheres of radius R1 > R0 > 0, where r = 〈x , y , z〉,
and ρ = |r| =

√
x2 + y2 + z2.

Solution: We use the Divergence Theorem∫∫
S

F · n dσ =

∫∫∫
V

(∇ · F) dV .

Since ∇ · F = 0, then

∫∫∫
V

(∇ · F) dV = 0. Therefore∫∫
S

F · n dσ = 0.

The flux along any surface S vanishes as long as 0 is not included
in the region surrounded by S . (F is not differentiable at 0.) C
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The meaning of Curls and Divergences.

Remarks: The meaning of the Curl and the Divergence of a vector
field F is best given through the Stokes and Divergence Theorems.

I ∇× F = lim
S→{P}

1

A(S)

∮
C

F · dr,

where S is a surface containing the point P with boundary
given by the loop C and A(S) is the area of that surface.

I ∇ · F = lim
R→{P}

1

V (R)

∫∫
S

F · ndσ,

where R is a region in space containing the point P with
boundary given by the closed orientable surface S and V (R) is
the volume of that region.
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Applications in electromagnetism: Gauss’ Law.

Gauss’ law: Let q : R3 → R be the charge density in space, and
E : R3 → R3 be the electric field generated by that charge. Then∫∫∫

R

q dV = k

∫∫
S

E · n dσ,

that is, the total charge in a region R in space with closed
orientable surface S is proportional to the integral of the electric
field E on this surface S .

The Divergence Theorem relates surface integrals with volume

integrals, that is,

∫∫
S

E · n dσ =

∫∫∫
R

(∇ · E) dV .

Using the Divergence Theorem we obtain the differential form of
Gauss’ law,

∇ · E =
1

k
q.

Applications in electromagnetism: Faraday’s Law.

Faraday’s law: Let B : R3 → R3 be the magnetic field across an
orientable surface S with boundary given by the loop C , and let
E : R3 → R3 measured on that loop. Then

d

dt

∫∫
S

B · n dσ = −
∮

C

E · dr,

that is, the time variation of the magnetic flux across S is the
negative of the electromotive force on the loop.

The Stokes Theorem relates line integrals with surface integrals,

that is,

∮
C

E · dr =

∫∫
S

(∇× E) · n dσ.

Using the Stokes Theorem we obtain the differential form of
Faraday’s law,

∂tB = −∇× E.



Review for Exam 4.

I Sections 16.1-16.5, 16.7, 16.8.

I 50 minutes.

I 5 problems, similar to homework problems.

I No calculators, no notes, no books, no phones.

I No green book needed.

Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.



Line integrals (16.1).

Example

Integrate the function f (x , y) = x3/y along the plane curve C
given by y = x2/2 for x ∈ [0, 2], from the point (0, 0) to (2, 2).

Solution: We have to compute I =

∫
C

f ds, by that we mean

∫
C

f ds =

∫ t1

t0

f
(
x(t), y(t)

)
|r′(t)| dt,

where r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1] is a parametrization of the
path C . In this case the path is given by the parabola y = x2/2, so
a simple parametrization is to use x = t, that is,

r(t) =
〈
t,

t2

2

〉
, t ∈ [0, 2] ⇒ r′(t) = 〈1, t〉.

Line integrals (16.1).

Example

Integrate the function f (x , y) = x3/y along the plane curve C
given by y = x2/2 for x ∈ [0, 2], from the point (0, 0) to (2, 2).

Solution: r(t) =
〈
t,

t2

2

〉
for t ∈ [0, 2], and r′(t) = 〈1, t〉.

∫
C

f ds =

∫ t1

t0

f
(
x(t), y(t)

)
|r′(t)| dt =

∫ 2

0

t3

t2/2

√
1 + t2 dt,

∫
C

f ds =

∫ 2

0
2t

√
1 + t2 dt, u = 1 + t2, du = 2t dt.

∫
C

f ds =

∫ 5

1
u1/2 du =

2

3
u3/2

∣∣∣5
1

=
2

3

(
53/2 − 1

)
.

