Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- The area of a surface in space.

Next class:

- Surface integrals of a scalar field.
- The flux of a vector field on a surface.
- Mass and center of mass thin shells.

Review: Arc length and line integrals.

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Review: Arc length and line integrals.

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- The arc length of a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ in space is

$$
s_{t_{1}, t_{0}}=\int_{t_{0}}^{t_{1}}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Review: Arc length and line integrals.

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- The arc length of a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ in space is

$$
s_{t_{1}, t_{0}}=\int_{t_{0}}^{t_{1}}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The integral of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ along a curve

$$
\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3} \text { is } \int_{C} f d s=\int_{t_{0}}^{t_{1}} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Review: Arc length and line integrals.

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- The arc length of a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ in space is

$$
s_{t_{1}, t_{0}}=\int_{t_{0}}^{t_{1}}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The integral of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ along a curve

$$
\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3} \text { is } \int_{C} f d s=\int_{t_{0}}^{t_{1}} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The circulation of a function $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ along a curve

$$
\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3} \text { is } \int_{C} \mathbf{F} \cdot \mathbf{u} d s=\int_{t_{0}}^{t_{1}} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Review: Arc length and line integrals.

- The integral of a function $f:[a, b] \rightarrow \mathbb{R}$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

- The arc length of a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ in space is

$$
s_{t_{1}, t_{0}}=\int_{t_{0}}^{t_{1}}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The integral of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ along a curve

$$
\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3} \text { is } \int_{C} f d s=\int_{t_{0}}^{t_{1}} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- The circulation of a function $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ along a curve $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ is $\int_{C} \mathbf{F} \cdot \mathbf{u} d s=\int_{t_{0}}^{t_{1}} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t$.
- The flux of a function $\mathbf{F}:\{z=0\} \cap \mathbb{R}^{3} \rightarrow\{z=0\} \cap \mathbb{R}^{3}$ along a loop $\mathbf{r}:\left[t_{0}, t_{1}\right] \rightarrow\{z=0\} \cap \mathbb{R}^{3}$ is $\mathbb{F}=\oint_{c} \mathbf{F} \cdot \mathbf{n} d s$.

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- The area of a surface in space.

Review: Double integral of a scalar function.

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y
$$

Review: Double integral of a scalar function.

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y
$$

- The area of a plane surface $R \subset \mathbb{R}^{2}$ is the particular case $f=1$, that is, $A(R)=\iint_{R} d A$.

Review: Double integral of a scalar function.

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y
$$

- The area of a plane surface $R \subset \mathbb{R}^{2}$ is the particular case $f=1$, that is, $A(R)=\iint_{R} d A$.

We now show how to compute:

- The area of a surface in space.

Review: Double integral of a scalar function.

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y .
$$

- The area of a plane surface $R \subset \mathbb{R}^{2}$ is the particular case $f=1$, that is, $A(R)=\iint_{R} d A$.

We now show how to compute:

- The area of a surface in space.
- The integral of a scalar function on a surface is space.

Review: Double integral of a scalar function.

- The double integral of a function $f: R \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ on a region $R \subset \mathbb{R}^{2}$, which is the volume under the graph of f and above the $z=0$ plane, and is given by

$$
\iint_{R} f d A=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y .
$$

- The area of a plane surface $R \subset \mathbb{R}^{2}$ is the particular case $f=1$, that is, $A(R)=\iint_{R} d A$.

We now show how to compute:

- The area of a surface in space.
- The integral of a scalar function on a surface is space.
- The flux of a vector-valued function on a surface in space.

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- The area of a surface in space.

The area of a surface in space.

Theorem
Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

The area of a surface in space.

Theorem

Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

The area of a surface in space.

Theorem

Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: Eq. (3), page 1183, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z=0\}$ considered here.

The area of a surface in space.

Theorem

Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: Eq. (3), page 1183, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z=0\}$ considered here.

The vector \mathbf{p} in the textbook is the vector normal to R. In our case $\mathbf{p}=\mathbf{k}$.

The area of a surface in space.
Proof: Introduce a partition in $R \subset \mathbb{R}^{2}$, and consider an arbitrary rectangle ΔR in that partition.

The area of a surface in space.

Proof: Introduce a partition in $R \subset \mathbb{R}^{2}$, and consider an arbitrary rectangle ΔR in that partition. We compute the area ΔP.

The area of a surface in space.

Proof: Introduce a partition in $R \subset \mathbb{R}^{2}$, and consider an arbitrary rectangle ΔR in that partition. We compute the area ΔP.

It is simple to se that

$$
\Delta P=|\mathbf{u} \times \mathbf{v}|
$$

The area of a surface in space.

Proof: Introduce a partition in $R \subset \mathbb{R}^{2}$, and consider an arbitrary rectangle ΔR in that partition. We compute the area ΔP.

It is simple to se that

$$
\Delta P=|\mathbf{u} \times \mathbf{v}|
$$

and

$$
\begin{aligned}
& \mathbf{u}=\left\langle\Delta x, 0,\left(z_{i}-\hat{z}_{i}\right)\right\rangle \\
& \mathbf{v}=\left\langle 0, \Delta y,\left(z_{i}-\bar{z}_{i}\right)\right\rangle
\end{aligned}
$$

Therefore,

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\Delta x & 0 & \left(z_{i}-\hat{z}_{i}\right) \\
0 & \Delta y & \left(z_{i}-\bar{z}_{i}\right)
\end{array}\right|=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle .
$$

The area of a surface in space.
Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The area of a surface in space.

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.
The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

The area of a surface in space.

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.
The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

The area of a surface in space.

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.
The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right)
$$

The area of a surface in space.

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.
The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x
$$

The area of a surface in space.

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{aligned}
& 0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x, \\
& 0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right)
\end{aligned}
$$

The area of a surface in space.

