Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.
- The area of a surface in space.

Next class:

- Surface integrals of a scalar field.
- The flux of a vector field on a surface.

Mass and center of mass thin shells.

• The integral of a function
$$f : [a, b] \to \mathbb{R}$$
 is

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_{i}^{*}) \Delta x.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

► The integral of a function
$$f : [a, b] \to \mathbb{R}$$
 is

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_{i}^{*}) \, \Delta x.$$

► The arc length of a curve $\mathbf{r} : [t_0, t_1] \to \mathbb{R}^3$ in space is $s_{t_1, t_0} = \int_{t_0}^{t_1} |\mathbf{r}'(t)| dt.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

► The integral of a function
$$f : [a, b] \to \mathbb{R}$$
 is

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_{i}^{*}) \, \Delta x.$$

► The arc length of a curve $\mathbf{r} : [t_0, t_1] \to \mathbb{R}^3$ in space is $s_{t_1, t_0} = \int_{t_0}^{t_1} |\mathbf{r}'(t)| \, dt.$

• The integral of a function $f : \mathbb{R}^3 \to \mathbb{R}$ along a curve $\mathbf{r} : [t_0, t_1] \to \mathbb{R}^3$ is $\int_C f \, ds = \int_{t_0}^{t_1} f(\mathbf{r}(t)) |\mathbf{r}'(t)| \, dt$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The integral of a function
$$f : [a, b] \to \mathbb{R}$$
 is

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_{i}^{*}) \, \Delta x.$$

► The arc length of a curve $\mathbf{r} : [t_0, t_1] \to \mathbb{R}^3$ in space is $s_{t_1, t_0} = \int_{t_0}^{t_1} |\mathbf{r}'(t)| dt.$

- The integral of a function $f : \mathbb{R}^3 \to \mathbb{R}$ along a curve $\mathbf{r} : [t_0, t_1] \to \mathbb{R}^3$ is $\int_C f \, ds = \int_{t_0}^{t_1} f(\mathbf{r}(t)) |\mathbf{r}'(t)| \, dt$.
- The circulation of a function $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ along a curve $\mathbf{r} : [t_0, t_1] \to \mathbb{R}^3$ is $\int_C \mathbf{F} \cdot \mathbf{u} \, ds = \int_{t_0}^{t_1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt.$

► The integral of a function
$$f : [a, b] \to \mathbb{R}$$
 is

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_{i}^{*}) \, \Delta x.$$

► The arc length of a curve $\mathbf{r} : [t_0, t_1] \to \mathbb{R}^3$ in space is $s_{t_1, t_0} = \int_{t_0}^{t_1} |\mathbf{r}'(t)| dt.$

- ► The integral of a function $f : \mathbb{R}^3 \to \mathbb{R}$ along a curve $\mathbf{r} : [t_0, t_1] \to \mathbb{R}^3$ is $\int_C f \, ds = \int_{t_0}^{t_1} f(\mathbf{r}(t)) |\mathbf{r}'(t)| \, dt.$
- The circulation of a function $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ along a curve $\mathbf{r} : [t_0, t_1] \to \mathbb{R}^3$ is $\int_C \mathbf{F} \cdot \mathbf{u} \, ds = \int_{t_0}^{t_1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt.$
- ► The flux of a function \mathbf{F} : $\{z = 0\} \cap \mathbb{R}^3 \to \{z = 0\} \cap \mathbb{R}^3$ along a loop \mathbf{r} : $[t_0, t_1] \to \{z = 0\} \cap \mathbb{R}^3$ is $\mathbb{F} = \oint_C \mathbf{F} \cdot \mathbf{n} \, ds$.

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The area of a surface in space.

The double integral of a function f : R ⊂ ℝ² → ℝ on a region R ⊂ ℝ², which is the volume under the graph of f and above the z = 0 plane, and is given by

$$\iint_{R} f \, dA = \lim_{n \to \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f(x_{i}^{*}, y_{j}^{*}) \, \Delta x \, \Delta y.$$

・ロト・日本・モート モー うへで

The double integral of a function f : R ⊂ ℝ² → ℝ on a region R ⊂ ℝ², which is the volume under the graph of f and above the z = 0 plane, and is given by

$$\iint_{R} f \, dA = \lim_{n \to \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f(x_{i}^{*}, y_{j}^{*}) \, \Delta x \, \Delta y.$$

▶ The area of a plane surface $R \subset \mathbb{R}^2$ is the particular case f = 1, that is, $A(R) = \iint_R dA$.

The double integral of a function f : R ⊂ ℝ² → ℝ on a region R ⊂ ℝ², which is the volume under the graph of f and above the z = 0 plane, and is given by

$$\iint_{R} f \, dA = \lim_{n \to \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f(x_{i}^{*}, y_{j}^{*}) \, \Delta x \, \Delta y.$$

- ロ ト - 4 回 ト - 4 □ - 4

▶ The area of a plane surface $R \subset \mathbb{R}^2$ is the particular case f = 1, that is, $A(R) = \iint_R dA$.

We now show how to compute:

The area of a surface in space.

The double integral of a function f : R ⊂ ℝ² → ℝ on a region R ⊂ ℝ², which is the volume under the graph of f and above the z = 0 plane, and is given by

$$\iint_{R} f \, dA = \lim_{n \to \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f(x_{i}^{*}, y_{j}^{*}) \, \Delta x \, \Delta y.$$

► The area of a plane surface $R \subset \mathbb{R}^2$ is the particular case f = 1, that is, $A(R) = \iint_R dA$.

We now show how to compute:

- The area of a surface in space.
- The integral of a scalar function on a surface is space.

- ロ ト - 4 回 ト - 4 □ - 4

The double integral of a function f : R ⊂ ℝ² → ℝ on a region R ⊂ ℝ², which is the volume under the graph of f and above the z = 0 plane, and is given by

$$\iint_{R} f \, dA = \lim_{n \to \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} f(x_{i}^{*}, y_{j}^{*}) \, \Delta x \, \Delta y.$$

▶ The area of a plane surface $R \subset \mathbb{R}^2$ is the particular case f = 1, that is, $A(R) = \iint_R dA$.

We now show how to compute:

- The area of a surface in space.
- The integral of a scalar function on a surface is space.
- ► The flux of a vector-valued function on a surface in space.

Surface area and surface integrals. (Sect. 16.5)

- Review: Arc length and line integrals.
- Review: Double integral of a scalar function.

• The area of a surface in space.

Theorem

Given a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$, the area of a level surface $S = \{f(x, y, z) = 0\}$, over a closed, bounded region R in the plane $\{z = 0\}$, is given by

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Theorem

Given a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$, the area of a level surface $S = \{f(x, y, z) = 0\}$, over a closed, bounded region R in the plane $\{z = 0\}$, is given by

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Theorem

Given a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$, the area of a level surface $S = \{f(x, y, z) = 0\}$, over a closed, bounded region R in the plane $\{z = 0\}$, is given by

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Remark: Eq. (3), page 1183, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z = 0\}$ considered here.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

Given a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$, the area of a level surface $S = \{f(x, y, z) = 0\}$, over a closed, bounded region R in the plane $\{z = 0\}$, is given by

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Remark: Eq. (3), page 1183, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z = 0\}$ considered here.

The vector \mathbf{p} in the textbook is the vector normal to R. In our case $\mathbf{p} = \mathbf{k}$.

Proof: Introduce a partition in $R \subset \mathbb{R}^2$, and consider an arbitrary rectangle ΔR in that partition.

Proof: Introduce a partition in $R \subset \mathbb{R}^2$, and consider an arbitrary rectangle ΔR in that partition. We compute the area ΔP .

(日)、

- 3

Proof: Introduce a partition in $R \subset \mathbb{R}^2$, and consider an arbitrary rectangle ΔR in that partition. We compute the area ΔP .