We conclude that

∫
C

f ds =
2

3

(
5
√

5− 1
)
. C



Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force F = 〈yz , zx ,−xy〉 in a moving
particle along the curve r(t) = 〈t3, t2, t〉 for t ∈ [0, 2].

Solution: The formula for the work done by a force on a particle
moving along C given by r(t) for t ∈ [t0, t1] is

W =

∫
C

F · dr =

∫ t1

t0

F(t) · r′(t) dt.

In this case r′(t) = 〈3t2, 2t, 1〉 for t ∈ [0, 2]. We now need to
evaluate F along the curve, that is,

F(t) = F
(
x(t), y(t), z(t)

)
= 〈(t2)t, t(t3),−(t3)t2〉

We obtain F(t) = 〈t3, t4,−t5〉.



Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the work done by the force F = 〈yz , zx ,−xy〉 in a moving
particle along the curve r(t) = 〈t3, t2, t〉 for t ∈ [0, 2].

Solution: F(t) = 〈t3, t4,−t5〉 and r′(t) = 〈3t2, 2t, 1〉 for t ∈ [0, 2].
The Work done by the force on the particle is

W =

∫ t1

t0

F(t) · r′(t) dt =

∫ 2

0
〈t3, t4,−t5〉 · 〈3t2, 2t, 1〉 dt

W =

∫ 2

0

(
3t5 + 2t5 − t5

)
dt =

∫ 2

0
4t5 dt =

4

6
t6

∣∣∣2
0

=
2

3
26.

We conclude that W = 27/3.

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field F = 〈xy , y2,−yz〉 from the point
(0, 0, 0) to the point (1, 1, 1) along the curve of intersection of the
cylinder y = x2 with the plane z = x .

Solution: The flow (also called circulation) of the field F along a
curve C parametrized by r(t) for t ∈ [t0, t1] is given by∫

C

F · dr =

∫ t1

t0

F(t) · r′(t) dt.

We use t = x as the parameter of the curve r, so we obtain

r(t) = 〈t, t2, t〉, t ∈ [0, 1] ⇒ r′(t) = 〈1, 2t, 1〉.

F(t) = 〈t(t2), (t2)2,−t2(t)〉 ⇒ F(t) = 〈t3, t4,−t3〉.



Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flow of the velocity field F = 〈xy , y2,−yz〉 from the point
(0, 0, 0) to the point (1, 1, 1) along the curve of intersection of the
cylinder y = x2 with the plane z = x .

Solution: r′(t) = 〈1, 2t, 1〉 for t ∈ [0, 1] and F(t) = 〈t3, t4,−t3〉.∫
C

F · dr =

∫ t1

t0

F(t) · r′(t) dt =

∫ 1

0
〈t3, t4,−t3〉 · 〈1, 2t, 1〉 dt,

∫
C

F · dr =

∫ 1

0

(
t3 + 2t5 − t3

)
dt =

∫ 1

0
2t5 dt =

2

6
t6

∣∣∣1
0
.

We conclude that

∫
C

F · dr =
1

3
. C

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field F = 〈−x , (x − y)〉 across loop C given by
the circle r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].

Solution: The flux (also normal flow) of the field F = 〈Fx ,Fy 〉
across a loop C parametrized by r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1]
is given by ∮

C

F · n ds =

∫ t1

t0

[
Fxy

′(t)− Fyx ′(t)
]
dt.

Recall that n =
1

|r′(t)|
〈y ′(y),−x ′(t)〉 and ds = |r′(t)| dt, therefore

F · n ds =
(
〈Fx ,Fy 〉 ·

1

|r′(t)|
〈y ′(y),−x ′(t)〉

)
|r′(t)| dt,

so we obtain F · n ds =
[
Fxy

′(t)− Fyx ′(t)
]
dt.



Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field F = 〈−x , (x − y)〉 across loop C given by
the circle r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].

Solution:

∮
C

F · n ds =

∫ t1

t0

[
Fxy

′(t)− Fyx ′(t)
]
dt.

