Conservative fields and potential functions. (Sect. 16.3)

- ▶ Review: Line integral of a vector field.
- Conservative fields.
- ▶ The line integral of conservative fields.
- Finding the potential of a conservative field.
- Comments on exact differential forms.

Definition

The *line integral* of a vector-valued function $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, along the curve associated with the function $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to D \subset \mathbb{R}^3$ is given by

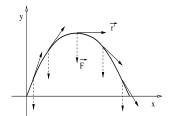
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt$$

Definition

The *line integral* of a vector-valued function $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, along the curve associated with the function $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to D \subset \mathbb{R}^3$ is given by

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt$$

Example

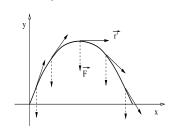


Definition

The *line integral* of a vector-valued function $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, along the curve associated with the function $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to D \subset \mathbb{R}^3$ is given by

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt$$

Example



Remark: An equivalent expression is:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{t_{0}}^{t_{1}} \mathbf{F}(t) \cdot \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} |\mathbf{r}'(t)| dt,$$

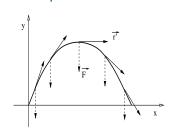
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{s_{0}}^{s_{1}} \hat{\mathbf{F}} \cdot \hat{\mathbf{u}} ds,$$

Definition

The *line integral* of a vector-valued function $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, along the curve associated with the function $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to D \subset \mathbb{R}^3$ is given by

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt$$

Example



Remark: An equivalent expression is:

$$\begin{split} &\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \, |\mathbf{r}'(t)| \, dt, \\ &\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{s_0}^{s_1} \hat{\mathbf{F}} \cdot \hat{\mathbf{u}} \, ds, \end{split}$$

where
$$\hat{\mathbf{u}} = \frac{\mathbf{r}'(t(s))}{|\mathbf{r}'(t(s))|}$$
, and $\hat{\mathbf{F}} = \mathbf{F}(t(s))$.

Work done by a force on a particle.

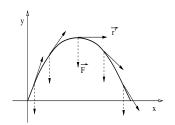
Definition

In the case that the vector field $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, represents a force acting on a particle with position function $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to D \subset \mathbb{R}^3$, then the line integral

$$W = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r},$$

is called the work done by the force on the particle.

Example



A projectile of mass *m* moving on the surface of Earth.

Work done by a force on a particle.

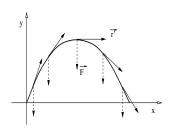
Definition

In the case that the vector field $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, represents a force acting on a particle with position function $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to D \subset \mathbb{R}^3$, then the line integral

$$W = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r},$$

is called the work done by the force on the particle.

Example



A projectile of mass *m* moving on the surface of Earth.

▶ The movement takes place on a plane, and $\mathbf{F} = \langle 0, -mg \rangle$.

Work done by a force on a particle.

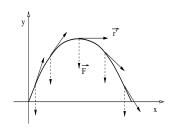
Definition

In the case that the vector field $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, represents a force acting on a particle with position function $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to D \subset \mathbb{R}^3$, then the line integral

$$W = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r},$$

is called the work done by the force on the particle.

Example



A projectile of mass *m* moving on the surface of Earth.

- ► The movement takes place on a plane, and $\mathbf{F} = \langle 0, -mg \rangle$.
- ▶ $W \le 0$ in the first half of the trajectory, and $W \ge 0$ on the second half.

Conservative fields and potential functions. (Sect. 16.3)

- ▶ Review: Line integral of a vector field.
- Conservative fields.
- ▶ The line integral of conservative fields.
- Finding the potential of a conservative field.
- Comments on exact differential forms.

Definition

A vector field $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, is called *conservative* iff there exists a scalar function $f: D \subset \mathbb{R}^n \to \mathbb{R}$, called *potential function*, such that

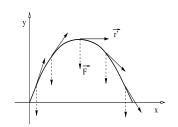
$$\mathbf{F} = \nabla f$$
.

Definition

A vector field $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, is called *conservative* iff there exists a scalar function $f: D \subset \mathbb{R}^n \to \mathbb{R}$, called *potential function*, such that

$$\mathbf{F} = \nabla f$$
.

Example



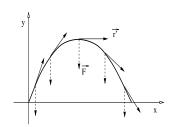
A projectile of mass *m* moving on the surface of Earth.

Definition

A vector field $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, is called *conservative* iff there exists a scalar function $f: D \subset \mathbb{R}^n \to \mathbb{R}$, called *potential function*, such that

$$\mathbf{F} = \nabla f$$
.

Example



A projectile of mass *m* moving on the surface of Earth.

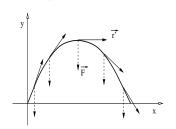
▶ The movement takes place on a plane, and $\mathbf{F} = \langle 0, -mg \rangle$.

Definition

A vector field $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, is called *conservative* iff there exists a scalar function $f: D \subset \mathbb{R}^n \to \mathbb{R}$, called *potential function*, such that

$$\mathbf{F} = \nabla f$$
.

Example



A projectile of mass *m* moving on the surface of Earth.

- ► The movement takes place on a plane, and $\mathbf{F} = \langle 0, -mg \rangle$.
- ▶ $\mathbf{F} = \nabla f$, with f = -mgy.