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{aligned}
& 0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x, \\
& 0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y .
\end{aligned}
$$

The area of a surface in space.

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{aligned}
& 0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x \\
& 0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y
\end{aligned}
$$

$$
\mathbf{u} \times \mathbf{v}=\left\langle\left(\partial_{x} f\right)_{i},\left(\partial_{y} f\right)_{i},\left(\partial_{z} f\right)_{i}\right\rangle \frac{\Delta x \Delta y}{\left(\partial_{z} f\right)_{i}}
$$

The area of a surface in space.

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{gathered}
0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x \\
0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y \\
\mathbf{u} \times \mathbf{v}=\left\langle\left(\partial_{x} f\right)_{i},\left(\partial_{y} f\right)_{i},\left(\partial_{z} f\right)_{i}\right\rangle \frac{\Delta x \Delta y}{\left(\partial_{z} f\right)_{i}} \Rightarrow \mathbf{u} \times \mathbf{v}=\frac{(\nabla f)_{i}}{(\nabla f \cdot \mathbf{k})_{i}} \Delta x \Delta y .
\end{gathered}
$$

The area of a surface in space.

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.

The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{aligned}
& 0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x, \\
& 0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y . \\
& \mathbf{u} \times \mathbf{v}=\left\langle\left(\partial_{x} f\right)_{i},\left(\partial_{y} f\right)_{i},\left(\partial_{z} f\right)_{i}\right\rangle \frac{\Delta x \Delta y}{\left(\partial_{z} f\right)_{i}} \Rightarrow \mathbf{u} \times \mathbf{v}=\frac{(\nabla f)_{i}}{(\nabla f \cdot \mathbf{k})_{i}} \Delta x \Delta y . \\
& \Delta P=\frac{\left|(\nabla f)_{i}\right|}{\left|(\nabla f \cdot \mathbf{k})_{i}\right|} \Delta x \Delta y
\end{aligned}
$$

The area of a surface in space.

Proof: Recall: $\mathbf{u} \times \mathbf{v}=\left\langle-\Delta y\left(z_{i}-\hat{z}_{i}\right),-\Delta x\left(z_{i}-\bar{z}_{i}\right), \Delta x \Delta y\right\rangle$.
The linearization of $f(x, y, z)$ at $\left(x_{i}, y_{i}, z_{i}\right)$ implies

$$
f(x, y, z) \simeq f\left(x_{i}, y_{i}, z_{i}\right)+\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z-z_{i}\right) .
$$

Since $f\left(x_{i}, y_{i}, z_{i}\right)=0, f\left(x_{i}+\Delta x, y_{i}, \hat{z}_{i}\right)=0, f\left(x_{i}, y_{i}+\Delta y, \bar{z}_{i}\right)=0$,

$$
\begin{gathered}
0=\left(\partial_{x} f\right)_{i} \Delta x+\left(\partial_{z} f\right)_{i}\left(z_{i}-\hat{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\hat{z}_{i}\right)=-\frac{\left(\partial_{x} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta x \\
0=\left(\partial_{y} f\right)_{i} \Delta y+\left(\partial_{z} f\right)_{i}\left(z_{i}-\bar{z}_{i}\right) \quad \Rightarrow \quad\left(z_{i}-\bar{z}_{i}\right)=-\frac{\left(\partial_{y} f\right)_{i}}{\left(\partial_{z} f\right)_{i}} \Delta y . \\
\mathbf{u} \times \mathbf{v}=\left\langle\left(\partial_{x} f\right)_{i},\left(\partial_{y} f\right)_{i},\left(\partial_{z} f\right)_{i}\right\rangle \frac{\Delta x \Delta y}{\left(\partial_{z} f\right)_{i}} \Rightarrow \mathbf{u} \times \mathbf{v}=\frac{(\nabla f)_{i}}{(\nabla f \cdot \mathbf{k})_{i}} \Delta x \Delta y . \\
\Delta P=\frac{\left|(\nabla f)_{i}\right|}{\left|(\nabla f \cdot \mathbf{k})_{i}\right|} \Delta x \Delta y \quad \Rightarrow \quad A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
\end{gathered}
$$

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$.

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y
$$

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle
$$

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle, \quad \nabla f \cdot \mathbf{k}=-1
$$

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle, \quad \nabla f \cdot \mathbf{k}=-1
$$

$$
A(S)=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d x d y
$$

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
\begin{gathered}
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle, \quad \nabla f \cdot \mathbf{k}=-1 \\
A(S)=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d x d y
\end{gathered}
$$

Since R is a disk radius 2 , it is convenient to use polar coordinates in \mathbb{R}^{2}.

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: The surface is the level surface of the function $f(x, y, z)=x^{2}+y^{2}-z$. The region R is the disk $z=x^{2}+y^{2} \leqslant 4$.

$$
\begin{gathered}
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y, \quad \nabla f=\langle 2 x, 2 y,-1\rangle, \quad \nabla f \cdot \mathbf{k}=-1 \\
A(S)=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d x d y
\end{gathered}
$$

Since R is a disk radius 2 , it is convenient to use polar coordinates in \mathbb{R}^{2}. We obtain

$$
A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta
$$

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
A(S)=2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r
$$

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
A(S)=2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r, \quad u=1+4 r^{2}, d u=8 r d r
$$

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
\begin{aligned}
A(S)= & 2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r, \quad u=1+4 r^{2}, d u=8 r d r . \\
& A(S)=\frac{2 \pi}{8} \int_{1}^{17} u^{1 / 2} d u
\end{aligned}
$$

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
\begin{gathered}
A(S)=2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r, \quad u=1+4 r^{2}, d u=8 r d r . \\
A(S)=\frac{2 \pi}{8} \int_{1}^{17} u^{1 / 2} d u=\frac{2 \pi}{8} \frac{2}{3}\left(\left.u^{3 / 2}\right|_{1} ^{17}\right) .
\end{gathered}
$$

The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=4$.

