
Surface area and surface integrals. (Sect. 16.5)

I Review: Arc length and line integrals.

I Review: Double integral of a scalar function.

I The area of a surface in space.

Next class:

I Surface integrals of a scalar field.

I The flux of a vector field on a surface.

I Mass and center of mass thin shells.



Review: Arc length and line integrals.

I The integral of a function f : [a, b] → R is∫ b

a
f (x) dx = lim

n→∞

n∑
i=0

f (x∗i ) ∆x .

I The arc length of a curve r : [t0, t1] → R3 in space is

st1,t0 =

∫ t1

t0

|r′(t)| dt.

I The integral of a function f : R3 → R along a curve

r : [t0, t1] → R3 is

∫
C

f ds =

∫ t1

t0

f
(
r(t)

)
|r′(t)| dt.

I The circulation of a function F : R3 → R3 along a curve

r : [t0, t1] → R3 is

∫
C

F · u ds =

∫ t1

t0

F
(
r(t)

)
· r′(t) dt.

I The flux of a function F : {z = 0} ∩R3 → {z = 0} ∩R3 along

a loop r : [t0, t1] → {z = 0} ∩ R3 is F =

∮
C

F · n ds.



Review: Arc length and line integrals.

I The integral of a function f : [a, b] → R is∫ b

a
f (x) dx = lim

n→∞

n∑
i=0

f (x∗i ) ∆x .

I The arc length of a curve r : [t0, t1] → R3 in space is

st1,t0 =

∫ t1

t0

|r′(t)| dt.

I The integral of a function f : R3 → R along a curve

r : [t0, t1] → R3 is

∫
C

f ds =

∫ t1

t0

f
(
r(t)

)
|r′(t)| dt.

I The circulation of a function F : R3 → R3 along a curve

r : [t0, t1] → R3 is

∫
C

F · u ds =

∫ t1

t0

F
(
r(t)

)
· r′(t) dt.

I The flux of a function F : {z = 0} ∩R3 → {z = 0} ∩R3 along

a loop r : [t0, t1] → {z = 0} ∩ R3 is F =

∮
C

F · n ds.



Review: Arc length and line integrals.

I The integral of a function f : [a, b] → R is∫ b

a
f (x) dx = lim

n→∞

n∑
i=0

f (x∗i ) ∆x .

I The arc length of a curve r : [t0, t1] → R3 in space is

st1,t0 =

∫ t1

t0

|r′(t)| dt.

I The integral of a function f : R3 → R along a curve

r : [t0, t1] → R3 is

∫
C

f ds =

∫ t1

t0

f
(
r(t)

)
|r′(t)| dt.

I The circulation of a function F : R3 → R3 along a curve

r : [t0, t1] → R3 is

∫
C

F · u ds =

∫ t1

t0

F
(
r(t)

)
· r′(t) dt.

I The flux of a function F : {z = 0} ∩R3 → {z = 0} ∩R3 along

a loop r : [t0, t1] → {z = 0} ∩ R3 is F =

∮
C

F · n ds.



Review: Arc length and line integrals.

I The integral of a function f : [a, b] → R is∫ b

a
f (x) dx = lim

n→∞

n∑
i=0

f (x∗i ) ∆x .

I The arc length of a curve r : [t0, t1] → R3 in space is

st1,t0 =

∫ t1

t0

|r′(t)| dt.

I The integral of a function f : R3 → R along a curve

r : [t0, t1] → R3 is

∫
C

f ds =

∫ t1

t0

f
(
r(t)

)
|r′(t)| dt.

I The circulation of a function F : R3 → R3 along a curve

r : [t0, t1] → R3 is

∫
C

F · u ds =

∫ t1

t0

F
(
r(t)

)
· r′(t) dt.

I The flux of a function F : {z = 0} ∩R3 → {z = 0} ∩R3 along

a loop r : [t0, t1] → {z = 0} ∩ R3 is F =

∮
C

F · n ds.



Review: Arc length and line integrals.

I The integral of a function f : [a, b] → R is∫ b

a
f (x) dx = lim

n→∞

n∑
i=0

f (x∗i ) ∆x .

I The arc length of a curve r : [t0, t1] → R3 in space is

st1,t0 =

∫ t1

t0

|r′(t)| dt.

I The integral of a function f : R3 → R along a curve

r : [t0, t1] → R3 is

∫
C

f ds =

∫ t1

t0

f
(
r(t)

)
|r′(t)| dt.