Example

Show that the vector field $\mathbf{F} = \frac{1}{(x_1^2 + x_2^2 + x_3^2)^{3/2}} \langle x_1, x_2, x_3 \rangle$ is conservative and find the potential function.

Example

Show that the vector field $\mathbf{F} = \frac{1}{(x_1^2 + x_2^2 + x_3^2)^{3/2}} \langle x_1, x_2, x_3 \rangle$ is conservative and find the potential function.

Solution: The field $\mathbf{F}=\langle F_1,F_2,F_3\rangle$ is conservative iff there exists a potential function f such that $\mathbf{F}=\nabla f$,

Example

Show that the vector field $\mathbf{F} = \frac{1}{(x_1^2 + x_2^2 + x_3^2)^{3/2}} \langle x_1, x_2, x_3 \rangle$ is conservative and find the potential function.

Solution: The field $\mathbf{F}=\langle F_1,F_2,F_3\rangle$ is conservative iff there exists a potential function f such that $\mathbf{F}=\nabla f$, that is,

$$F_1 = \partial_{x_1} f, \qquad F_2 = \partial_{x_2} f, \qquad F_3 = \partial_{x_3} f.$$

Example

Show that the vector field $\mathbf{F} = \frac{1}{(x_1^2 + x_2^2 + x_3^2)^{3/2}} \langle x_1, x_2, x_3 \rangle$ is conservative and find the potential function.

Solution: The field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ is conservative iff there exists a potential function f such that $\mathbf{F} = \nabla f$, that is,

$$F_1 = \partial_{x_1} f, \qquad F_2 = \partial_{x_2} f, \qquad F_3 = \partial_{x_3} f.$$

Since

$$\frac{x_i}{(x_1^2+x_2^2+x_3^2)^{3/2}} = -\partial_{x_i} \Big[\big(x_1^2+x_2^2+x_3^2\big)^{-1/2} \Big], \quad i=1,2,3,$$

Example

Show that the vector field $\mathbf{F} = \frac{1}{(x_1^2 + x_2^2 + x_3^2)^{3/2}} \langle x_1, x_2, x_3 \rangle$ is conservative and find the potential function.

Solution: The field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ is conservative iff there exists a potential function f such that $\mathbf{F} = \nabla f$, that is,

$$F_1 = \partial_{x_1} f, \qquad F_2 = \partial_{x_2} f, \qquad F_3 = \partial_{x_3} f.$$

Since

$$\frac{x_i}{(x_1^2 + x_2^2 + x_3^2)^{3/2}} = -\partial_{x_i} \left[\left(x_1^2 + x_2^2 + x_3^2 \right)^{-1/2} \right], \quad i = 1, 2, 3,$$

then we conclude that $\mathbf{F} = \nabla f$, with $f = -\frac{1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$.

Conservative fields and potential functions. (Sect. 16.3)

- ▶ Review: Line integral of a vector field.
- Conservative fields.
- ► The line integral of conservative fields.
- Finding the potential of a conservative field.
- Comments on exact differential forms.

Definition

A set $D \subset \mathbb{R}^n$, with n=2,3, is called *simply connected* iff every two points in D can be connected by a smooth curve inside D and every loop in D can be smoothly contracted to a point without leaving D.

Definition

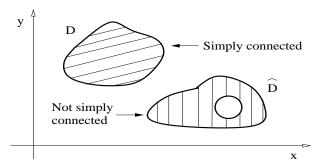
A set $D \subset \mathbb{R}^n$, with n = 2, 3, is called *simply connected* iff every two points in D can be connected by a smooth curve inside D and every loop in D can be smoothly contracted to a point without leaving D.

Remark: A set is simply connected iff it consists of one piece and it contains no holes.

Definition

A set $D \subset \mathbb{R}^n$, with n = 2, 3, is called *simply connected* iff every two points in D can be connected by a smooth curve inside D and every loop in D can be smoothly contracted to a point without leaving D.

Remark: A set is simply connected iff it consists of one piece and it contains no holes.



Notation: If the path $C \in \mathbb{R}^n$, with n = 2, 3, has end points \mathbf{r}_0 , \mathbf{r}_1 , then denote the line integral of a field \mathbf{F} along C as follows

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \mathbf{F} \cdot d\mathbf{r}.$$

Notation: If the path $C \in \mathbb{R}^n$, with n = 2, 3, has end points \mathbf{r}_0 , \mathbf{r}_1 , then denote the line integral of a field \mathbf{F} along C as follows

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \mathbf{F} \cdot d\mathbf{r}.$$

(This notation emphasizes the end points, not the path.)

Notation: If the path $C \in \mathbb{R}^n$, with n = 2, 3, has end points \mathbf{r}_0 , \mathbf{r}_1 , then denote the line integral of a field \mathbf{F} along C as follows

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \mathbf{F} \cdot d\mathbf{r}.$$

(This notation emphasizes the end points, not the path.) Theorem

A smooth vector field $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, defined on a simply connected domain $D \subset \mathbb{R}^n$ is conservative with $\mathbf{F} = \nabla f$ iff for every two points \mathbf{r}_0 , $\mathbf{r}_1 \in D$ the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ is independent of the path C joining \mathbf{r}_0 to \mathbf{r}_1 and holds

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0).$$

Notation: If the path $C \in \mathbb{R}^n$, with n = 2, 3, has end points \mathbf{r}_0 , \mathbf{r}_1 , then denote the line integral of a field \mathbf{F} along C as follows

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_{0}}^{\mathbf{r}_{1}} \mathbf{F} \cdot d\mathbf{r}.$$

(This notation emphasizes the end points, not the path.) Theorem

A smooth vector field $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, defined on a simply connected domain $D \subset \mathbb{R}^n$ is conservative with $\mathbf{F} = \nabla f$ iff for every two points \mathbf{r}_0 , $\mathbf{r}_1 \in D$ the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ is independent of the path C joining \mathbf{r}_0 to \mathbf{r}_1 and holds

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0).$$

Remark: A field **F** is conservative iff $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ is path independent.