Solution: Recall: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta$.

$$
\begin{gathered}
A(S)=2 \pi \int_{0}^{2} \sqrt{1+4 r^{2}} r d r, \quad u=1+4 r^{2}, d u=8 r d r . \\
A(S)=\frac{2 \pi}{8} \int_{1}^{17} u^{1 / 2} d u=\frac{2 \pi}{8} \frac{2}{3}\left(\left.u^{3 / 2}\right|_{1} ^{17}\right) .
\end{gathered}
$$

We conclude: $A(S)=\frac{\pi}{6}\left[(17)^{3 / 2}-1\right]$.

The area of a surface in space.

Remark: The formula for the area of a surface in space can be generalized as follows.

The area of a surface in space.

Remark: The formula for the area of a surface in space can be generalized as follows.

Theorem

The area of a surface S given by $f(x, y, z)=0$ over a closed and bounded plane region R in space is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A,
$$

where \mathbf{p} is a unit vector normal to the region R and $\nabla f \cdot \mathbf{p} \neq 0$.

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:
The surface is given by $f=0$ with

$$
f(x, y, z)=x+2 y+2 z-5
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:
The surface is given by $f=0$ with

$$
f(x, y, z)=x+2 y+2 z-5
$$

The region R is in the plane $z=0$,

$$
R=\left\{\begin{array}{c}
(x, y, z): z=0, y \in[-1,1] \\
x \in\left[y^{2},\left(2-y^{2}\right)\right]
\end{array}\right\} .
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:
The surface is given by $f=0$ with

$$
f(x, y, z)=x+2 y+2 z-5 .
$$

The region R is in the plane $z=0$,

$$
R=\left\{\begin{array}{c}
(x, y, z): z=0, y \in[-1,1] \\
x \in\left[y^{2},\left(2-y^{2}\right)\right]
\end{array}\right\} .
$$

Recall: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$.

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution:
The surface is given by $f=0$ with

$$
f(x, y, z)=x+2 y+2 z-5 .
$$

The region R is in the plane $z=0$,

$$
R=\left\{\begin{array}{c}
(x, y, z): z=0, y \in[-1,1] \\
x \in\left[y^{2},\left(2-y^{2}\right)\right]
\end{array}\right\} .
$$

Recall: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$. Here $\mathbf{p}=\mathbf{k}, \nabla f=\langle 1,2,2\rangle$.

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$. Here $\mathbf{p}=\mathbf{k}, \nabla f=\langle 1,2,2\rangle$.

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$. Here $\mathbf{p}=\mathbf{k}, \nabla f=\langle 1,2,2\rangle$.
Therefore: $|\nabla f|=\sqrt{1+4+4}=3$, and $|\nabla f \cdot \mathbf{k}|=2$.

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$. Here $\mathbf{p}=\mathbf{k}, \nabla f=\langle 1,2,2\rangle$.
Therefore: $|\nabla f|=\sqrt{1+4+4}=3$, and $|\nabla f \cdot \mathbf{k}|=2$.
And the region $R=\left\{(x, y): y \in[-1,1], x \in\left[y^{2},\left(2-y^{2}\right)\right]\right\}$.

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$. Here $\mathbf{p}=\mathbf{k}, \nabla f=\langle 1,2,2\rangle$.
Therefore: $|\nabla f|=\sqrt{1+4+4}=3$, and $|\nabla f \cdot \mathbf{k}|=2$.
And the region $R=\left\{(x, y): y \in[-1,1], x \in\left[y^{2},\left(2-y^{2}\right)\right]\right\}$.
So we can write down the expression for $A(S)$ as follows,

$$
A(S)=\iint_{R} \frac{3}{2} d x d y
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$. Here $\mathbf{p}=\mathbf{k}, \nabla f=\langle 1,2,2\rangle$.
Therefore: $|\nabla f|=\sqrt{1+4+4}=3$, and $|\nabla f \cdot \mathbf{k}|=2$.
And the region $R=\left\{(x, y): y \in[-1,1], x \in\left[y^{2},\left(2-y^{2}\right)\right]\right\}$.
So we can write down the expression for $A(S)$ as follows,

$$
A(S)=\iint_{R} \frac{3}{2} d x d y=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y .
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.
Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{aligned}
& \quad A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
& A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y
\end{aligned}
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{aligned}
& A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
& A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}
\end{aligned}
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{gathered}
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}=3\left(1-\frac{1}{3}+1-\frac{1}{3}\right)
\end{gathered}
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{gathered}
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}=3\left(1-\frac{1}{3}+1-\frac{1}{3}\right) \\
A(S)=3\left(2-\frac{2}{3}\right)
\end{gathered}
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{gathered}
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}=3\left(1-\frac{1}{3}+1-\frac{1}{3}\right) \\
A(S)=3\left(2-\frac{2}{3}\right)=3 \frac{4}{3}
\end{gathered}
$$

The area of a surface in space.

Example

Find the area of the region cut from the plane $x+2 y+2 z=5$ by the cylinder with walls $x=y^{2}$ and $x=2-y^{2}$.

Solution: $A(S)=\frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d x d y$.

$$
\begin{gather*}
A(S)=\frac{3}{2} \int_{-1}^{1}\left(2-y^{2}-y^{2}\right) d y=\frac{3}{2} \int_{-1}^{1}\left(2-2 y^{2}\right) d y \\
A(S)=3 \int_{-1}^{1}\left(1-y^{2}\right) d y=\left.3\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1}=3\left(1-\frac{1}{3}+1-\frac{1}{3}\right) \\
A(S)=3\left(2-\frac{2}{3}\right)=3 \frac{4}{3} \Rightarrow A(S)=4
\end{gather*}
$$

Surface area and surface integrals. (Sect. 16.5)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.
- Mass and center of mass thin shells.