We evaluate F along the loop,

F(t) = 〈−a cos(t), a
[
cos(t)− sin(t)

]
〉,

and compute r′(t) = 〈−a sin(t), a cos(t)〉. Therefore,∮
C

F · n ds =

∫ 2π

0

[
−a cos(t)a cos(t)− a

(
cos(t)− sin(t)

)
(−a) sin(t)

]
dt

∮
C

F · n ds =

∫ 2π

0

[
−a2 cos2(t) + a2 sin(t) cos(t)− a2 sin2(t)

]
dt

Vector fields, work, circulation, flux (plane) (16.2).

Example

Find the flux of the field F = 〈−x , (x − y)〉 across loop C given by
the circle r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π].

Solution:∮
C

F · n ds =

∫ 2π

0

[
−a2 cos2(t) + a2 sin(t) cos(t)− a2 sin2(t)

]
dt.

∮
C

F · n ds = a2

∫ 2π

0

[
−1 + sin(t) cos(t)

]
dt,

∮
C

F · n ds = a2

∫ 2π

0

[
−1 +

1

2
sin(2t)

]
dt.

Since

∫ 2π

0
sin(2t) dt = 0, we obtain

∮
C

F · n ds = −2πa2. C



Review for Exam 4.

I (16.1) Line integrals.

I (16.2) Vector fields, work, circulation, flux (plane).

I (16.3) Conservative fields, potential functions.

I (16.4) The Green Theorem in a plane.

I (16.5) Surface area, surface integrals.

I (16.7) The Stokes Theorem.

I (16.8) The Divergence Theorem.

Conservative fields, potential functions (16.3).
Example

Is the field F = 〈y sin(z), x sin(z), xy cos(z)〉 conservative?
If “yes”, then find the potential function.

Solution: We need to check the equations

∂yFz = ∂zFy , ∂xFz = ∂zFx , ∂xFy = ∂yFx .

∂yFz = x cos(z) = ∂zFy ,

∂xFz = y cos(z) = ∂zFx ,

∂xFy = sin(z) = ∂yFx .

Therefore, F is a conservative field, that means there exists a
scalar field f such that F = ∇f . The equations for f are

∂x f = y sin(z), ∂y f = x sin(z), ∂z f = xy cos(z).



Conservative fields, potential functions (16.3).

Example

Is the field F = 〈y sin(z), x sin(z), xy cos(z)〉 conservative?
If “yes”, then find the potential function.

Solution: ∂x f = y sin(z), ∂y f = x sin(z), ∂z f = xy cos(z).
Integrating in x the first equation we get

f (x , y , z) = xy sin(z) + g(y , z).

Introduce this expression in the second equation above,

∂y f = x sin(z) + ∂yg = x sin(z) ⇒ ∂yg(y , z) = 0,

so g(y , z) = h(z). That is, f (x , y , z) = xy sin(z) + h(z).
Introduce this expression into the last equation above,

∂z f = xy cos(z) + h′(z) = xy cos(z) ⇒ h′(z) = 0 ⇒ h(z) = c .

We conclude that f (x , y , z) = xy sin(z) + c . C

Conservative fields, potential functions (16.3).

Example

Compute I =

∫
C

y sin(z) dx + x sin(z) dy + xy cos(z) dz , where C

given by r(t) = 〈cos(2πt), 1 + t5, cos2(2πt)π/2〉 for t ∈ [0, 1].

Solution: We know that the field F = 〈y sin(z), x sin(z), xy cos(z)〉
conservative, so there exists f such that F = ∇f , or equivalently

df = y sin(z) dx + x sin(z) dy + xy cos(z) dz .

We have computed f already, f = xy sin(z) + c .
Since F is conservative, the integral I is path independent, and

I =

∫ (1,2,π/2)

(1,1,π/2)

[
y sin(z) dx + x sin(z) dy + xy cos(z) dz

]
I = f (1, 2, π/2)− f (1, 1, π/2) = 2 sin(π/2)− sin(π/2) ⇒ I = 1.