Summary:
$$\mathbf{F} = \nabla f$$
 equivalent to $\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$.

Summary:
$$\mathbf{F} = \nabla f$$
 equivalent to $\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$.

Proof: Only (\Rightarrow) .

Summary:
$$\mathbf{F} = \nabla f$$
 equivalent to $\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$.

Proof: Only (\Rightarrow) .

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r}$$

Summary:
$$\mathbf{F} = \nabla f$$
 equivalent to $\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$.

Proof: Only (\Rightarrow) .

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r} = \int_{t_0}^{t_1} (\nabla f) \Big|_{\mathbf{r}(t)} \cdot \mathbf{r}'(t) \, dt,$$

Summary: $\mathbf{F} = \nabla f$ equivalent to $\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$.

Proof: Only (\Rightarrow) .

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r} = \int_{t_0}^{t_1} (\nabla f) \Big|_{\mathbf{r}(t)} \cdot \mathbf{r}'(t) \, dt,$$

where $\mathbf{r}(t_0) = \mathbf{r}_0$ and $\mathbf{r}(t_1) = \mathbf{r}_1$.

Summary: $\mathbf{F} = \nabla f$ equivalent to $\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$.

Proof: Only (\Rightarrow) .

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r} = \int_{t_0}^{t_1} (\nabla f) \Big|_{\mathbf{r}(t)} \cdot \mathbf{r}'(t) \, dt,$$

where $\mathbf{r}(t_0) = \mathbf{r}_0$ and $\mathbf{r}(t_1) = \mathbf{r}_1$. Therefore,

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \frac{d}{dt} [f(\mathbf{r}(t))] dt$$

Summary: $\mathbf{F} = \nabla f$ equivalent to $\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$.

Proof: Only (\Rightarrow) .

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r} = \int_{t_0}^{t_1} (\nabla f) \Big|_{\mathbf{r}(t)} \cdot \mathbf{r}'(t) \, dt,$$

where $\mathbf{r}(t_0) = \mathbf{r}_0$ and $\mathbf{r}(t_1) = \mathbf{r}_1$. Therefore,

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \frac{d}{dt} \big[f(\mathbf{r}(t)) \big] dt = f(\mathbf{r}(t_1)) - f(\mathbf{r}(t_0)).$$

Summary: $\mathbf{F} = \nabla f$ equivalent to $\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$.

Proof: Only (\Rightarrow) .

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r} = \int_{t_0}^{t_1} (\nabla f) \Big|_{\mathbf{r}(t)} \cdot \mathbf{r}'(t) dt,$$

where $\mathbf{r}(t_0) = \mathbf{r}_0$ and $\mathbf{r}(t_1) = \mathbf{r}_1$. Therefore,

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \frac{d}{dt} \big[f(\mathbf{r}(t)) \big] dt = f(\mathbf{r}(t_1)) - f(\mathbf{r}(t_0)).$$

We conclude that
$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$$
.

Summary:
$$\mathbf{F} = \nabla f$$
 equivalent to $\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$.

Proof: Only (\Rightarrow) .

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r} = \int_{t_0}^{t_1} (\nabla f) \Big|_{\mathbf{r}(t)} \cdot \mathbf{r}'(t) dt,$$

where $\mathbf{r}(t_0) = \mathbf{r}_0$ and $\mathbf{r}(t_1) = \mathbf{r}_1$. Therefore,

$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \frac{d}{dt} \big[f(\mathbf{r}(t)) \big] dt = f(\mathbf{r}(t_1)) - f(\mathbf{r}(t_0)).$$

We conclude that
$$\int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$$
.

(The statement (\Leftarrow) is more complicated to prove.)

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz.$$

Solution: I is a line integral for a field in \mathbb{R}^3 ,

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x,2y,2z\rangle \cdot \langle dx,dy,dz\rangle.$$

Introduce $\mathbf{F} = \langle 2x, 2y, 2z \rangle$, $\mathbf{r}_0 = (0, 0, 0)$ and $\mathbf{r}_1 = (1, 2, 3)$,

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

Introduce
$$\mathbf{F}=\langle 2x,2y,2z\rangle$$
, $\mathbf{r}_0=(0,0,0)$ and $\mathbf{r}_1=(1,2,3)$, then $I=\int_{\mathbf{r}_0}^{\mathbf{r}_1}\mathbf{F}\cdot d\mathbf{r}$.