It is simple to se that

$$\Delta P = |\mathbf{u} \times \mathbf{v}|,$$

・ロト ・ 雪 ト ・ ヨ ト

- 3

Proof: Introduce a partition in $R \subset \mathbb{R}^2$, and consider an arbitrary rectangle ΔR in that partition. We compute the area ΔP .

It is simple to se that

$$\Delta P = |\mathbf{u} \times \mathbf{v}|,$$

and

 $\mathbf{u} = \langle \Delta x, 0, (z_i - \hat{z}_i) \rangle, \\ \mathbf{v} = \langle 0, \Delta y, (z_i - \overline{z}_i) \rangle.$

Therefore,

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \Delta x & 0 & (z_i - \hat{z}_i) \\ 0 & \Delta y & (z_i - \overline{z}_i) \end{vmatrix} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 「注」のへで

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$.

(ロ)、

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$.

The linearization of f(x, y, z) at (x_i, y_i, z_i) implies

 $f(x, y, z) \simeq f(x_i, y_i, z_i) + (\partial_x f)_i \Delta x + (\partial_y f)_i \Delta y + (\partial_z f)_i (z - z_i).$

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$. The linearization of f(x, y, z) at (x_i, y_i, z_i) implies $f(x, y, z) \simeq f(x_i, y_i, z_i) + (\partial_x f)_i \Delta x + (\partial_y f)_i \Delta y + (\partial_z f)_i (z - z_i)$. Since $f(x_i, y_i, z_i) = 0$, $f(x_i + \Delta x, y_i, \hat{z}_i) = 0$, $f(x_i, y_i + \Delta y, \overline{z}_i) = 0$,

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$. The linearization of f(x, y, z) at (x_i, y_i, z_i) implies $f(x, y, z) \simeq f(x_i, y_i, z_i) + (\partial_x f)_i \Delta x + (\partial_y f)_i \Delta y + (\partial_z f)_i (z - z_i)$. Since $f(x_i, y_i, z_i) = 0$, $f(x_i + \Delta x, y_i, \hat{z}_i) = 0$, $f(x_i, y_i + \Delta y, \overline{z}_i) = 0$, $0 = (\partial_x f)_i \Delta x + (\partial_z f)_i (z_i - \hat{z}_i)$

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$. The linearization of f(x, y, z) at (x_i, y_i, z_i) implies $f(x, y, z) \simeq f(x_i, y_i, z_i) + (\partial_x f)_i \Delta x + (\partial_y f)_i \Delta y + (\partial_z f)_i (z - z_i)$. Since $f(x_i, y_i, z_i) = 0$, $f(x_i + \Delta x, y_i, \hat{z}_i) = 0$, $f(x_i, y_i + \Delta y, \overline{z}_i) = 0$, $0 = (\partial_x f)_i \Delta x + (\partial_z f)_i (z_i - \hat{z}_i) \implies (z_i - \hat{z}_i) = -\frac{(\partial_x f)_i}{(\partial_z f)_i} \Delta x$,

- ロ ト - 4 回 ト - 4 □ - 4

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$. The linearization of f(x, y, z) at (x_i, y_i, z_i) implies $f(x, y, z) \simeq f(x_i, y_i, z_i) + (\partial_x f)_i \Delta x + (\partial_y f)_i \Delta y + (\partial_z f)_i (z - z_i)$. Since $f(x_i, y_i, z_i) = 0$, $f(x_i + \Delta x, y_i, \hat{z}_i) = 0$, $f(x_i, y_i + \Delta y, \overline{z}_i) = 0$, $0 = (\partial_x f)_i \Delta x + (\partial_z f)_i (z_i - \hat{z}_i) \implies (z_i - \hat{z}_i) = -\frac{(\partial_x f)_i}{(\partial_z f)_i} \Delta x$,

- ロ ト - 4 回 ト - 4 □ - 4

 $0 = (\partial_y f)_i \Delta y + (\partial_z f)_i (z_i - \overline{z}_i)$

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$. The linearization of f(x, y, z) at (x_i, y_i, z_i) implies $f(x, y, z) \simeq f(x_i, y_i, z_i) + (\partial_x f)_i \Delta x + (\partial_y f)_i \Delta y + (\partial_z f)_i (z - z_i).$ Since $f(x_i, y_i, z_i) = 0$, $f(x_i + \Delta x, y_i, \hat{z}_i) = 0$, $f(x_i, y_i + \Delta y, \overline{z}_i) = 0$, $0 = (\partial_x f)_i \Delta x + (\partial_z f)_i (z_i - \hat{z}_i) \quad \Rightarrow \quad (z_i - \hat{z}_i) = -\frac{(\partial_x f)_i}{(\partial_z f)_i} \Delta x,$ $0 = (\partial_y f)_i \Delta y + (\partial_z f)_i (z_i - \overline{z}_i) \quad \Rightarrow \quad (z_i - \overline{z}_i) = -\frac{(\partial_y f)_i}{(\partial_- f)_i} \Delta y.$

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$. The linearization of f(x, y, z) at (x_i, y_i, z_i) implies $f(x, y, z) \simeq f(x_i, y_i, z_i) + (\partial_x f)_i \Delta x + (\partial_y f)_i \Delta y + (\partial_z f)_i (z - z_i).$ Since $f(x_i, y_i, z_i) = 0$, $f(x_i + \Delta x, y_i, \hat{z}_i) = 0$, $f(x_i, y_i + \Delta y, \overline{z}_i) = 0$, $0 = (\partial_x f)_i \Delta x + (\partial_z f)_i (z_i - \hat{z}_i) \quad \Rightarrow \quad (z_i - \hat{z}_i) = -\frac{(\partial_x f)_i}{(\partial_z f)_i} \Delta x,$ $0 = (\partial_y f)_i \Delta y + (\partial_z f)_i (z_i - \overline{z}_i) \quad \Rightarrow \quad (z_i - \overline{z}_i) = -\frac{(\partial_y f)_i}{(\partial_z f)_i} \Delta y.$ $\mathbf{u} \times \mathbf{v} = \langle (\partial_x f)_i, (\partial_y f)_i, (\partial_z f)_i \rangle \frac{\Delta \times \Delta y}{(\partial_z f)_i}$

4日 + 4日 + 4日 + 4日 + 4日 + 900

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$. The linearization of f(x, y, z) at (x_i, y_i, z_i) implies $f(x, y, z) \simeq f(x_i, y_i, z_i) + (\partial_x f)_i \Delta x + (\partial_y f)_i \Delta y + (\partial_z f)_i (z - z_i).$ Since $f(x_i, y_i, z_i) = 0$, $f(x_i + \Delta x, y_i, \hat{z}_i) = 0$, $f(x_i, y_i + \Delta y, \overline{z}_i) = 0$, $0 = (\partial_x f)_i \Delta x + (\partial_z f)_i (z_i - \hat{z}_i) \quad \Rightarrow \quad (z_i - \hat{z}_i) = -\frac{(\partial_x f)_i}{(\partial_z f)_i} \Delta x,$ $0 = (\partial_y f)_i \Delta y + (\partial_z f)_i (z_i - \overline{z}_i) \quad \Rightarrow \quad (z_i - \overline{z}_i) = -\frac{(\partial_y f)_i}{(\partial_- f)_i} \Delta y.$ $\mathbf{u} \times \mathbf{v} = \langle (\partial_x f)_i, (\partial_y f)_i, (\partial_z f)_i \rangle \frac{\Delta x \Delta y}{(\partial_z f)_i} \Rightarrow \mathbf{u} \times \mathbf{v} = \frac{(\nabla f)_i}{(\nabla f \cdot \mathbf{k})_i} \Delta x \Delta y.$