I The circulation of a function F : R3 → R3 along a curve

r : [t0, t1] → R3 is

∫
C

F · u ds =

∫ t1

t0

F
(
r(t)

)
· r′(t) dt.

I The flux of a function F : {z = 0} ∩R3 → {z = 0} ∩R3 along

a loop r : [t0, t1] → {z = 0} ∩ R3 is F =

∮
C

F · n ds.



Surface area and surface integrals. (Sect. 16.5)

I Review: Arc length and line integrals.
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Review: Double integral of a scalar function.

I The double integral of a function f : R ⊂ R2 → R on a region
R ⊂ R2, which is the volume under the graph of f and above
the z = 0 plane, and is given by∫∫

R

f dA = lim
n→∞

n∑
i=0

n∑
j=0

f (x∗i , y∗j ) ∆x ∆y .

I The area of a plane surface R ⊂ R2 is the particular case

f = 1, that is, A(R) =

∫∫
R

dA.

We now show how to compute:

I The area of a surface in space.

I The integral of a scalar function on a surface is space.

I The flux of a vector-valued function on a surface in space.
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Surface area and surface integrals. (Sect. 16.5)

I Review: Arc length and line integrals.

I Review: Double integral of a scalar function.

I The area of a surface in space.



The area of a surface in space.

Theorem
Given a smooth function f : R3 → R, the area of a level surface
S = {f (x , y , z) = 0}, over a closed, bounded region R in the plane
{z = 0}, is given by

A(S) =

∫∫
R

|∇f |
|∇f · k|

dA.

f

x

y

S = { f (x,y,z) = 0 }z

R

k

Remark: Eq. (3), page 1183, in
the textbook is more general
than the equation above, since
the region R can be located on
any plane, not only the plane
{z = 0} considered here.

The vector p in the textbook is
the vector normal to R. In our
case p = k.
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The area of a surface in space.

Proof: Introduce a partition in R ⊂ R2, and consider an arbitrary
rectangle ∆R in that partition.

We compute the area ∆P.

x

u x v

k 0

R

i(x  ,  y  , z  )i i

i i(x  ,y  +     y, z  )

i i i

u
v

P

S
(x  +     x, y , z  )

i

y

It is simple to se that

∆P = |u× v|,

and

u = 〈∆x , 0, (zi − ẑi )〉,
v = 〈0,∆y , (zi − z i )〉.

Therefore,

u× v =

∣∣∣∣∣∣
i j k

∆x 0 (zi − ẑi )
0 ∆y (zi − z i )

∣∣∣∣∣∣ = 〈−∆y(zi − ẑi ),−∆x(zi − z i ),∆x∆y〉.
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∣∣∣∣∣∣ = 〈−∆y(zi − ẑi ),−∆x(zi − z i ),∆x∆y〉.



The area of a surface in space.

Proof: Recall: u× v = 〈−∆y(zi − ẑi ),−∆x(zi − z i ),∆x∆y〉.

The linearization of f (x , y , z) at (xi , yi , zi ) implies

f (x , y , z) ' f (xi , yi , zi ) + (∂x f )i∆x + (∂y f )i∆y + (∂z f )i (z − zi ).

Since f (xi , yi , zi ) = 0, f (xi + ∆x , yi , ẑi ) = 0, f (xi , yi + ∆y , z i ) = 0,

0 = (∂x f )i∆x + (∂z f )i (zi − ẑi ) ⇒ (zi − ẑi ) = −(∂x f )i
(∂z f )i

∆x ,

0 = (∂y f )i∆y + (∂z f )i (zi − z i ) ⇒ (zi − z i ) = −(∂y f )i
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∆y .

u×v = 〈(∂x f )i , (∂y f )i , (∂z f )i 〉
∆x∆y

(∂z f )i
⇒ u×v =

(∇f )i
(∇f · k)i

∆x∆y .

∆P =
|(∇f )i |
|(∇f · k)i |

∆x∆y ⇒ A(S) =

∫∫
R

|∇f |
|∇f · k|

dA.
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The area of a surface in space.

Example

Find the area of the surface in space given by the paraboloid
z = x2 + y2 between the planes z = 0 and z = 4.

Solution: The surface is the level surface of the function
f (x , y , z) = x2 + y2− z . The region R is the disk z = x2 + y2 6 4.

A(S) =

∫∫
R

|∇f |
|∇f · k|

dx dy , ∇f = 〈2x , 2y ,−1〉, ∇f · k = −1,

A(S) =

∫∫
R

√
1 + 4x2 + 4y2 dx dy .