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

Introduce $\mathbf{F}=\langle 2x,2y,2z\rangle$, $\mathbf{r}_0=(0,0,0)$ and $\mathbf{r}_1=(1,2,3)$, then $I=\int_{\mathbf{r}_0}^{\mathbf{r}_1}\mathbf{F}\cdot d\mathbf{r}$. The field \mathbf{F} is conservative,

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

Introduce
$$\mathbf{F} = \langle 2x, 2y, 2z \rangle$$
, $\mathbf{r}_0 = (0, 0, 0)$ and $\mathbf{r}_1 = (1, 2, 3)$, then $I = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r}$. The field \mathbf{F} is conservative, since $\mathbf{F} = \nabla f$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

Introduce $\mathbf{F} = \langle 2x, 2y, 2z \rangle$, $\mathbf{r}_0 = (0, 0, 0)$ and $\mathbf{r}_1 = (1, 2, 3)$, then $I = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r}$. The field \mathbf{F} is conservative, since $\mathbf{F} = \nabla f$ with potential $f(x, y, z) = x^2 + y^2 + z^2$.

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

$$I = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r}$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

$$I = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0)$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

$$I = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0) = |\mathbf{r}_1|^2 - |\mathbf{r}_0|^2$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

$$I = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0) = |\mathbf{r}_1|^2 - |\mathbf{r}_0|^2 = (1 + 4 + 9).$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
.

Solution: I is a line integral for a field in \mathbb{R}^3 , since

$$I = \int_{(0,0,0)}^{(1,2,3)} \langle 2x, 2y, 2z \rangle \cdot \langle dx, dy, dz \rangle.$$

Introduce $\mathbf{F}=\langle 2x,2y,2z\rangle$, $\mathbf{r}_0=(0,0,0)$ and $\mathbf{r}_1=(1,2,3)$, then $I=\int_{\mathbf{r}_0}^{\mathbf{r}_1}\mathbf{F}\cdot d\mathbf{r}$. The field \mathbf{F} is conservative, since $\mathbf{F}=\nabla f$ with potential $f(x,y,z)=x^2+y^2+z^2$. That is $f(\mathbf{r})=|\mathbf{r}|^2$. Therefore,

$$I = \int_{\mathbf{r}_0}^{\mathbf{r}_1} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}_1) - f(\mathbf{r}_0) = |\mathbf{r}_1|^2 - |\mathbf{r}_0|^2 = (1 + 4 + 9).$$

We conclude that I = 14.

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

Solution: Consider the path C given by $\mathbf{r}(t) = \langle 1, 2, 3 \rangle t$.

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

Solution: Consider the path C given by $\mathbf{r}(t) = \langle 1, 2, 3 \rangle t$. Then $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$, and $\mathbf{r}(1) = \langle 1, 2, 3 \rangle$.

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

Solution: Consider the path C given by $\mathbf{r}(t) = \langle 1, 2, 3 \rangle t$. Then $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$, and $\mathbf{r}(1) = \langle 1, 2, 3 \rangle$. We now evaluate $\mathbf{F} = \langle 2x, 2y, 2z \rangle$ along $\mathbf{r}(t)$,

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

$$I = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

$$I = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt = \int_0^1 \langle 2t, 4t, 6t \rangle \cdot \langle 1, 2, 3 \rangle dt$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

$$I = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt = \int_0^1 \langle 2t, 4t, 6t \rangle \cdot \langle 1, 2, 3 \rangle dt$$

$$I = \int_0^1 (2t + 8t + 18t) \, dt$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

$$I = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt = \int_0^1 \langle 2t, 4t, 6t \rangle \cdot \langle 1, 2, 3 \rangle dt$$

$$I = \int_0^1 (2t + 8t + 18t) dt = \int_0^1 28t dt$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

$$I = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt = \int_0^1 \langle 2t, 4t, 6t \rangle \cdot \langle 1, 2, 3 \rangle dt$$

$$I = \int_0^1 (2t + 8t + 18t) dt = \int_0^1 28t dt = 28 \left(\frac{t^2}{2}\Big|_0^1\right).$$

Example

Evaluate
$$I = \int_{(0,0,0)}^{(1,2,3)} 2x \, dx + 2y \, dy + 2z \, dz$$
 along a straight line.

Solution: Consider the path C given by $\mathbf{r}(t) = \langle 1, 2, 3 \rangle t$. Then $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$, and $\mathbf{r}(1) = \langle 1, 2, 3 \rangle$. We now evaluate $\mathbf{F} = \langle 2x, 2y, 2z \rangle$ along $\mathbf{r}(t)$, that is, $\mathbf{F}(t) = \langle 2t, 4t, 6t \rangle$. Therefore,

$$I = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt = \int_0^1 \langle 2t, 4t, 6t \rangle \cdot \langle 1, 2, 3 \rangle dt$$

$$I = \int_0^1 (2t + 8t + 18t) dt = \int_0^1 28t dt = 28 \left(\frac{t^2}{2}\Big|_0^1\right).$$

We conclude that I = 14.

<1

Conservative fields and potential functions. (Sect. 16.3)

- ▶ Review: Line integral of a vector field.
- Conservative fields.
- ▶ The line integral of conservative fields.
- Finding the potential of a conservative field.
- Comments on exact differential forms.

Theorem (Characterization of potential fields)

A smooth field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ on a simply connected domain $D \subset \mathbb{R}^3$ is a conservative field iff hold

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

Theorem (Characterization of potential fields)

A smooth field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ on a simply connected domain $D \subset \mathbb{R}^3$ is a conservative field iff hold

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

Proof: Only (\Rightarrow) .

Theorem (Characterization of potential fields)

A smooth field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ on a simply connected domain $D \subset \mathbb{R}^3$ is a conservative field iff hold

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

Proof: Only (\Rightarrow) .