・ロト・(部・・モト・モー・)のへの

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$. The linearization of f(x, y, z) at (x_i, y_i, z_i) implies $f(x, y, z) \simeq f(x_i, y_i, z_i) + (\partial_x f)_i \Delta x + (\partial_y f)_i \Delta y + (\partial_z f)_i (z - z_i).$ Since $f(x_i, y_i, z_i) = 0$, $f(x_i + \Delta x, y_i, \hat{z}_i) = 0$, $f(x_i, y_i + \Delta y, \overline{z}_i) = 0$, $0 = (\partial_x f)_i \Delta x + (\partial_z f)_i (z_i - \hat{z}_i) \quad \Rightarrow \quad (z_i - \hat{z}_i) = -\frac{(\partial_x f)_i}{(\partial_- f)_i} \Delta x,$ $0 = (\partial_y f)_i \Delta y + (\partial_z f)_i (z_i - \overline{z}_i) \quad \Rightarrow \quad (z_i - \overline{z}_i) = -\frac{(\partial_y f)_i}{(\partial_z f)_i} \Delta y.$ $\mathbf{u} \times \mathbf{v} = \langle (\partial_x f)_i, (\partial_y f)_i, (\partial_z f)_i \rangle \frac{\Delta x \Delta y}{(\partial_z f)_i} \Rightarrow \mathbf{u} \times \mathbf{v} = \frac{(\nabla f)_i}{(\nabla f \cdot \mathbf{k})_i} \Delta x \Delta y.$ $\Delta P = \frac{|(\nabla f)_i|}{|(\nabla f \cdot \mathbf{k})_i|} \Delta x \Delta y$

(日) (同) (三) (三) (三) (○) (○)

Proof: Recall: $\mathbf{u} \times \mathbf{v} = \langle -\Delta y(z_i - \hat{z}_i), -\Delta x(z_i - \overline{z}_i), \Delta x \Delta y \rangle$. The linearization of f(x, y, z) at (x_i, y_i, z_i) implies $f(x, y, z) \simeq f(x_i, y_i, z_i) + (\partial_x f)_i \Delta x + (\partial_y f)_i \Delta y + (\partial_z f)_i (z - z_i).$ Since $f(x_i, y_i, z_i) = 0$, $f(x_i + \Delta x, y_i, \hat{z}_i) = 0$, $f(x_i, y_i + \Delta y, \overline{z}_i) = 0$, $0 = (\partial_x f)_i \Delta x + (\partial_z f)_i (z_i - \hat{z}_i) \quad \Rightarrow \quad (z_i - \hat{z}_i) = -\frac{(\partial_x f)_i}{(\partial_- f)_i} \Delta x,$ $0 = (\partial_y f)_i \Delta y + (\partial_z f)_i (z_i - \overline{z}_i) \quad \Rightarrow \quad (z_i - \overline{z}_i) = -\frac{(\partial_y f)_i}{(\partial_z f)_i} \Delta y.$ $\mathbf{u} \times \mathbf{v} = \langle (\partial_x f)_i, (\partial_y f)_i, (\partial_z f)_i \rangle \frac{\Delta x \Delta y}{(\partial_z f)_i} \Rightarrow \mathbf{u} \times \mathbf{v} = \frac{(\nabla f)_i}{(\nabla f \cdot \mathbf{k})_i} \Delta x \Delta y.$ $\Delta P = \frac{|(\nabla f)_i|}{|(\nabla f \cdot \mathbf{k})|} \Delta x \Delta y \quad \Rightarrow \quad A(S) = \iint \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA. \quad \Box$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: The surface is the level surface of the function $f(x, y, z) = x^2 + y^2 - z$.

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: The surface is the level surface of the function $f(x, y, z) = x^2 + y^2 - z$. The region *R* is the disk $z = x^2 + y^2 \le 4$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: The surface is the level surface of the function $f(x, y, z) = x^2 + y^2 - z$. The region *R* is the disk $z = x^2 + y^2 \le 4$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy,$$

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: The surface is the level surface of the function $f(x, y, z) = x^2 + y^2 - z$. The region *R* is the disk $z = x^2 + y^2 \le 4$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy, \quad \nabla f = \langle 2x, 2y, -1 \rangle,$$

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: The surface is the level surface of the function $f(x, y, z) = x^2 + y^2 - z$. The region *R* is the disk $z = x^2 + y^2 \le 4$.

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy, \quad \nabla f = \langle 2x, 2y, -1 \rangle, \quad \nabla f \cdot \mathbf{k} = -1,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: The surface is the level surface of the function $f(x, y, z) = x^2 + y^2 - z$. The region *R* is the disk $z = x^2 + y^2 \le 4$.

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy, \quad \nabla f = \langle 2x, 2y, -1 \rangle, \quad \nabla f \cdot \mathbf{k} = -1,$$

$$A(S) = \iint_R \sqrt{1+4x^2+4y^2} \, dx \, dy$$

(日) (同) (三) (三) (三) (○) (○)

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: The surface is the level surface of the function $f(x, y, z) = x^2 + y^2 - z$. The region *R* is the disk $z = x^2 + y^2 \le 4$.

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy, \quad \nabla f = \langle 2x, 2y, -1 \rangle, \quad \nabla f \cdot \mathbf{k} = -1,$$

$$A(S)=\iint_R \sqrt{1+4x^2+4y^2}\,dx\,dy.$$

Since *R* is a disk radius 2, it is convenient to use polar coordinates in \mathbb{R}^2 .

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: The surface is the level surface of the function $f(x, y, z) = x^2 + y^2 - z$. The region *R* is the disk $z = x^2 + y^2 \le 4$.

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy, \quad \nabla f = \langle 2x, 2y, -1 \rangle, \quad \nabla f \cdot \mathbf{k} = -1,$$

$$A(S) = \iint_R \sqrt{1+4x^2+4y^2} \, dx \, dy.$$

Since R is a disk radius 2, it is convenient to use polar coordinates in \mathbb{R}^2 . We obtain

$$A(S) = \int_0^{2\pi} \int_0^2 \sqrt{1 + 4r^2} \, r \, dr \, d\theta.$$

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: Recall:
$$A(S) = \int_0^{2\pi} \int_0^2 \sqrt{1+4r^2} r \, dr \, d\theta.$$

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: Recall:
$$A(S) = \int_0^{2\pi} \int_0^2 \sqrt{1+4r^2} r \, dr \, d\theta.$$

$$A(S) = 2\pi \int_0^2 \sqrt{1 + 4r^2} \, r \, dr,$$

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: Recall:
$$A(S) = \int_0^{2\pi} \int_0^2 \sqrt{1+4r^2} r \, dr \, d\theta.$$

$$A(S) = 2\pi \int_0^2 \sqrt{1+4r^2} r \, dr, \qquad u = 1+4r^2, \, du = 8r \, dr.$$

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: Recall:
$$A(S) = \int_0^{2\pi} \int_0^2 \sqrt{1+4r^2} r \, dr \, d\theta.$$

$$A(S) = 2\pi \int_0^2 \sqrt{1+4r^2} r \, dr, \qquad u = 1+4r^2, \, du = 8r \, dr.$$

$$A(S) = \frac{2\pi}{8} \int_1^{17} u^{1/2} \, du$$

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: Recall:
$$A(S) = \int_0^{2\pi} \int_0^2 \sqrt{1+4r^2} r \, dr \, d\theta.$$

$$A(S) = 2\pi \int_0^2 \sqrt{1+4r^2} r \, dr, \qquad u = 1+4r^2, \, du = 8r \, dr.$$

$$A(S) = \frac{2\pi}{8} \int_{1}^{17} u^{1/2} \, du = \frac{2\pi}{8} \frac{2}{3} \left(u^{3/2} \Big|_{1}^{17} \right).$$

Example

Find the area of the surface in space given by the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4.

Solution: Recall:
$$A(S) = \int_0^{2\pi} \int_0^2 \sqrt{1+4r^2} r \, dr \, d\theta.$$

$$A(S) = 2\pi \int_0^2 \sqrt{1+4r^2} r \, dr, \qquad u = 1+4r^2, \, du = 8r \, dr.$$

$$A(S) = \frac{2\pi}{8} \int_{1}^{17} u^{1/2} \, du = \frac{2\pi}{8} \frac{2}{3} \left(u^{3/2} \Big|_{1}^{17} \right).$$

We conclude: $A(S) = \frac{\pi}{6} [(17)^{3/2} - 1].$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: The formula for the area of a surface in space can be generalized as follows.