Review: The area of a surface in space.

Theorem
Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Review: The area of a surface in space.

Theorem

Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Review: The area of a surface in space.

Theorem

Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: Eq. (3), page 1183, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z=0\}$ considered here.

Review: The area of a surface in space.

Theorem

Given a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the area of a level surface $S=\{f(x, y, z)=0\}$, over a closed, bounded region R in the plane $\{z=0\}$, is given by

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Remark: Eq. (3), page 1183, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z=0\}$ considered here.

The vector \mathbf{p} in the textbook is the vector normal to R. In our case $\mathbf{p}=\mathbf{k}$.

Surface area and surface integrals. (Sect. 16.5)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.
- Mass and center of mass thin shells.

Surface integrals of a scalar field.

Theorem
The integral of a continuous scalar function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ over a surface S defined as the level set of $f(x, y, z)=0$ over the bounded plane R is given by

$$
\iint_{S} g d \sigma=\iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A
$$

where \mathbf{p} is a unit vector normal to R and $\nabla f \cdot \mathbf{p} \neq 0$.

Surface integrals of a scalar field.

Theorem
The integral of a continuous scalar function $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ over a surface S defined as the level set of $f(x, y, z)=0$ over the bounded plane R is given by

$$
\iint_{S} g d \sigma=\iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A
$$

where \mathbf{p} is a unit vector normal to R and $\nabla f \cdot \mathbf{p} \neq 0$.

Remark: In the particular case $g=1$, we recover the formula for the area $A(S)=\iint_{S} d \sigma$ of the surface S, that is,

$$
A(S)=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A
$$

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$.

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$.

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$.

Here $f=2 x+2 y+z-2$, so the surface S is given by $f=0$ in the first octant.

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$.

Here $f=2 x+2 y+z-2$, so the surface S is given by $f=0$ in the first octant. Hence, the region R is on the $z=0$ plane, (therefore $\mathbf{p}=\mathbf{k}$) given by the triangle with sides $x=0, y=0$ and $x+y=1$.

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$.
 Here $f=2 x+2 y+z-2$, so the surface S is given by $f=0$ in the first octant. Hence, the region R is on the $z=0$ plane, (therefore $\mathbf{p}=\mathbf{k}$) given by the triangle with sides $x=0, y=0$ and $x+y=1$.

So, $\nabla f=\langle 2,2,1\rangle$, hence $|\nabla f|=3$, and $|\nabla f \cdot \mathbf{k}|=1$.

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$.
 Here $f=2 x+2 y+z-2$, so the surface S is given by $f=0$ in the first octant. Hence, the region R is on the $z=0$ plane, (therefore $\mathbf{p}=\mathbf{k}$) given by the triangle with sides $x=0, y=0$ and $x+y=1$.

So, $\nabla f=\langle 2,2,1\rangle$, hence $|\nabla f|=3$, and $|\nabla f \cdot \mathbf{k}|=1$. Therefore

$$
\iint_{S} g d \sigma=\iint_{R} g(x, y, z) 3 d A .
$$

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.

Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g(x, y, z) 3 d A$.

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g(x, y, z) 3 d A$.
Now, function g must be evaluated on the surface S.

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g(x, y, z) 3 d A$.
Now, function g must be evaluated on the surface S. That means

$$
g(x, y, z(x, y))=x+y+z(x, y)
$$

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g(x, y, z) 3 d A$.
Now, function g must be evaluated on the surface S. That means

$$
g(x, y, z(x, y))=x+y+z(x, y)=x+y+(2-2 x-2 y)
$$

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g(x, y, z) 3 d A$.
Now, function g must be evaluated on the surface S. That means

$$
\begin{gathered}
g(x, y, z(x, y))=x+y+z(x, y)=x+y+(2-2 x-2 y) \\
g(x, y, z(z, y))=2-x-y .
\end{gathered}
$$

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: Recall: $\iint_{S} g d \sigma=\iint_{R} g(x, y, z) 3 d A$.
Now, function g must be evaluated on the surface S. That means

$$
\begin{gathered}
g(x, y, z(x, y))=x+y+z(x, y)=x+y+(2-2 x-2 y) . \\
g(x, y, z(z, y))=2-x-y . \\
\iint_{S} g d \sigma=3 \iint_{R}(2-x-y) d A .
\end{gathered}
$$

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: $\iint_{S} g d \sigma=3 \iint_{R}(2-x-y) d A$.

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: $\iint_{S} g d \sigma=3 \iint_{R}(2-x-y) d A$.

The region R is the triangle in the plane $z=0$ given by the lines $x=0, y=0$, and $x+y=1$.

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: $\iint_{S} g d \sigma=3 \iint_{R}(2-x-y) d A$.

The region R is the triangle in the plane $z=0$ given by the lines $x=0, y=0$, and $x+y=1$. Therefore,

$$
3 \int_{0}^{1} \int_{0}^{1-y}(2-x-y) d x d y=3 \int_{0}^{1}\left[(2-y)\left(\left.x\right|_{0} ^{1-y}\right)-\left(\left.\frac{x^{2}}{2}\right|_{0} ^{1-y}\right)\right] d y
$$

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: $\iint_{S} g d \sigma=3 \iint_{R}(2-x-y) d A$.

The region R is the triangle in the plane $z=0$ given by the lines $x=0, y=0$, and $x+y=1$. Therefore,

$$
\begin{gathered}
3 \int_{0}^{1} \int_{0}^{1-y}(2-x-y) d x d y=3 \int_{0}^{1}\left[(2-y)\left(\left.x\right|_{0} ^{1-y}\right)-\left(\left.\frac{x^{2}}{2}\right|_{0} ^{1-y}\right)\right] d y \\
\iint_{S} g d \sigma=3 \int_{0}^{1}\left[(2-y)(1-y)-\frac{1}{2}(1-y)^{2}\right] d y
\end{gathered}
$$

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: $\iint_{S} g d \sigma=3 \iint_{R}(2-x-y) d A$.