Since the vector field **F** is conservative,

Theorem (Characterization of potential fields)

A smooth field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ on a simply connected domain $D \subset \mathbb{R}^3$ is a conservative field iff hold

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

Proof: Only (\Rightarrow) .

Since the vector field \mathbf{F} is conservative, there exists a scalar field f such that $\mathbf{F} = \nabla f$.

Theorem (Characterization of potential fields)

A smooth field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ on a simply connected domain $D \subset \mathbb{R}^3$ is a conservative field iff hold

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

Proof: Only (\Rightarrow) .

Theorem (Characterization of potential fields)

A smooth field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ on a simply connected domain $D \subset \mathbb{R}^3$ is a conservative field iff hold

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

Proof: Only (\Rightarrow) .

$$F_i = \partial_i f$$

Theorem (Characterization of potential fields)

A smooth field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ on a simply connected domain $D \subset \mathbb{R}^3$ is a conservative field iff hold

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

Proof: Only (\Rightarrow) .

$$F_i = \partial_i f \quad \Rightarrow \quad \partial_i F_j = \partial_i \partial_j f$$

Theorem (Characterization of potential fields)

A smooth field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ on a simply connected domain $D \subset \mathbb{R}^3$ is a conservative field iff hold

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

Proof: Only (\Rightarrow) .

$$F_i = \partial_i f \quad \Rightarrow \quad \partial_i F_j = \partial_i \partial_j f = \partial_j \partial_i f$$

Theorem (Characterization of potential fields)

A smooth field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ on a simply connected domain $D \subset \mathbb{R}^3$ is a conservative field iff hold

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

Proof: Only (\Rightarrow) .

$$F_i = \partial_i f \quad \Rightarrow \quad \partial_i F_j = \partial_i \partial_j f = \partial_j \partial_i f = \partial_j F_i.$$

Theorem (Characterization of potential fields)

A smooth field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ on a simply connected domain $D \subset \mathbb{R}^3$ is a conservative field iff hold

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

Proof: Only (\Rightarrow) .

Since the vector field \mathbf{F} is conservative, there exists a scalar field f such that $\mathbf{F} = \nabla f$. Then the equations above are satisfied, since for i, j = 1, 2, 3 hold

$$F_i = \partial_i f \quad \Rightarrow \quad \partial_i F_j = \partial_i \partial_j f = \partial_j \partial_i f = \partial_j F_i.$$

(The statement (\Leftarrow) is more complicated to prove.)

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold,

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

with $x_1 = x$, $x_2 = y$, and $x_3 = z$.

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2$$

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x$$
,

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x, \qquad \partial_2 F_1$$

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x, \qquad \partial_2 F_1 = 2x,$$

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x, \qquad \partial_2 F_1 = 2x,$$

$$\partial_2 F_3$$

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x, \qquad \partial_2 F_1 = 2x,$$

$$\partial_2 F_3 = -2z$$
,

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x, \qquad \partial_2 F_1 = 2x,$$

$$\partial_2 F_3 = -2z, \qquad \partial_3 F_2$$

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x, \qquad \partial_2 F_1 = 2x,$$

$$\partial_2 F_3 = -2z, \qquad \partial_3 F_2 = -2z,$$

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x,$$
 $\partial_2 F_1 = 2x,$ $\partial_2 F_3 = -2z,$ $\partial_3 F_2 = -2z,$ $\partial_3 F_1$

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x,$$
 $\partial_2 F_1 = 2x,$ $\partial_2 F_3 = -2z,$ $\partial_3 F_2 = -2z,$ $\partial_3 F_1 = 0,$

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x,$$
 $\partial_2 F_1 = 2x,$ $\partial_2 F_3 = -2z,$ $\partial_3 F_2 = -2z,$ $\partial_3 F_1 = 0,$ $\partial_1 F_3$

Example

Show that the field $\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle$ is conservative.

Solution: We need to show that the equations in the Theorem above hold, that is

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

$$\partial_1 F_2 = 2x,$$
 $\partial_2 F_1 = 2x,$ $\partial_2 F_3 = -2z,$ $\partial_3 F_2 = -2z,$ $\partial_1 F_3 = 0.$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y, z)$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y,z) \quad \Rightarrow \quad f = x^2y + g(y,z).$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y,z) \quad \Rightarrow \quad f = x^2y + g(y,z).$$

$$\partial_y f = x^2 + \partial_y g(y, z)$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y,z) \quad \Rightarrow \quad f = x^2y + g(y,z).$$

$$\partial_y f = x^2 + \partial_y g(y, z) = x^2 - z^2$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y,z) \quad \Rightarrow \quad f = x^2y + g(y,z).$$

$$\partial_y f = x^2 + \partial_y g(y, z) = x^2 - z^2 \quad \Rightarrow \quad \partial_y g(y, z) = -z^2.$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y, z) \quad \Rightarrow \quad f = x^2y + g(y, z).$$

$$\partial_y f = x^2 + \partial_y g(y, z) = x^2 - z^2 \quad \Rightarrow \quad \partial_y g(y, z) = -z^2.$$

$$g(y, z) = -\int z^2 \, dy + h(z)$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y, z) \quad \Rightarrow \quad f = x^2y + g(y, z).$$

$$\partial_y f = x^2 + \partial_y g(y, z) = x^2 - z^2 \quad \Rightarrow \quad \partial_y g(y, z) = -z^2.$$