Remark: The formula for the area of a surface in space can be generalized as follows.

Theorem

The area of a surface S given by f(x, y, z) = 0 over a closed and bounded plane region R in space is given by

where **p** is a unit vector normal to the region R and $\nabla f \cdot \mathbf{p} \neq 0$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:

The surface is given by f = 0 with

(日) (雪) (日) (日) (日)

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:

The surface is given by f = 0 with

$$f(x, y, z) = x + 2y + 2z - 5$$

The region R is in the plane z = 0,

$$R = \left\{ \begin{array}{l} (x, y, z) : z = 0, y \in [-1, 1] \\ x \in [y^2, (2 - y^2)] \end{array} \right\}$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:

The surface is given by f = 0 with

$$f(x, y, z) = x + 2y + 2z - 5.$$

The region R is in the plane z = 0,

$$R = \left\{ \begin{array}{l} (x, y, z) : z = 0, y \in [-1, 1] \\ x \in [y^2, (2 - y^2)] \end{array} \right\}$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:

The surface is given by f = 0 with

$$f(x, y, z) = x + 2y + 2z - 5$$

The region R is in the plane z = 0,

$$R = \begin{cases} (x, y, z) : z = 0, y \in [-1, 1] \\ x \in [y^2, (2 - y^2)] \end{cases}$$

Recall: $A(S) = \iint_R \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} dA$. Here $\mathbf{p} = \mathbf{k}, \nabla f = \langle 1, 2, 2 \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} dA$$
. Here $\mathbf{p} = \mathbf{k}, \nabla f = \langle 1, 2, 2 \rangle$.

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:
$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} dA$$
. Here $\mathbf{p} = \mathbf{k}, \nabla f = \langle 1, 2, 2 \rangle$.

Therefore: $|\nabla f| = \sqrt{1+4+4} = 3$, and $|\nabla f \cdot \mathbf{k}| = 2$.

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} dA$$
. Here $\mathbf{p} = \mathbf{k}, \nabla f = \langle 1, 2, 2 \rangle$.

Therefore: $|\nabla f| = \sqrt{1+4+4} = 3$, and $|\nabla f \cdot \mathbf{k}| = 2$.

And the region $R = \{(x, y) : y \in [-1, 1], x \in [y^2, (2 - y^2)]\}.$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} dA$$
. Here $\mathbf{p} = \mathbf{k}, \nabla f = \langle 1, 2, 2 \rangle$.

Therefore: $|\nabla f| = \sqrt{1+4+4} = 3$, and $|\nabla f \cdot \mathbf{k}| = 2$. And the region $R = \{(x, y) : y \in [-1, 1], x \in [y^2, (2-y^2)]\}$. So we can write down the expression for A(S) as follows,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$A(S) = \iint_R \frac{3}{2} \, dx \, dy$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} dA$$
. Here $\mathbf{p} = \mathbf{k}, \nabla f = \langle 1, 2, 2 \rangle$.

Therefore: $|\nabla f| = \sqrt{1+4+4} = 3$, and $|\nabla f \cdot \mathbf{k}| = 2$. And the region $R = \{(x, y) : y \in [-1, 1], x \in [y^2, (2-y^2)]\}$. So we can write down the expression for A(S) as follows,

$$A(S) = \iint_{R} \frac{3}{2} \, dx \, dy = \frac{3}{2} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} \, dx \, dy.$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \frac{3}{2} \int_{-1}^{1} \int_{y^2}^{2-y^2} dx \, dy.$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \frac{3}{2} \int_{-1}^{1} \int_{y^2}^{2-y^2} dx \, dy.$$

$$A(S) = \frac{3}{2} \int_{-1}^{1} (2 - y^2 - y^2) \, dy$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \frac{3}{2} \int_{-1}^{1} \int_{y^2}^{2-y^2} dx \, dy.$$

$$A(S) = \frac{3}{2} \int_{-1}^{1} (2 - y^2 - y^2) \, dy = \frac{3}{2} \int_{-1}^{1} (2 - 2y^2) \, dy$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \frac{3}{2} \int_{-1}^{1} \int_{y^2}^{2-y^2} dx \, dy.$$

$$A(S) = \frac{3}{2} \int_{-1}^{1} (2 - y^2 - y^2) \, dy = \frac{3}{2} \int_{-1}^{1} (2 - 2y^2) \, dy$$

$$A(S) = 3 \int_{-1}^{1} (1 - y^2) dy$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \frac{3}{2} \int_{-1}^{1} \int_{y^2}^{2-y^2} dx \, dy$$
.

$$A(S) = \frac{3}{2} \int_{-1}^{1} (2 - y^2 - y^2) \, dy = \frac{3}{2} \int_{-1}^{1} (2 - 2y^2) \, dy$$

$$A(S) = 3 \int_{-1}^{1} (1 - y^2) \, dy = 3 \left(y - \frac{y^3}{3} \right) \Big|_{-1}^{1}$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \frac{3}{2} \int_{-1}^{1} \int_{y^2}^{2-y^2} dx \, dy$$
.

$$A(S) = \frac{3}{2} \int_{-1}^{1} (2 - y^2 - y^2) \, dy = \frac{3}{2} \int_{-1}^{1} (2 - 2y^2) \, dy$$

$$A(S) = 3 \int_{-1}^{1} (1 - y^2) \, dy = 3\left(y - \frac{y^3}{3}\right)\Big|_{-1}^{1} = 3\left(1 - \frac{1}{3} + 1 - \frac{1}{3}\right)$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \frac{3}{2} \int_{-1}^{1} \int_{y^2}^{2-y^2} dx \, dy$$
.

$$A(S) = \frac{3}{2} \int_{-1}^{1} (2 - y^2 - y^2) \, dy = \frac{3}{2} \int_{-1}^{1} (2 - 2y^2) \, dy$$

$$A(S) = 3 \int_{-1}^{1} (1 - y^2) \, dy = 3\left(y - \frac{y^3}{3}\right)\Big|_{-1}^{1} = 3\left(1 - \frac{1}{3} + 1 - \frac{1}{3}\right)$$
$$A(S) = 3\left(2 - \frac{2}{3}\right)$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \frac{3}{2} \int_{-1}^{1} \int_{y^2}^{2-y^2} dx \, dy$$
.

$$A(S) = \frac{3}{2} \int_{-1}^{1} (2 - y^2 - y^2) \, dy = \frac{3}{2} \int_{-1}^{1} (2 - 2y^2) \, dy$$

$$A(S) = 3 \int_{-1}^{1} (1 - y^2) \, dy = 3\left(y - \frac{y^3}{3}\right)\Big|_{-1}^{1} = 3\left(1 - \frac{1}{3} + 1 - \frac{1}{3}\right)$$
$$A(S) = 3\left(2 - \frac{2}{3}\right) = 3\frac{4}{3}$$

Example

Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder with walls $x = y^2$ and $x = 2 - y^2$.

Solution:
$$A(S) = \frac{3}{2} \int_{-1}^{1} \int_{y^2}^{2-y^2} dx \, dy$$
.

$$A(S) = \frac{3}{2} \int_{-1}^{1} (2 - y^2 - y^2) \, dy = \frac{3}{2} \int_{-1}^{1} (2 - 2y^2) \, dy$$

$$A(S) = 3 \int_{-1}^{1} (1 - y^2) \, dy = 3 \left(y - \frac{y^3}{3} \right) \Big|_{-1}^{1} = 3 \left(1 - \frac{1}{3} + 1 - \frac{1}{3} \right)$$

$$A(S) = 3\left(2 - \frac{2}{3}\right) = 3\frac{4}{3} \quad \Rightarrow \quad A(S) = 4. \qquad \triangleleft$$

Surface area and surface integrals. (Sect. 16.5)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mass and center of mass thin shells.