The region R is the triangle in the plane $z=0$ given by the lines $x=0, y=0$, and $x+y=1$. Therefore,

$$
\begin{gathered}
3 \int_{0}^{1} \int_{0}^{1-y}(2-x-y) d x d y=3 \int_{0}^{1}\left[(2-y)\left(\left.x\right|_{0} ^{1-y}\right)-\left(\left.\frac{x^{2}}{2}\right|_{0} ^{1-y}\right)\right] d y \\
\iint_{S} g d \sigma=3 \int_{0}^{1}\left[(2-y)(1-y)-\frac{1}{2}(1-y)^{2}\right] d y \\
\iint_{S} g d \sigma=3 \int_{0}^{1}\left(\frac{3}{2}-2 y+\frac{y^{2}}{2}\right) d y
\end{gathered}
$$

Surface integrals of a scalar field.

Example

Integrate the function $g(x, y, z)=x+y+z$ over the surface given by the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
Solution: $\iint_{S} g d \sigma=3 \iint_{R}(2-x-y) d A$.

The region R is the triangle in the plane $z=0$ given by the lines $x=0, y=0$, and $x+y=1$. Therefore,

$$
\begin{gathered}
3 \int_{0}^{1} \int_{0}^{1-y}(2-x-y) d x d y=3 \int_{0}^{1}\left[(2-y)\left(\left.x\right|_{0} ^{1-y}\right)-\left(\left.\frac{x^{2}}{2}\right|_{0} ^{1-y}\right)\right] d y \\
\iint_{S} g d \sigma=3 \int_{0}^{1}\left[(2-y)(1-y)-\frac{1}{2}(1-y)^{2}\right] d y \\
\iint_{S} g d \sigma=3 \int_{0}^{1}\left(\frac{3}{2}-2 y+\frac{y^{2}}{2}\right) d y \quad \Rightarrow \quad \iint_{S} g d \sigma=2 .
\end{gathered}
$$

Surface area and surface integrals. (Sect. 16.5)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.
- Mass and center of mass thin shells.

The flux of a vector field on a surface.

Definition

A surface $S \subset \mathbb{R}^{3}$ is called orientable if it is possible to define on S a continuous, unit vector field \mathbf{n} normal to S.

The flux of a vector field on a surface.

Definition

A surface $S \subset \mathbb{R}^{3}$ is called orientable if it is possible to define on S a continuous, unit vector field \mathbf{n} normal to S.

orientable

The flux of a vector field on a surface.

Definition

A surface $S \subset \mathbb{R}^{3}$ is called orientable if it is possible to define on S a continuous, unit vector field \mathbf{n} normal to S.

orientable

The flux of a vector field on a surface.

Definition

A surface $S \subset \mathbb{R}^{3}$ is called orientable if it is possible to define on S a continuous, unit vector field \mathbf{n} normal to S.

orientable

Definition

The flux of a continuous vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ over an orientable surface S in the direction of a unit normal \mathbf{n} is given by

$$
\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma
$$

The flux of a vector field on a surface.

Definition

A surface $S \subset \mathbb{R}^{3}$ is called orientable if it is possible to define on S a continuous, unit vector field \mathbf{n} normal to S.

orientable

Definition

The flux of a continuous vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ over an orientable surface S in the direction of a unit normal \mathbf{n} is given by

$$
\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma
$$

Remark: $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A$, where S is the level surface $f=0$.

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
In this case S is the level surface $f=0$, for $f=x^{2}+y^{2}+z^{2}-a^{2}$.

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
In this case S is the level surface $f=0$, for $f=x^{2}+y^{2}+z^{2}-a^{2}$.
The unit normal vector \mathbf{n} is proportional to ∇f.

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
In this case S is the level surface $f=0$, for $f=x^{2}+y^{2}+z^{2}-a^{2}$.
The unit normal vector \mathbf{n} is proportional to ∇f.

$$
\nabla f=\langle 2 x, 2 y, 2 z\rangle,
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
In this case S is the level surface $f=0$, for $f=x^{2}+y^{2}+z^{2}-a^{2}$.
The unit normal vector \mathbf{n} is proportional to ∇f.

$$
\nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
In this case S is the level surface $f=0$, for $f=x^{2}+y^{2}+z^{2}-a^{2}$.
The unit normal vector \mathbf{n} is proportional to ∇f.

$$
\nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}
$$

On the surface S we have that $x^{2}+y^{2}+z^{2}=a^{2}$,

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
In this case S is the level surface $f=0$, for $f=x^{2}+y^{2}+z^{2}-a^{2}$.
The unit normal vector \mathbf{n} is proportional to ∇f.

$$
\nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}
$$

On the surface S we have that $x^{2}+y^{2}+z^{2}=a^{2}$, therefore, $|\nabla f|=2 a$ on this surface.

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
In this case S is the level surface $f=0$, for $f=x^{2}+y^{2}+z^{2}-a^{2}$.
The unit normal vector \mathbf{n} is proportional to ∇f.

$$
\nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}
$$

On the surface S we have that $x^{2}+y^{2}+z^{2}=a^{2}$, therefore, $|\nabla f|=2 a$ on this surface. We obtain that on S the appropriate normal vector is

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|}
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
In this case S is the level surface $f=0$, for $f=x^{2}+y^{2}+z^{2}-a^{2}$.
The unit normal vector \mathbf{n} is proportional to ∇f.

$$
\nabla f=\langle 2 x, 2 y, 2 z\rangle, \quad|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}
$$

On the surface S we have that $x^{2}+y^{2}+z^{2}=a^{2}$, therefore, $|\nabla f|=2 a$ on this surface. We obtain that on S the appropriate normal vector is

$$
\mathbf{n}=\frac{\nabla f}{|\nabla f|} \quad \Rightarrow \quad \mathbf{n}=\frac{1}{a}\langle x, y, z\rangle,\left.\quad z\right|_{s}=z(x, y) .
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ and $\mathbf{n}=\frac{1}{a}\langle x, y, z\rangle$ on S.