$$g(y, z) = -\int z^2 \, dy + h(z) = -z^2y + h(z)$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y, z) \quad \Rightarrow \quad f = x^2y + g(y, z).$$

$$\partial_y f = x^2 + \partial_y g(y, z) = x^2 - z^2 \quad \Rightarrow \quad \partial_y g(y, z) = -z^2.$$

$$g(y, z) = -\int z^2 \, dy + h(z) = -z^2y + h(z) \Rightarrow f = x^2y - z^2y + h(z).$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y, z) \quad \Rightarrow \quad f = x^2y + g(y, z).$$

$$\partial_y f = x^2 + \partial_y g(y, z) = x^2 - z^2 \quad \Rightarrow \quad \partial_y g(y, z) = -z^2.$$

$$g(y, z) = -\int z^2 \, dy + h(z) = -z^2y + h(z) \Rightarrow f = x^2y - z^2y + h(z).$$

$$\partial_z f = -2zy + \partial_z h(z)$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y, z) \quad \Rightarrow \quad f = x^2y + g(y, z).$$

$$\partial_y f = x^2 + \partial_y g(y, z) = x^2 - z^2 \quad \Rightarrow \quad \partial_y g(y, z) = -z^2.$$

$$g(y, z) = -\int z^2 \, dy + h(z) = -z^2y + h(z) \Rightarrow f = x^2y - z^2y + h(z).$$

$$\partial_z f = -2zy + \partial_z h(z) = -2yz$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y, z) \quad \Rightarrow \quad f = x^2y + g(y, z).$$

$$\partial_y f = x^2 + \partial_y g(y, z) = x^2 - z^2 \quad \Rightarrow \quad \partial_y g(y, z) = -z^2.$$

$$g(y, z) = -\int z^2 \, dy + h(z) = -z^2y + h(z) \Rightarrow f = x^2y - z^2y + h(z).$$

$$\partial_z f = -2zy + \partial_z h(z) = -2yz \Rightarrow \partial_z h(z) = 0$$

Example

Find the potential function of the conservative field

$$\mathbf{F} = \langle 2xy, (x^2 - z^2), -2yz \rangle.$$

$$\mathbf{F} = \nabla f \quad \Leftrightarrow \quad \partial_x f = 2xy, \quad \partial_y f = x^2 - z^2, \quad \partial_z f = -2yz.$$

$$f = \int 2xy \, dx + g(y,z) \quad \Rightarrow \quad f = x^2y + g(y,z).$$

$$\partial_y f = x^2 + \partial_y g(y, z) = x^2 - z^2 \quad \Rightarrow \quad \partial_y g(y, z) = -z^2.$$

$$g(y,z) = -\int z^2 dy + h(z) = -z^2 y + h(z) \Rightarrow f = x^2 y - z^2 y + h(z).$$

$$\partial_z f = -2zy + \partial_z h(z) = -2yz \Rightarrow \partial_z h(z) = 0 \Rightarrow f = (x^2 - z^2)y + c_0.$$

Conservative fields and potential functions. (Sect. 16.3)

- ▶ Review: Line integral of a vector field.
- Conservative fields.
- ▶ The line integral of conservative fields.
- Finding the potential of a conservative field.
- Comments on exact differential forms.

Notation: We call a *differential form* to the integrand in a line integral for a smooth field \mathbf{F} ,

Notation: We call a *differential form* to the integrand in a line integral for a smooth field **F**, that is,

 $\mathbf{F} \cdot d\mathbf{r}$

Notation: We call a *differential form* to the integrand in a line integral for a smooth field **F**, that is,

$$\mathbf{F} \cdot d\mathbf{r} = \langle F_x, F_y, F_z \rangle \cdot \langle dx, dy, dz \rangle$$

Notation: We call a *differential form* to the integrand in a line integral for a smooth field **F**, that is,

$$\mathbf{F} \cdot d\mathbf{r} = \langle F_x, F_y, F_z \rangle \cdot \langle dx, dy, dz \rangle = F_x dx + F_y dy + F_z dz.$$

Notation: We call a *differential form* to the integrand in a line integral for a smooth field **F**, that is,

$$\mathbf{F} \cdot d\mathbf{r} = \langle F_x, F_y, F_z \rangle \cdot \langle dx, dy, dz \rangle = F_x dx + F_y dy + F_z dz.$$

Remark: A differential form is a quantity that can be integrated along a path.

Notation: We call a *differential form* to the integrand in a line integral for a smooth field **F**, that is,

$$\mathbf{F} \cdot d\mathbf{r} = \langle F_x, F_y, F_z \rangle \cdot \langle dx, dy, dz \rangle = F_x dx + F_y dy + F_z dz.$$

Remark: A differential form is a quantity that can be integrated along a path.

Definition

A differential form $\mathbf{F} \cdot d\mathbf{r} = F_x dx + F_y dy + F_z dz$ is called *exact* iff there exists a scalar function f such that

$$F_x dx + F_y dy + F_z dz = \partial_x f dx + \partial_y f dy + \partial_z f dz.$$

Notation: We call a *differential form* to the integrand in a line integral for a smooth field **F**, that is,

$$\mathbf{F} \cdot d\mathbf{r} = \langle F_x, F_y, F_z \rangle \cdot \langle dx, dy, dz \rangle = F_x dx + F_y dy + F_z dz.$$

Remark: A differential form is a quantity that can be integrated along a path.