Review: The area of a surface in space.

Theorem

Given a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$, the area of a level surface $S = \{f(x, y, z) = 0\}$, over a closed, bounded region R in the plane $\{z = 0\}$, is given by

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Review: The area of a surface in space.

Theorem

Given a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$, the area of a level surface $S = \{f(x, y, z) = 0\}$, over a closed, bounded region R in the plane $\{z = 0\}$, is given by

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Review: The area of a surface in space.

Theorem

Given a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$, the area of a level surface $S = \{f(x, y, z) = 0\}$, over a closed, bounded region R in the plane $\{z = 0\}$, is given by

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Remark: Eq. (3), page 1183, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z = 0\}$ considered here.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Review: The area of a surface in space.

Theorem

Given a smooth function $f : \mathbb{R}^3 \to \mathbb{R}$, the area of a level surface $S = \{f(x, y, z) = 0\}$, over a closed, bounded region R in the plane $\{z = 0\}$, is given by

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Remark: Eq. (3), page 1183, in the textbook is more general than the equation above, since the region R can be located on any plane, not only the plane $\{z = 0\}$ considered here.

The vector \mathbf{p} in the textbook is the vector normal to R. In our case $\mathbf{p} = \mathbf{k}$.

Surface area and surface integrals. (Sect. 16.5)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mass and center of mass thin shells.

Theorem

The integral of a continuous scalar function $g : \mathbb{R}^3 \to \mathbb{R}$ over a surface S defined as the level set of f(x, y, z) = 0 over the bounded plane R is given by

$$\iint_{S} g \, d\sigma = \iint_{R} g \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} \, dA,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where **p** is a unit vector normal to R and $\nabla f \cdot \mathbf{p} \neq 0$.

Theorem

The integral of a continuous scalar function $g : \mathbb{R}^3 \to \mathbb{R}$ over a surface S defined as the level set of f(x, y, z) = 0 over the bounded plane R is given by

$$\iint_{S} g \, d\sigma = \iint_{R} g \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} \, dA,$$

where **p** is a unit vector normal to R and $\nabla f \cdot \mathbf{p} \neq 0$.

Remark: In the particular case g = 1, we recover the formula for the area $A(S) = \iint_{S} d\sigma$ of the surface S, that is,

$$A(S) = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} \, dA.$$

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} \, dA.$$

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} \, dA.$$

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} \, dA.$$

Here $f = 2x + 2y + z - 2$, so the surface S is given by $f = 0$ in the first octant.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} \, dA.$$

Here f = 2x + 2y + z - 2, so the surface *S* is given by f = 0 in the first octant. Hence, the region *R* is on the z = 0 plane, (therefore $\mathbf{p} = \mathbf{k}$) given by the triangle with sides x = 0, y = 0 and x + y = 1.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} \, dA.$$

Here f = 2x + 2y + z - 2, so the surface *S* is given by f = 0 in the first octant. Hence, the region *R* is on the z = 0 plane, (therefore $\mathbf{p} = \mathbf{k}$) given by the triangle with sides x = 0, y = 0 and x + y = 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So, $\nabla f = \langle 2, 2, 1 \rangle$, hence $|\nabla f| = 3$, and $|\nabla f \cdot \mathbf{k}| = 1$.

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} \, dA.$$

Here f = 2x + 2y + z - 2, so the surface *S* is given by f = 0 in the first octant. Hence, the region *R* is on the z = 0 plane, (therefore $\mathbf{p} = \mathbf{k}$) given by the triangle with sides x = 0, y = 0 and x + y = 1.

So, $\nabla f = \langle 2, 2, 1 \rangle$, hence $|\nabla f| = 3$, and $|\nabla f \cdot \mathbf{k}| = 1$. Therefore

$$\iint_{S} g \, d\sigma = \iint_{R} g(x, y, z) \, 3 \, dA$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● のへで

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

・ロト・日本・モート モー うへで

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g(x, y, z) \, \Im \, dA.$$

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g(x, y, z) \, \Im \, dA.$$

Now, function g must be evaluated on the surface S.

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g(x, y, z) \, \Im \, dA.$$

Now, function g must be evaluated on the surface S. That means

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$g(x, y, z(x, y)) = x + y + z(x, y)$$

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g(x, y, z) \, 3 \, dA.$$

Now, function g must be evaluated on the surface S. That means

$$g(x, y, z(x, y)) = x + y + z(x, y) = x + y + (2 - 2x - 2y).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g(x, y, z) \, 3 \, dA.$$

Now, function g must be evaluated on the surface S. That means

$$g(x, y, z(x, y)) = x + y + z(x, y) = x + y + (2 - 2x - 2y).$$
$$g(x, y, z(z, y)) = 2 - x - y.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution: Recall:
$$\iint_{S} g \, d\sigma = \iint_{R} g(x, y, z) \, 3 \, dA.$$

Now, function g must be evaluated on the surface S. That means

$$g(x, y, z(x, y)) = x + y + z(x, y) = x + y + (2 - 2x - 2y).$$

$$g(x, y, z(z, y)) = 2 - x - y.$$

$$\iint_{S} g \, d\sigma = 3 \iint_{R} (2 - x - y) \, dA.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution:
$$\iint_{S} g \, d\sigma = 3 \iint_{R} (2 - x - y) \, dA.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution:
$$\iint_{S} g \, d\sigma = 3 \iint_{R} (2 - x - y) \, dA$$

The region *R* is the triangle in the plane z = 0 given by the lines x = 0, y = 0, and x + y = 1.

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution:
$$\iint_{S} g \, d\sigma = 3 \iint_{R} (2 - x - y) \, dA$$

- 日本 本語 本 本 田 本 本 田 本

The region *R* is the triangle in the plane z = 0 given by the lines x = 0, y = 0, and x + y = 1. Therefore,

$$3\int_0^1 \int_0^{1-y} (2-x-y) \, dx \, dy = 3\int_0^1 \left[(2-y) \left(x \Big|_0^{1-y} \right) - \left(\frac{x^2}{2} \Big|_0^{1-y} \right) \right] \, dy$$

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution:
$$\iint_{S} g \, d\sigma = 3 \iint_{R} (2 - x - y) \, dA$$

The region *R* is the triangle in the plane z = 0 given by the lines x = 0, y = 0, and x + y = 1. Therefore,

$$3\int_{0}^{1}\int_{0}^{1-y} (2-x-y) \, dx \, dy = 3\int_{0}^{1} \left[(2-y) \left(x \Big|_{0}^{1-y} \right) - \left(\frac{x^{2}}{2} \Big|_{0}^{1-y} \right) \right] \, dy$$
$$\iint_{S} g \, d\sigma = 3\int_{0}^{1} \left[(2-y)(1-y) - \frac{1}{2}(1-y)^{2} \right] \, dy$$

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲母 ▶ ④ ▲ ◎

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution:
$$\iint_{S} g \, d\sigma = 3 \iint_{R} (2 - x - y) \, dA$$

The region *R* is the triangle in the plane z = 0 given by the lines x = 0, y = 0, and x + y = 1. Therefore,

$$3\int_{0}^{1}\int_{0}^{1-y} (2-x-y) \, dx \, dy = 3\int_{0}^{1} \left[(2-y) \left(x \Big|_{0}^{1-y} \right) - \left(\frac{x^{2}}{2} \Big|_{0}^{1-y} \right) \right] \, dy$$
$$\iint_{S} g \, d\sigma = 3\int_{0}^{1} \left[(2-y)(1-y) - \frac{1}{2}(1-y)^{2} \right] \, dy$$
$$\iint_{S} g \, d\sigma = 3\int_{0}^{1} \left(\frac{3}{2} - 2y + \frac{y^{2}}{2} \right) \, dy$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = のへ⊙

Example

Integrate the function g(x, y, z) = x + y + z over the surface given by the portion of the plane 2x + 2y + z = 2 that lies in the first octant.