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ and $\mathbf{n}=\frac{1}{a}\langle x, y, z\rangle$ on S.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$,

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ and $\mathbf{n}=\frac{1}{a}\langle x, y, z\rangle$ on S.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, and $\nabla f=2\langle x, y, z\rangle$,

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ and $\mathbf{n}=\frac{1}{a}\langle x, y, z\rangle$ on S.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, and $\nabla f=2\langle x, y, z\rangle$, which on S says
$|\nabla f|=2 a$,

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ and $\mathbf{n}=\frac{1}{a}\langle x, y, z\rangle$ on S.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, and $\nabla f=2\langle x, y, z\rangle$, which on S says
$|\nabla f|=2 a$, we conclude, $d \sigma=\frac{2 a}{2 z} d x d y$,

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ and $\mathbf{n}=\frac{1}{a}\langle x, y, z\rangle$ on S.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, and $\nabla f=2\langle x, y, z\rangle$, which on S says
$|\nabla f|=2 a$, we conclude, $d \sigma=\frac{2 a}{2 z} d x d y$, hence $d \sigma=\frac{a}{z} d x d y$.

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ and $\mathbf{n}=\frac{1}{a}\langle x, y, z\rangle$ on S.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, and $\nabla f=2\langle x, y, z\rangle$, which on S says
$|\nabla f|=2 a$, we conclude, $d \sigma=\frac{2 a}{2 z} d x d y$, hence $d \sigma=\frac{a}{z} d x d y$.

$$
\mathbb{F}=\iint_{R}\left(\langle 0,0, z\rangle \cdot \frac{1}{a}\langle x, y, z\rangle\right) \frac{a}{z} d x d y .
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ and $\mathbf{n}=\frac{1}{a}\langle x, y, z\rangle$ on S.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, and $\nabla f=2\langle x, y, z\rangle$, which on S says
$|\nabla f|=2 a$, we conclude, $d \sigma=\frac{2 a}{2 z} d x d y$, hence $d \sigma=\frac{a}{z} d x d y$.

$$
\mathbb{F}=\iint_{R}\left(\langle 0,0, z\rangle \cdot \frac{1}{a}\langle x, y, z\rangle\right) \frac{a}{z} d x d y .
$$

$$
\mathbb{F}=\iint_{R} \frac{z^{2}}{a} \frac{a}{z} d x d y
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$ and $\mathbf{n}=\frac{1}{a}\langle x, y, z\rangle$ on S.
Since $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y$, and $\nabla f=2\langle x, y, z\rangle$, which on S says
$|\nabla f|=2 a$, we conclude, $d \sigma=\frac{2 a}{2 z} d x d y$, hence $d \sigma=\frac{a}{z} d x d y$.

$$
\begin{gathered}
\mathbb{F}=\iint_{R}\left(\langle 0,0, z\rangle \cdot \frac{1}{a}\langle x, y, z\rangle\right) \frac{a}{z} d x d y \\
\mathbb{F}=\iint_{R} \frac{z^{2}}{a} \frac{a}{z} d x d y \Rightarrow \mathbb{F}=\iint_{R} z d x d y,\left.\quad z\right|_{s}=z(x, y) .
\end{gathered}
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$,

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$, and z must be evaluated on S.

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$, and z must be evaluated on S.

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$, and z must be evaluated on S.

The integral is only on the first octant.

$$
\mathbb{F}=\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$, and z must be evaluated on S.

The integral is only on the first octant.

$$
\mathbb{F}=\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

We use polar coordinates on $R \subset\{z=0\}$.

$$
\mathbb{F}=\int_{0}^{\pi / 2} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r d r d \theta
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$, and z must be evaluated on S.

The integral is only on the first octant.

$$
\mathbb{F}=\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

We use polar coordinates on $R \subset\{z=0\}$.

$$
\mathbb{F}=\int_{0}^{\pi / 2} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r d r d \theta . \quad u=a^{2}-r^{2}, \quad d u=-2 r d r .
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$, and z must be evaluated on S.

The integral is only on the first octant.

$$
\mathbb{F}=\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

We use polar coordinates on $R \subset\{z=0\}$.

$$
\begin{aligned}
\mathbb{F} & =\int_{0}^{\pi / 2} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r d r d \theta . \quad u=a^{2}-r^{2}, \quad d u=-2 r d r . \\
\mathbb{F} & =\frac{\pi}{2} \int_{a^{2}}^{0} u^{1 / 2} \frac{(-d u)}{2}
\end{aligned}
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$, and z must be evaluated on S.

The integral is only on the first octant.

$$
\mathbb{F}=\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

We use polar coordinates on $R \subset\{z=0\}$.

$$
\begin{aligned}
\mathbb{F} & =\int_{0}^{\pi / 2} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r d r d \theta . \quad u=a^{2}-r^{2}, \quad d u=-2 r d r . \\
\mathbb{F} & =\frac{\pi}{2} \int_{a^{2}}^{0} u^{1 / 2} \frac{(-d u)}{2}=\frac{\pi}{4} \int_{0}^{a^{2}} u^{1 / 2} d u
\end{aligned}
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$, and z must be evaluated on S.