Definition

A differential form $\mathbf{F} \cdot d\mathbf{r} = F_x dx + F_y dy + F_z dz$ is called *exact* iff there exists a scalar function f such that

$$F_x dx + F_y dy + F_z dz = \partial_x f dx + \partial_y f dy + \partial_z f dz.$$

Remarks:

▶ A differential form $\mathbf{F} \cdot d\mathbf{r}$ is exact iff $\mathbf{F} = \nabla f$.

Notation: We call a *differential form* to the integrand in a line integral for a smooth field **F**, that is,

$$\mathbf{F} \cdot d\mathbf{r} = \langle F_x, F_y, F_z \rangle \cdot \langle dx, dy, dz \rangle = F_x dx + F_y dy + F_z dz.$$

Remark: A differential form is a quantity that can be integrated along a path.

Definition

A differential form $\mathbf{F} \cdot d\mathbf{r} = F_x dx + F_y dy + F_z dz$ is called *exact* iff there exists a scalar function f such that

$$F_x dx + F_y dy + F_z dz = \partial_x f dx + \partial_y f dy + \partial_z f dz.$$

Remarks:

- ▶ A differential form $\mathbf{F} \cdot d\mathbf{r}$ is exact iff $\mathbf{F} = \nabla f$.
- ► An exact differential form is nothing else than another name for a conservative field.

Example

Show that the differential form given below is exact, where $\mathbf{F} \cdot d\mathbf{r} = 2xy \ dx + (x^2 - z^2) \ dy - 2yz \ dz$.

Example

Show that the differential form given below is exact, where $\mathbf{F} \cdot d\mathbf{r} = 2xy \ dx + (x^2 - z^2) \ dy - 2yz \ dz$.

Solution: We need to do the same calculation we did above:

Example

Show that the differential form given below is exact, where $\mathbf{F} \cdot d\mathbf{r} = 2xy \ dx + (x^2 - z^2) \ dy - 2yz \ dz$.

Solution: We need to do the same calculation we did above: Writing $\mathbf{F} \cdot d\mathbf{r} = F_1 dx_1 + F_2 dx_2 + F_3 dx_3$, show that

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

with $x_1 = x$, $x_2 = y$, and $x_3 = z$.

Example

Show that the differential form given below is exact, where $\mathbf{F} \cdot d\mathbf{r} = 2xy \ dx + (x^2 - z^2) \ dy - 2yz \ dz$.

Solution: We need to do the same calculation we did above: Writing $\mathbf{F} \cdot d\mathbf{r} = F_1 dx_1 + F_2 dx_2 + F_3 dx_3$, show that

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

with $x_1 = x$, $x_2 = y$, and $x_3 = z$. We showed that this is the case, since

$$\partial_1 F_2 = 2x,$$
 $\partial_2 F_1 = 2x,$ $\partial_2 F_3 = -2z,$ $\partial_3 F_2 = -2z,$ $\partial_3 F_1 = 0,$ $\partial_1 F_3 = 0.$

Example

Show that the differential form given below is exact, where $\mathbf{F} \cdot d\mathbf{r} = 2xy \, dx + (x^2 - z^2) \, dy - 2yz \, dz$.

Solution: We need to do the same calculation we did above: Writing $\mathbf{F} \cdot d\mathbf{r} = F_1 dx_1 + F_2 dx_2 + F_3 dx_3$, show that

$$\partial_2 F_3 = \partial_3 F_2, \qquad \partial_3 F_1 = \partial_1 F_3, \qquad \partial_1 F_2 = \partial_2 F_1.$$

with $x_1 = x$, $x_2 = y$, and $x_3 = z$. We showed that this is the case, since

$$\partial_1 F_2 = 2x,$$
 $\partial_2 F_1 = 2x,$ $\partial_2 F_3 = -2z,$ $\partial_3 F_2 = -2z,$ $\partial_1 F_3 = 0.$

So, there exists f such that $\mathbf{F} \cdot d\mathbf{r} = \nabla f \cdot d\mathbf{r}$.

 $\langle 1 \rangle$

Green's Theorem on a plane. (Sect. 16.4)

- Review: Line integrals and flux integrals.
- ▶ Green's Theorem on a plane.
 - Circulation-tangential form.
 - Flux-normal form.
- ► Tangential and normal forms equivalence.

Definition

The *line integral* of a vector-valued function $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, along the curve $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to D \subset \mathbb{R}^3$, with arc length function s, is given by

$$\int_{s_0}^{s_1} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) \, dt,$$

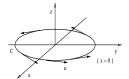
where
$$\mathbf{u}=rac{\mathbf{r}'}{|\mathbf{r}'|}$$
, and $s_0=s(t_0)$, $s_1=s(t_1)$.

Definition

The *line integral* of a vector-valued function $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, along the curve $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to D \subset \mathbb{R}^3$, with arc length function s, is given by

$$\int_{s_0}^{s_1} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) \, dt,$$

where
$$\mathbf{u}=rac{\mathbf{r}'}{|\mathbf{r}'|}$$
, and $s_0=s(t_0)$, $s_1=s(t_1)$.