Solution:
$$\iint_{S} g \, d\sigma = 3 \iint_{R} (2 - x - y) \, dA$$

The region *R* is the triangle in the plane z = 0 given by the lines x = 0, y = 0, and x + y = 1. Therefore,

$$3\int_{0}^{1}\int_{0}^{1-y} (2-x-y) \, dx \, dy = 3\int_{0}^{1} \left[(2-y) \left(x \Big|_{0}^{1-y} \right) - \left(\frac{x^{2}}{2} \Big|_{0}^{1-y} \right) \right] \, dy$$
$$\iint_{S} g \, d\sigma = 3\int_{0}^{1} \left[(2-y)(1-y) - \frac{1}{2}(1-y)^{2} \right] \, dy$$
$$\iint_{S} g \, d\sigma = 3\int_{0}^{1} \left(\frac{3}{2} - 2y + \frac{y^{2}}{2} \right) \, dy \quad \Rightarrow \quad \iint_{S} g \, d\sigma = 2. \quad \triangleleft$$

・ロト・(型ト・(型ト・(型ト・(ロト

Surface area and surface integrals. (Sect. 16.5)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mass and center of mass thin shells.

Definition

A surface $S \subset \mathbb{R}^3$ is called *orientable* if it is possible to define on S

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

a continuous, unit vector field \mathbf{n} normal to S.

Definition

A surface $S \subset \mathbb{R}^3$ is called *orientable* if it is possible to define on S a continuous, unit vector field **n** normal to S.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Definition

A surface $S \subset \mathbb{R}^3$ is called *orientable* if it is possible to define on S a continuous, unit vector field **n** normal to S.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Definition

A surface $S \subset \mathbb{R}^3$ is called *orientable* if it is possible to define on S a continuous, unit vector field **n** normal to S.

Definition

The *flux* of a continuous vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ over an orientable surface S in the direction of a unit normal **n** is given by

$$\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma.$$

Definition

A surface $S \subset \mathbb{R}^3$ is called *orientable* if it is possible to define on S a continuous, unit vector field **n** normal to S.

Definition

The *flux* of a continuous vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ over an orientable surface *S* in the direction of a unit normal **n** is given by

$$\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: $d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} dA$, where S is the level surface f = 0.

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

・ロト・日本・モート モー うへで

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

- ロ ト - 4 回 ト - 4 □ - 4

Solution: Recall: $\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{s} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

In this case S is the level surface f = 0, for $f = x^2 + y^2 + z^2 - a^2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{\sigma} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

In this case S is the level surface f = 0, for $f = x^2 + y^2 + z^2 - a^2$. The unit normal vector **n** is proportional to ∇f .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall:
$$\mathbb{F} = \iint_{s} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$
.

In this case S is the level surface f = 0, for $f = x^2 + y^2 + z^2 - a^2$. The unit normal vector **n** is proportional to ∇f .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\nabla f = \langle 2x, 2y, 2z \rangle,$

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{s} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

In this case S is the level surface f = 0, for $f = x^2 + y^2 + z^2 - a^2$. The unit normal vector **n** is proportional to ∇f .

$$abla f = \langle 2x, 2y, 2z \rangle, \quad |\nabla f| = 2\sqrt{x^2 + y^2 + z^2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{s} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

In this case S is the level surface f = 0, for $f = x^2 + y^2 + z^2 - a^2$. The unit normal vector **n** is proportional to ∇f .

$$abla f = \langle 2x, 2y, 2z \rangle, \quad |\nabla f| = 2\sqrt{x^2 + y^2 + z^2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

On the surface S we have that $x^2 + y^2 + z^2 = a^2$,

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

In this case S is the level surface f = 0, for $f = x^2 + y^2 + z^2 - a^2$. The unit normal vector **n** is proportional to ∇f .

$$abla f = \langle 2x, 2y, 2z \rangle, \quad |
abla f| = 2\sqrt{x^2 + y^2 + z^2}.$$

On the surface S we have that $x^2 + y^2 + z^2 = a^2$, therefore, $|\nabla f| = 2a$ on this surface.

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall:
$$\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$
.

In this case S is the level surface f = 0, for $f = x^2 + y^2 + z^2 - a^2$. The unit normal vector **n** is proportional to ∇f .

$$abla f = \langle 2x, 2y, 2z \rangle, \quad |
abla f| = 2\sqrt{x^2 + y^2 + z^2}.$$

On the surface S we have that $x^2 + y^2 + z^2 = a^2$, therefore, $|\nabla f| = 2a$ on this surface. We obtain that on S the appropriate normal vector is

$$\mathbf{n} = \frac{\nabla f}{|\nabla f|}$$

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall:
$$\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$
.

In this case S is the level surface f = 0, for $f = x^2 + y^2 + z^2 - a^2$. The unit normal vector **n** is proportional to ∇f .

$$abla f = \langle 2x, 2y, 2z \rangle, \quad |
abla f| = 2\sqrt{x^2 + y^2 + z^2}.$$

On the surface S we have that $x^2 + y^2 + z^2 = a^2$, therefore, $|\nabla f| = 2a$ on this surface. We obtain that on S the appropriate normal vector is

$$\mathbf{n} = \frac{\nabla f}{|\nabla f|} \Rightarrow \mathbf{n} = \frac{1}{a} \langle x, y, z \rangle, \quad z|_s = z(x, y).$$

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall:
$$\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$
 and $\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$ on S .

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall:
$$\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$
 and $\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$ on S .
Since $d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy$,

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall:
$$\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$
 and $\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$ on S .
Since $d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy$, and $\nabla f = 2 \langle x, y, z \rangle$,

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall:
$$\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$
 and $\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$ on S .
Since $d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy$, and $\nabla f = 2 \langle x, y, z \rangle$, which on S says $|\nabla f| = 2a$,

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$ and $\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$ on *S*. Since $d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy$, and $\nabla f = 2 \langle x, y, z \rangle$, which on *S* says $|\nabla f| = 2a$, we conclude, $d\sigma = \frac{2a}{2z} \, dx \, dy$,

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$ and $\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$ on S. Since $d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy$, and $\nabla f = 2 \langle x, y, z \rangle$, which on S says $|\nabla f| = 2a$, we conclude, $d\sigma = \frac{2a}{2z} \, dx \, dy$, hence $d\sigma = \frac{a}{z} \, dx \, dy$.

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$ and $\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$ on S. Since $d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy$, and $\nabla f = 2 \langle x, y, z \rangle$, which on S says $|\nabla f| = 2a$, we conclude, $d\sigma = \frac{2a}{2z} \, dx \, dy$, hence $d\sigma = \frac{a}{z} \, dx \, dy$. $\mathbb{F} = \iint_{S} \left(\langle 0, 0, z \rangle \cdot \frac{1}{a} \langle x, y, z \rangle \right) \frac{a}{z} \, dx \, dy$.

くしゃ (雪) (雪) (雪) (雪) (雪)

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$ and $\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$ on S. Since $d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy$, and $\nabla f = 2 \langle x, y, z \rangle$, which on S says $|\nabla f| = 2a$, we conclude, $d\sigma = \frac{2a}{2z} \, dx \, dy$, hence $d\sigma = \frac{a}{z} \, dx \, dy$. $\mathbb{F} = \iint_{\mathbb{F}} \left(\langle 0, 0, z \rangle \cdot \frac{1}{a} \langle x, y, z \rangle \right) \frac{a}{z} \, dx \, dy$.