The integral is only on the first octant.

$$
\mathbb{F}=\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

We use polar coordinates on $R \subset\{z=0\}$.

$$
\begin{aligned}
\mathbb{F} & =\int_{0}^{\pi / 2} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r d r d \theta . \quad u=a^{2}-r^{2}, \quad d u=-2 r d r . \\
\mathbb{F} & =\frac{\pi}{2} \int_{a^{2}}^{0} u^{1 / 2} \frac{(-d u)}{2}=\frac{\pi}{4} \int_{0}^{a^{2}} u^{1 / 2} d u=\frac{\pi}{4} \frac{2}{3}\left(a^{2}\right)^{3 / 2}
\end{aligned}
$$

The flux of a vector field on a surface.

Example

Find the flux of the field $\mathbf{F}=\langle 0,0, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.
Solution: Recall: $\mathbb{F}=\iint_{R} z d x d y$, and z must be evaluated on S.

The integral is only on the first octant.

$$
\mathbb{F}=\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

We use polar coordinates on $R \subset\{z=0\}$.

$$
\begin{gathered}
\mathbb{F}=\int_{0}^{\pi / 2} \int_{0}^{a} \sqrt{a^{2}-r^{2}} r d r d \theta . \quad u=a^{2}-r^{2}, \quad d u=-2 r d r . \\
\mathbb{F}=\frac{\pi}{2} \int_{a^{2}}^{0} u^{1 / 2} \frac{(-d u)}{2}=\frac{\pi}{4} \int_{0}^{a^{2}} u^{1 / 2} d u=\frac{\pi}{4} \frac{2}{3}\left(a^{2}\right)^{3 / 2} \Rightarrow \mathbb{F}=\frac{\pi a^{3}}{6} .
\end{gathered}
$$

Surface area and surface integrals. (Sect. 16.5)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.
- Mass and center of mass of thin shells.

Mass and center of mass of thin shells.

Definition

The mass M of a thin shell described by the surface S in space with mass per unit area function $\rho: S \rightarrow \mathbb{R}$ is given by

$$
M=\iint_{S} \rho d \sigma
$$

The center of mass $\overline{\mathbf{r}}=\left\langle\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\rangle$ of the thin shell above is

$$
\bar{x}_{i}=\frac{1}{M} \iint_{S} x_{i} \rho d \sigma, \quad i=1,2,3 .
$$

Mass and center of mass of thin shells.

Definition

The mass M of a thin shell described by the surface S in space with mass per unit area function $\rho: S \rightarrow \mathbb{R}$ is given by

$$
M=\iint_{S} \rho d \sigma
$$

The center of mass $\overline{\mathbf{r}}=\left\langle\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\rangle$ of the thin shell above is

$$
\bar{x}_{i}=\frac{1}{M} \iint_{S} x_{i} \rho d \sigma, \quad i=1,2,3 .
$$

Remark:

- The centroid vector is the particular case of the center of mass vector for an object with constant density.

Mass and center of mass of thin shells.

Definition

The mass M of a thin shell described by the surface S in space with mass per unit area function $\rho: S \rightarrow \mathbb{R}$ is given by

$$
M=\iint_{S} \rho d \sigma
$$

The center of mass $\overline{\mathbf{r}}=\left\langle\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\rangle$ of the thin shell above is

$$
\bar{x}_{i}=\frac{1}{M} \iint_{S} x_{i} \rho d \sigma, \quad i=1,2,3 .
$$

Remark:

- The centroid vector is the particular case of the center of mass vector for an object with constant density.
- See in the textbook the definitions of moments of inertia $I_{x_{i}}$, with $i=1,2,3$, for thin shells.

Mass and center of mass of thin shells.
Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$
M=\iint_{S} d \sigma
$$

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$
M=\iint_{S} d \sigma=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$
M=\iint_{S} d \sigma=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Here $f=x^{2}+y^{2}-z^{2}$,

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$
M=\iint_{S} d \sigma=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Here $f=x^{2}+y^{2}-z^{2}$, therefore,

$$
\nabla f=\langle 2 x, 2 y,-2 z\rangle
$$

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$
M=\iint_{S} d \sigma=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Here $f=x^{2}+y^{2}-z^{2}$, therefore,

$$
\nabla f=\langle 2 x, 2 y,-2 z\rangle
$$

Hence $|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}$, evaluated on S.

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$
M=\iint_{S} d \sigma=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Here $f=x^{2}+y^{2}-z^{2}$, therefore,

$$
\nabla f=\langle 2 x, 2 y,-2 z\rangle
$$

Hence $|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}$, evaluated on S. Since $z^{2}=x^{2}+y^{2}$, we get $|\nabla f|=2 \sqrt{2} z$.

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$
M=\iint_{S} d \sigma=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Here $f=x^{2}+y^{2}-z^{2}$, therefore,

$$
\nabla f=\langle 2 x, 2 y,-2 z\rangle
$$

Hence $|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}$, evaluated on S. Since $z^{2}=x^{2}+y^{2}$, we get $|\nabla f|=2 \sqrt{2} z$. Also $\nabla f \cdot \mathbf{k}=-2 z$.

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$
M=\iint_{S} d \sigma=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Here $f=x^{2}+y^{2}-z^{2}$, therefore,

$$
\nabla f=\langle 2 x, 2 y,-2 z\rangle
$$

Hence $|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}$, evaluated on S. Since $z^{2}=x^{2}+y^{2}$, we get $|\nabla f|=2 \sqrt{2} z$. Also $\nabla f \cdot \mathbf{k}=-2 z$. So,

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\frac{2 \sqrt{2} z}{2 z}=\sqrt{2}
$$

Mass and center of mass of thin shells.