Since R is a disk radius 2, it is convenient to use polar coordinates
in R2. We obtain

A(S) =

∫ 2π

0

∫ 2

0

√
1 + 4r2 r dr dθ.
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(17)3/2 − 1
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The area of a surface in space.

Remark: The formula for the area of a surface in space can be
generalized as follows.

Theorem
The area of a surface S given by f (x , y , z) = 0 over a closed and
bounded plane region R in space is given by

A(S) =

∫∫
R

|∇f |
|∇f · p|

dA,

f (x,y,z) = 0

x

z f

y
k

p

R

where p is a unit vector normal to the region R and ∇f · p 6= 0.
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The area of a surface in space.

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by
the cylinder with walls x = y2 and x = 2− y2.

Solution:

1

x

y

z

x + 2y + 2z = 5

x = 2 − y

x = y

2 2

2

The surface is given by f = 0 with

f (x , y , z) = x + 2y + 2z − 5.

The region R is in the plane z = 0,

R =

{
(x , y , z) : z = 0, y ∈ [−1, 1]

x ∈ [y2, (2− y2)]

}
.

Recall: A(S) =

∫∫
R

|∇f |
|∇f · p|

dA. Here p = k, ∇f = 〈1, 2, 2〉.
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dA. Here p = k, ∇f = 〈1, 2, 2〉.

Therefore: |∇f | =
√

1 + 4 + 4 = 3, and |∇f · k| = 2.

And the region R = {(x , y) : y ∈ [−1, 1], x ∈ [y2, (2− y2)]}.

So we can write down the expression for A(S) as follows,

A(S) =

∫∫
R

3

2
dx dy =

3

2

∫ 1

−1

∫ 2−y2

y2

dx dy .
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Surface area and surface integrals. (Sect. 16.5)

I Review: The area of a surface in space.

I Surface integrals of a scalar field.

I The flux of a vector field on a surface.

I Mass and center of mass thin shells.



Review: The area of a surface in space.

Theorem
Given a smooth function f : R3 → R, the area of a level surface
S = {f (x , y , z) = 0}, over a closed, bounded region R in the plane
{z = 0}, is given by

A(S) =

∫∫
R

|∇f |
|∇f · k|

dA.

f

x

y

S = { f (x,y,z) = 0 }z

R

k

Remark: Eq. (3), page 1183, in
the textbook is more general
than the equation above, since
the region R can be located on
any plane, not only the plane
{z = 0} considered here.

The vector p in the textbook is
the vector normal to R. In our
case p = k.
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Surface area and surface integrals. (Sect. 16.5)

I Review: The area of a surface in space.

I Surface integrals of a scalar field.

I The flux of a vector field on a surface.

I Mass and center of mass thin shells.



Surface integrals of a scalar field.

Theorem
The integral of a continuous scalar function g : R3 → R over a
surface S defined as the level set of f (x , y , z) = 0 over the
bounded plane R is given by∫∫

S

g dσ =

∫∫
R

g
|∇f |
|∇f · p|

dA,

where p is a unit vector normal to R and ∇f · p 6= 0.

Remark: In the particular case g = 1, we recover the formula for

the area A(S) =

∫∫
S

dσ of the surface S , that is,

A(S) =

∫∫
R

|∇f |
|∇f · p|

dA.
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Surface integrals of a scalar field.

Example

Integrate the function g(x , y , z) = x + y + z over the surface given
by the portion of the plane 2x + 2y + z = 2 that lies in the first
octant.

Solution: Recall:

∫∫
S

g dσ =

∫∫
R

g
|∇f |
|∇f · p|

dA.

S

x

z

y

x + y = 1

2x + 2y + z = 2

1

1

2

R

Here f = 2x + 2y + z − 2, so the
surface S is given by f = 0 in the first
octant. Hence, the region R is on the
z = 0 plane, (therefore p = k) given by
the triangle with sides x = 0, y = 0 and
x + y = 1.

So, ∇f = 〈2, 2, 1〉, hence |∇f | = 3, and |∇f · k| = 1. Therefore∫∫
S

g dσ =

∫∫
R

g(x , y , z) 3 dA.
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g(x , y , z(x , y)) = x + y + z(x , y) = x + y + (2− 2x − 2y).

g(x , y , z(z , y)) = 2− x − y .
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S

g dσ = 3
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R

(2− x − y) dA.
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g(x , y , z(x , y)) = x + y + z(x , y) = x + y + (2− 2x − 2y).

g(x , y , z(z , y)) = 2− x − y .

∫∫
S

g dσ = 3

∫∫
R

(2− x − y) dA.



Surface integrals of a scalar field.