くしゃ (雪) (雪) (雪) (雪) (雪)

$$\mathbb{F} = \iint_{R} \frac{z^2}{a} \frac{a}{z} \, dx \, dy$$

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$ and $\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$ on S. Since $d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dx \, dy$, and $\nabla f = 2 \langle x, y, z \rangle$, which on S says $|\nabla f| = 2a$, we conclude, $d\sigma = \frac{2a}{2z} \, dx \, dy$, hence $d\sigma = \frac{a}{z} \, dx \, dy$. $\mathbb{F} = \iint_{\mathbb{F}} \left(\langle 0, 0, z \rangle \cdot \frac{1}{a} \langle x, y, z \rangle \right) \frac{a}{z} \, dx \, dy$.

$$\mathbb{F} = \iint_R \frac{z^2}{a} \frac{a}{z} \, dx \, dy \quad \Rightarrow \quad \mathbb{F} = \iint_R z \, dx \, dy, \quad z|_S = z(x, y).$$

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: Recall: $\mathbb{F} = \iint_{\mathbb{R}} z \, dx \, dy$,

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_R z \, dx \, dy$, and z must be evaluated on S.

・ロト・日本・モート モー うへで

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_{R} z \, dx \, dy$, and z must be evaluated on S.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_R z \, dx \, dy$, and z must be evaluated on S.

The integral is only on the first octant.

$$\mathbb{F} = \iint_{\mathbb{R}} \sqrt{a^2 - x^2 - y^2} \, dx \, dy.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_R z \, dx \, dy$, and z must be evaluated on S.

The integral is only on the first octant.

$$\mathbb{F} = \iint_R \sqrt{a^2 - x^2 - y^2} \, dx \, dy.$$

We use polar coordinates on $R \subset \{z = 0\}$.

$$\mathbb{F} = \int_0^{\pi/2} \int_0^a \sqrt{a^2 - r^2} \, r \, dr \, d\theta.$$

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_R z \, dx \, dy$, and z must be evaluated on S.

The integral is only on the first octant.

$$\mathbb{F} = \iint_R \sqrt{a^2 - x^2 - y^2} \, dx \, dy.$$

We use polar coordinates on $R \subset \{z = 0\}$.

$$\mathbb{F} = \int_0^{\pi/2} \int_0^a \sqrt{a^2 - r^2} \, r \, dr \, d\theta. \quad u = a^2 - r^2, \quad du = -2r \, dr.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_R z \, dx \, dy$, and z must be evaluated on S.

The integral is only on the first octant.

$$\mathbb{F} = \iint_R \sqrt{a^2 - x^2 - y^2} \, dx \, dy.$$

We use polar coordinates on $R \subset \{z = 0\}$.

$$\mathbb{F} = \int_0^{\pi/2} \int_0^a \sqrt{a^2 - r^2} \, r \, dr \, d\theta. \quad u = a^2 - r^2, \quad du = -2r \, dr.$$

$$\mathbb{F}=\frac{\pi}{2}\int_{a^2}^0 u^{1/2}\frac{(-du)}{2}$$

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_R z \, dx \, dy$, and z must be evaluated on S.

The integral is only on the first octant.

$$\mathbb{F} = \iint_R \sqrt{a^2 - x^2 - y^2} \, dx \, dy.$$

We use polar coordinates on $R \subset \{z = 0\}$.

$$\mathbb{F} = \int_0^{\pi/2} \int_0^a \sqrt{a^2 - r^2} \, r \, dr \, d\theta. \quad u = a^2 - r^2, \quad du = -2r \, dr.$$

$$\mathbb{F} = \frac{\pi}{2} \int_{a^2}^{0} u^{1/2} \frac{(-du)}{2} = \frac{\pi}{4} \int_{0}^{a^2} u^{1/2} du$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_R z \, dx \, dy$, and z must be evaluated on S.

The integral is only on the first octant.

$$\mathbb{F} = \iint_R \sqrt{a^2 - x^2 - y^2} \, dx \, dy.$$

We use polar coordinates on $R \subset \{z = 0\}$.

$$\mathbb{F} = \int_0^{\pi/2} \int_0^a \sqrt{a^2 - r^2} \, r \, dr \, d\theta. \quad u = a^2 - r^2, \quad du = -2r \, dr.$$

$$\mathbb{F} = \frac{\pi}{2} \int_{a^2}^{0} u^{1/2} \frac{(-du)}{2} = \frac{\pi}{4} \int_{0}^{a^2} u^{1/2} \, du = \frac{\pi}{4} \frac{2}{3} \, (a^2)^{3/2}$$

Example

Find the flux of the field $\mathbf{F} = \langle 0, 0, z \rangle$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

Solution: Recall: $\mathbb{F} = \iint_R z \, dx \, dy$, and z must be evaluated on S.

The integral is only on the first octant.

$$\mathbb{F} = \iint_R \sqrt{a^2 - x^2 - y^2} \, dx \, dy.$$

We use polar coordinates on $R \subset \{z = 0\}$.

$$\mathbb{F} = \int_0^{\pi/2} \int_0^a \sqrt{a^2 - r^2} \, r \, dr \, d\theta. \quad u = a^2 - r^2, \quad du = -2r \, dr.$$

$$\mathbb{F} = \frac{\pi}{2} \int_{a^2}^0 u^{1/2} \frac{(-du)}{2} = \frac{\pi}{4} \int_0^{a^2} u^{1/2} \, du = \frac{\pi}{4} \frac{2}{3} \, (a^2)^{3/2} \Rightarrow \mathbb{F} = \frac{\pi a^3}{6}.$$

Surface area and surface integrals. (Sect. 16.5)

- Review: The area of a surface in space.
- Surface integrals of a scalar field.
- The flux of a vector field on a surface.
- Mass and center of mass of thin shells.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The mass M of a thin shell described by the surface S in space with mass per unit area function $\rho: S \to \mathbb{R}$ is given by

$$M = \iint_{S} \rho \, d\sigma$$

The *center of mass* $\mathbf{\bar{r}} = \langle \overline{x}_1, \overline{x}_2, \overline{x}_3 \rangle$ of the thin shell above is

$$\overline{x}_i = \frac{1}{M} \iint_{S} x_i \rho \, d\sigma, \qquad i = 1, 2, 3.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The mass M of a thin shell described by the surface S in space with mass per unit area function $\rho: S \to \mathbb{R}$ is given by

$$M = \iint_{S} \rho \, d\sigma$$

The *center of mass* $\mathbf{\bar{r}} = \langle \overline{x}_1, \overline{x}_2, \overline{x}_3 \rangle$ of the thin shell above is

$$\overline{x}_i = \frac{1}{M} \iint_S x_i \rho \, d\sigma, \qquad i = 1, 2, 3.$$

Remark:

The centroid vector is the particular case of the center of mass vector for an object with constant density.

Definition

The mass M of a thin shell described by the surface S in space with mass per unit area function $\rho: S \to \mathbb{R}$ is given by

$$M = \iint_{S} \rho \, d\sigma$$

The *center of mass* $\mathbf{\bar{r}} = \langle \overline{x}_1, \overline{x}_2, \overline{x}_3 \rangle$ of the thin shell above is

$$\overline{x}_i = \frac{1}{M} \iint_S x_i \rho \, d\sigma, \qquad i = 1, 2, 3.$$

Remark:

- The centroid vector is the particular case of the center of mass vector for an object with constant density.
- See in the textbook the definitions of moments of inertia I_{xi}, with i = 1, 2, 3, for thin shells.

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Solution: The surface S is a cone section, given in the figure.

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$M = \iint_{S} d\sigma$$

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$M = \iint_{S} d\sigma = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$M = \iint_{S} d\sigma = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Here $f = x^{2} + y^{2} - z^{2}$,

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$M = \iint_{S} d\sigma = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Here $f = x^2 + y^2 - z^2$, therefore,

$$\nabla f = \langle 2x, 2y, -2z \rangle.$$

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$M = \iint_{S} d\sigma = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Here $f = x^2 + y^2 - z^2$, therefore,

$$\nabla f = \langle 2x, 2y, -2z \rangle.$$

Hence $|\nabla f| = 2\sqrt{x^2 + y^2 + z^2}$, evaluated on *S*.

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$M = \iint_{S} d\sigma = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Here $f = x^2 + y^2 - z^2$, therefore,

$$\nabla f = \langle 2x, 2y, -2z \rangle.$$

Hence $|\nabla f| = 2\sqrt{x^2 + y^2 + z^2}$, evaluated on *S*. Since $z^2 = x^2 + y^2$, we get $|\nabla f| = 2\sqrt{2}z$.