Example

Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$
M=\iint_{S} d \sigma=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A .
$$

Here $f=x^{2}+y^{2}-z^{2}$, therefore,

$$
\nabla f=\langle 2 x, 2 y,-2 z\rangle
$$

Hence $|\nabla f|=2 \sqrt{x^{2}+y^{2}+z^{2}}$, evaluated on S. Since $z^{2}=x^{2}+y^{2}$, we get $|\nabla f|=2 \sqrt{2} z$. Also $\nabla f \cdot \mathbf{k}=-2 z$. So,

$$
\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\frac{2 \sqrt{2} z}{2 z}=\sqrt{2} \quad \Rightarrow \quad M=\iint_{R} \sqrt{2} d A .
$$

Mass and center of mass of thin shells.
Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta
$$

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta=2 \pi \sqrt{2}\left(\left.\frac{r^{2}}{2}\right|_{1} ^{2}\right)
$$

Mass and center of mass of thin shells.

Example
Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta=2 \pi \sqrt{2}\left(\left.\frac{r^{2}}{2}\right|_{1} ^{2}\right)
$$

We conclude $M=3 \sqrt{2} \pi$.

Mass and center of mass of thin shells.

Example

Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta=2 \pi \sqrt{2}\left(\left.\frac{r^{2}}{2}\right|_{1} ^{2}\right)
$$

We conclude $M=3 \sqrt{2} \pi$.
By symmetry, the only non-zero component of the centroid is \bar{z}.

Mass and center of mass of thin shells.

Example

Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta=2 \pi \sqrt{2}\left(\left.\frac{r^{2}}{2}\right|_{1} ^{2}\right)
$$

We conclude $M=3 \sqrt{2} \pi$.
By symmetry, the only non-zero component of the centroid is \bar{z}.

$$
\bar{z}=\frac{1}{M} \iint_{R} z \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A
$$

Mass and center of mass of thin shells.

Example

Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta=2 \pi \sqrt{2}\left(\left.\frac{r^{2}}{2}\right|_{1} ^{2}\right)
$$

We conclude $M=3 \sqrt{2} \pi$.
By symmetry, the only non-zero component of the centroid is \bar{z}.

$$
\bar{z}=\frac{1}{M} \iint_{R} z \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A=\frac{\sqrt{2}}{3 \sqrt{2} \pi} \iint_{R} \sqrt{x^{2}+y^{2}} d x d y .
$$

Mass and center of mass of thin shells.

Example

Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta=2 \pi \sqrt{2}\left(\left.\frac{r^{2}}{2}\right|_{1} ^{2}\right)
$$

We conclude $M=3 \sqrt{2} \pi$.
By symmetry, the only non-zero component of the centroid is \bar{z}.

$$
\begin{aligned}
& \quad \bar{z}=\frac{1}{M} \iint_{R} z \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A=\frac{\sqrt{2}}{3 \sqrt{2} \pi} \iint_{R} \sqrt{x^{2}+y^{2}} d x d y \\
& \bar{z}=\frac{1}{3 \pi} \int_{0}^{2 \pi} \int_{1}^{2} r^{2} d r d \theta
\end{aligned}
$$

Mass and center of mass of thin shells.

Example

Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta=2 \pi \sqrt{2}\left(\left.\frac{r^{2}}{2}\right|_{1} ^{2}\right)
$$

We conclude $M=3 \sqrt{2} \pi$.
By symmetry, the only non-zero component of the centroid is \bar{z}.

$$
\begin{aligned}
& \bar{z}=\frac{1}{M} \iint_{R} z \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A=\frac{\sqrt{2}}{3 \sqrt{2} \pi} \iint_{R} \sqrt{x^{2}+y^{2}} d x d y . \\
& \bar{z}=\frac{1}{3 \pi} \int_{0}^{2 \pi} \int_{1}^{2} r^{2} d r d \theta=\frac{2 \pi}{3 \pi}\left(\left.\frac{r^{3}}{3}\right|_{1} ^{3}\right)
\end{aligned}
$$

Mass and center of mass of thin shells.

Example

Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta=2 \pi \sqrt{2}\left(\left.\frac{r^{2}}{2}\right|_{1} ^{2}\right)
$$

We conclude $M=3 \sqrt{2} \pi$.
By symmetry, the only non-zero component of the centroid is \bar{z}.

$$
\begin{gathered}
\bar{z}=\frac{1}{M} \iint_{R} z \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A=\frac{\sqrt{2}}{3 \sqrt{2} \pi} \iint_{R} \sqrt{x^{2}+y^{2}} d x d y . \\
\bar{z}=\frac{1}{3 \pi} \int_{0}^{2 \pi} \int_{1}^{2} r^{2} d r d \theta=\frac{2 \pi}{3 \pi}\left(\left.\frac{r^{3}}{3}\right|_{1} ^{3}\right)=\frac{2}{9}(8-1)
\end{gathered}
$$

Mass and center of mass of thin shells.

Example

Find the centroid of the surface S given by $x^{2}+y^{2}=z^{2}$ between the planes $z=1$ and $z=2$.
Solution: Recall: $\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|}=\sqrt{2}$ and $M=\iint_{R} \sqrt{2} d A$.

We use polar coordinates in $\{z=0\}$,

$$
M=\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{2} r d r d \theta=2 \pi \sqrt{2}\left(\left.\frac{r^{2}}{2}\right|_{1} ^{2}\right)
$$

We conclude $M=3 \sqrt{2} \pi$.
By symmetry, the only non-zero component of the centroid is \bar{z}.

$$
\begin{gathered}
\bar{z}=\frac{1}{M} \iint_{R} z \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d A=\frac{\sqrt{2}}{3 \sqrt{2} \pi} \iint_{R} \sqrt{x^{2}+y^{2}} d x d y . \\
\bar{z}=\frac{1}{3 \pi} \int_{0}^{2 \pi} \int_{1}^{2} r^{2} d r d \theta=\frac{2 \pi}{3 \pi}\left(\left.\frac{r^{3}}{3}\right|_{1} ^{3}\right)=\frac{2}{9}(8-1) \Rightarrow \bar{z}=\frac{14}{9} .
\end{gathered}
$$