Example

Integrate the function g(x , y , z) = x + y + z over the surface given
by the portion of the plane 2x + 2y + z = 2 that lies in the first
octant.

Solution: Recall:

∫∫
S

g dσ =

∫∫
R

g(x , y , z) 3 dA.

Now, function g must be evaluated on the surface S . That means

g(x , y , z(x , y)) = x + y + z(x , y) = x + y + (2− 2x − 2y).

g(x , y , z(z , y)) = 2− x − y .

∫∫
S

g dσ = 3

∫∫
R

(2− x − y) dA.



Surface integrals of a scalar field.

Example

Integrate the function g(x , y , z) = x + y + z over the surface given
by the portion of the plane 2x + 2y + z = 2 that lies in the first
octant.

Solution:

∫∫
S

g dσ = 3

∫∫
R

(2− x − y) dA. S

x

z

y

x + y = 1

2x + 2y + z = 2

1

1

2

R

The region R is the triangle in the plane z = 0 given by the lines
x = 0, y = 0, and x + y = 1. Therefore,

3

∫ 1

0

∫ 1−y

0
(2−x−y) dx dy = 3

∫ 1

0

[
(2−y)

(
x
∣∣∣1−y

0

)
−

(x2

2

∣∣∣1−y

0

)]
dy∫∫

S

g dσ = 3

∫ 1

0

[
(2− y)(1− y)− 1

2
(1− y)2

]
dy∫∫

S

g dσ = 3

∫ 1

0

(3

2
− 2y +

y2

2

)
dy ⇒

∫∫
S
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Surface area and surface integrals. (Sect. 16.5)

I Review: The area of a surface in space.

I Surface integrals of a scalar field.

I The flux of a vector field on a surface.

I Mass and center of mass thin shells.



The flux of a vector field on a surface.

Definition
A surface S ⊂ R3 is called orientable if it is possible to define on S
a continuous, unit vector field n normal to S .

orientable

n n

stripnot  orientable

Moebius

Definition
The flux of a continuous vector field F : R3 → R3 over an
orientable surface S in the direction of a unit normal n is given by

F =

∫∫
S

F · n dσ.

Remark:dσ =
|∇f |
|∇f · p|

dA, where S is the level surface f = 0.
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The flux of a vector field on a surface.

Example

Find the flux of the field F = 〈0, 0, z〉 across the portion of the
sphere x2 + y2 + z2 = a2 in the first octant in the direction away
from the origin.

Solution: Recall: F =

∫∫
S

F · n dσ.

In this case S is the level surface f = 0, for f = x2 + y2 + z2 − a2.
The unit normal vector n is proportional to ∇f .

∇f = 〈2x , 2y , 2z〉, |∇f | = 2
√

x2 + y2 + z2.

On the surface S we have that x2 + y2 + z2 = a2,
therefore,|∇f | = 2a on this surface. We obtain that on S the
appropriate normal vector is

n =
∇f

|∇f |
⇒ n =

1

a
〈x , y , z〉, z |S = z(x , y).
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=
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Surface area and surface integrals. (Sect. 16.5)

I Review: The area of a surface in space.

I Surface integrals of a scalar field.

I The flux of a vector field on a surface.

I Mass and center of mass of thin shells.



Mass and center of mass of thin shells.

Definition
The mass M of a thin shell described by the surface S in space
with mass per unit area function ρ : S → R is given by

M =

∫∫
S

ρ dσ.

The center of mass r = 〈x1, x2, x3〉 of the thin shell above is

x i =
1

M

∫∫
S

xi ρ dσ, i = 1, 2, 3.

Remark:

I The centroid vector is the particular case of the center of
mass vector for an object with constant density.

I See in the textbook the definitions of moments of inertia Ixi ,
with i = 1, 2, 3, for thin shells.
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Mass and center of mass of thin shells.
Example

Find the centroid of the surface S given by x2 + y2 = z2 between
the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

S

x

z

R

2

1

2

y1

We first compute the area, M, of S ,

M =

∫∫
S

dσ =

∫∫
R

|∇f |
|∇f · k|

dA.

Here f = x2 + y2 − z2, therefore,

∇f = 〈2x , 2y ,−2z〉.

Hence |∇f | = 2
√

x2 + y2 + z2, evaluated on S . Since
z2 = x2 + y2, we get |∇f | = 2

√
2 z . Also ∇f · k = −2z . So,

|∇f |
|∇f · k|

=
2
√

2 z

2z
=
√

2 ⇒ M =

∫∫
R

√
2 dA.
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