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$M = \iint_{S} d\sigma = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Here $f = x^2 + y^2 - z^2$, therefore,

$$\nabla f = \langle 2x, 2y, -2z \rangle.$$

Hence $|\nabla f| = 2\sqrt{x^2 + y^2 + z^2}$, evaluated on *S*. Since $z^2 = x^2 + y^2$, we get $|\nabla f| = 2\sqrt{2}z$. Also $\nabla f \cdot \mathbf{k} = -2z$.

くしゃ 本語 * 本語 * 本語 * 人口 *

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

We first compute the area, M, of S,

$$M = \iint_{S} d\sigma = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Here $f = x^2 + y^2 - z^2$, therefore,

$$\nabla f = \langle 2x, 2y, -2z \rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hence $|\nabla f| = 2\sqrt{x^2 + y^2 + z^2}$, evaluated on *S*. Since $z^2 = x^2 + y^2$, we get $|\nabla f| = 2\sqrt{2}z$. Also $\nabla f \cdot \mathbf{k} = -2z$. So,

$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \frac{2\sqrt{2}\,z}{2z} = \sqrt{2}$$

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: The surface S is a cone section, given in the figure.

We first compute the area,
$$M$$
, of S ,

$$M = \iint_{S} d\sigma = \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA.$$

Here $f = x^2 + y^2 - z^2$, therefore,

$$\nabla f = \langle 2x, 2y, -2z \rangle.$$

Hence $|\nabla f| = 2\sqrt{x^2 + y^2 + z^2}$, evaluated on *S*. Since $z^2 = x^2 + y^2$, we get $|\nabla f| = 2\sqrt{2}z$. Also $\nabla f \cdot \mathbf{k} = -2z$. So,

$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \frac{2\sqrt{2}z}{2z} = \sqrt{2} \quad \Rightarrow \quad M = \iint_{R} \sqrt{2} \, dA.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = のへ⊙

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_R \sqrt{2} \, dA$.

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_R \sqrt{2} \, dA$.

We use polar coordinates in $\{z = 0\}$,

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

$$M = \sqrt{2} \int_0^{2\pi} \int_1^2 r \, dr \, d\theta$$

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_{R} \sqrt{2} \, dA$.

We use polar coordinates in $\{z = 0\}$,

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_R \sqrt{2} \, dA$.

We use polar coordinates in $\{z = 0\}$,

$$M = \sqrt{2} \int_0^{2\pi} \int_1^2 r \, dr \, d\theta = 2\pi \sqrt{2} \left(\frac{r^2}{2} \Big|_1^2 \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

We conclude $M = 3\sqrt{2}\pi$.

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_R \sqrt{2} \, dA$.

We use polar coordinates in $\{z = 0\}$,

$$M = \sqrt{2} \int_0^{2\pi} \int_1^2 r \, dr \, d\theta = 2\pi \sqrt{2} \left(\frac{r^2}{2} \Big|_1^2 \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

We conclude $M = 3\sqrt{2}\pi$.

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_R \sqrt{2} \, dA$.

We use polar coordinates in $\{z = 0\}$,

$$M = \sqrt{2} \int_0^{2\pi} \int_1^2 r \, dr \, d\theta = 2\pi \sqrt{2} \left(\frac{r^2}{2} \Big|_1^2 \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

We conclude $M = 3\sqrt{2}\pi$.

$$\overline{z} = \frac{1}{M} \iint_{R} z \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA$$

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_R \sqrt{2} \, dA$.

We use polar coordinates in $\{z = 0\}$,

$$M = \sqrt{2} \int_0^{2\pi} \int_1^2 r \, dr \, d\theta = 2\pi \sqrt{2} \left(\frac{r^2}{2} \Big|_1^2 \right)$$

We conclude $M = 3\sqrt{2}\pi$.

By symmetry, the only non-zero component of the centroid is \overline{z} .

$$\overline{z} = \frac{1}{M} \iint_{R} z \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA = \frac{\sqrt{2}}{3\sqrt{2}\pi} \iint_{R} \sqrt{x^2 + y^2} \, dx \, dy.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_R \sqrt{2} \, dA$.

We use polar coordinates in $\{z = 0\}$,

$$M = \sqrt{2} \int_0^{2\pi} \int_1^2 r \, dr \, d\theta = 2\pi \sqrt{2} \left(\frac{r^2}{2} \Big|_1^2 \right)$$

We conclude $M = 3\sqrt{2}\pi$.

By symmetry, the only non-zero component of the centroid is \overline{z} .

$$\overline{z} = \frac{1}{M} \iint_{R} z \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA = \frac{\sqrt{2}}{3\sqrt{2}\pi} \iint_{R} \sqrt{x^2 + y^2} \, dx \, dy.$$

$$\overline{z} = \frac{1}{3\pi} \int_0^{2\pi} \int_1^2 r^2 dr \, d\theta$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Example

Z

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_R \sqrt{2} \, dA$.

We use polar coordinates in $\{z = 0\}$,

$$M = \sqrt{2} \int_0^{2\pi} \int_1^2 r \, dr \, d\theta = 2\pi \sqrt{2} \left(\frac{r^2}{2} \Big|_1^2 \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

We conclude $M = 3\sqrt{2}\pi$.

$$\overline{z} = \frac{1}{M} \iint_{R} z \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA = \frac{\sqrt{2}}{3\sqrt{2}\pi} \iint_{R} \sqrt{x^2 + y^2} \, dx \, dy.$$
$$= \frac{1}{3\pi} \int_{0}^{2\pi} \int_{1}^{2} r^2 dr \, d\theta = \frac{2\pi}{3\pi} \left(\frac{r^3}{3}\right)_{1}^{3}$$

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_R \sqrt{2} \, dA$.

We use polar coordinates in $\{z = 0\}$,

$$M = \sqrt{2} \int_0^{2\pi} \int_1^2 r \, dr \, d\theta = 2\pi \sqrt{2} \left(\frac{r^2}{2} \Big|_1^2 \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

We conclude $M = 3\sqrt{2}\pi$.

$$\overline{z} = \frac{1}{M} \iint_{R} z \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA = \frac{\sqrt{2}}{3\sqrt{2}\pi} \iint_{R} \sqrt{x^{2} + y^{2}} \, dx \, dy.$$
$$\overline{z} = \frac{1}{3\pi} \int_{0}^{2\pi} \int_{1}^{2} r^{2} dr \, d\theta = \frac{2\pi}{3\pi} \left(\frac{r^{3}}{3}\Big|_{1}^{3}\right) = \frac{2}{9} \left(8 - 1\right)$$

Example

Find the centroid of the surface S given by $x^2 + y^2 = z^2$ between the planes z = 1 and z = 2.

Solution: Recall:
$$\frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} = \sqrt{2}$$
 and $M = \iint_{R} \sqrt{2} \, dA$.

We use polar coordinates in $\{z = 0\}$,

$$M = \sqrt{2} \int_0^{2\pi} \int_1^2 r \, dr \, d\theta = 2\pi \sqrt{2} \left(\frac{r^2}{2} \Big|_1^2 \right)$$

We conclude $M = 3\sqrt{2}\pi$.

$$\overline{z} = \frac{1}{M} \iint_{R} z \, \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} \, dA = \frac{\sqrt{2}}{3\sqrt{2}\pi} \iint_{R} \sqrt{x^2 + y^2} \, dx \, dy.$$

$$\overline{z} = \frac{1}{3\pi} \int_0^{2\pi} \int_1^2 r^2 dr \, d\theta = \frac{2\pi}{3\pi} \left(\frac{r^3}{3} \Big|_1^3 \right) = \frac{2}{9} \left(8 - 1 \right) \quad \Rightarrow \quad \overline{z} = \frac{14}{9}.$$