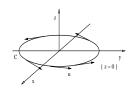


Definition

The *line integral* of a vector-valued function $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, with n=2,3, along the curve $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to D \subset \mathbb{R}^3$, with arc length function s, is given by

$$\int_{s_0}^{s_1} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) \, dt,$$

where
$$\mathbf{u}=rac{\mathbf{r}'}{|\mathbf{r}'|}$$
, and $s_0=s(t_0),\ s_1=s(t_1).$



Remark: Since
$$\mathbf{F} = \langle F_x, F_y \rangle$$
 and $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, in components,

$$\int_{t_0}^{t_1} \mathbf{F}(t) \cdot \mathbf{r}'(t) dt$$

$$= \int_{t_0}^{t_1} \left[F_x(t) x'(t) + F_y(t) y'(t) \right] dt.$$

Example

Evaluate the line integral of $\mathbf{F} = \langle -y, x \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Example

Evaluate the line integral of $\mathbf{F} = \langle -y, x \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Evaluate **F** along the curve: $\mathbf{F}(t) = \langle -\sin(t), \cos(t) \rangle$.

Example

Evaluate the line integral of $\mathbf{F} = \langle -y, x \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Evaluate **F** along the curve: $\mathbf{F}(t) = \langle -\sin(t), \cos(t) \rangle$. Now compute the derivative vector $\mathbf{r}'(t) = \langle -\sin(t), \cos(t) \rangle$.

Example

Evaluate the line integral of $\mathbf{F} = \langle -y, x \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{t_0}^{t_1} \left[F_x(t) x'(t) + F_y(t) y'(t) \right] \, dt,$$

Example

Evaluate the line integral of $\mathbf{F} = \langle -y, x \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{t_0}^{t_1} \left[F_x(t) x'(t) + F_y(t) y'(t) \right] \, dt,$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{0}^{2\pi} \left[(-\sin(t))(-\sin(t)) + \cos(t)\cos(t) \right] dt,$$

Example

Evaluate the line integral of $\mathbf{F} = \langle -y, x \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{t_0}^{t_1} \left[F_x(t) x'(t) + F_y(t) y'(t) \right] \, dt,$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{0}^{2\pi} \left[(-\sin(t))(-\sin(t)) + \cos(t) \cos(t) \right] \, dt,$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{0}^{2\pi} \left[\sin^2(t) + \cos^2(t) \right] \, dt$$

Example

Evaluate the line integral of $\mathbf{F} = \langle -y, x \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{t_0}^{t_1} \left[F_x(t) x'(t) + F_y(t) y'(t) \right] \, dt,$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{0}^{2\pi} \left[(-\sin(t))(-\sin(t)) + \cos(t)\cos(t) \right] dt,$$

$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{0}^{2\pi} \left[\sin^{2}(t) + \cos^{2}(t) \right] \, dt \quad \Rightarrow \quad \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{u} \, ds = 2\pi.$$

Definition

The *flux* of a vector field $\mathbf{F}: \{z=0\} \subset \mathbb{R}^3 \to \{z=0\} \subset \mathbb{R}^3$ along a closed plane loop $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to \{z=0\} \subset \mathbb{R}^3$ is given by

$$\mathbb{F} = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds,$$

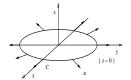
where \mathbf{n} is the unit outer normal vector to the curve inside the plane $\{z=0\}$.

Definition

The *flux* of a vector field $\mathbf{F}: \{z=0\} \subset \mathbb{R}^3 \to \{z=0\} \subset \mathbb{R}^3$ along a closed plane loop $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to \{z=0\} \subset \mathbb{R}^3$ is given by

$$\mathbb{F} = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds,$$

where **n** is the unit outer normal vector to the curve inside the plane $\{z = 0\}$.



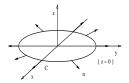
Definition

The *flux* of a vector field $\mathbf{F}: \{z=0\} \subset \mathbb{R}^3 \to \{z=0\} \subset \mathbb{R}^3$ along a closed plane loop $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to \{z=0\} \subset \mathbb{R}^3$ is given by

$$\mathbb{F} = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds,$$

where \mathbf{n} is the unit outer normal vector to the curve inside the plane $\{z=0\}$.

Remark: Since
$$\mathbf{F} = \langle F_x, F_y, 0 \rangle$$
,

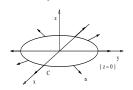


Definition

The *flux* of a vector field $\mathbf{F}: \{z=0\} \subset \mathbb{R}^3 \to \{z=0\} \subset \mathbb{R}^3$ along a closed plane loop $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to \{z=0\} \subset \mathbb{R}^3$ is given by

$$\mathbb{F} = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds,$$

where **n** is the unit outer normal vector to the curve inside the plane $\{z = 0\}$.



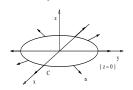
Remark: Since
$$\mathbf{F} = \langle F_x, F_y, 0 \rangle$$
, $\mathbf{r}(t) = \langle x(t), y(t), 0 \rangle$,

Definition

The *flux* of a vector field $\mathbf{F}: \{z=0\} \subset \mathbb{R}^3 \to \{z=0\} \subset \mathbb{R}^3$ along a closed plane loop $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to \{z=0\} \subset \mathbb{R}^3$ is given by

$$\mathbb{F} = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds,$$

where **n** is the unit outer normal vector to the curve inside the plane $\{z = 0\}$.



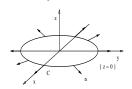
Remark: Since
$$\mathbf{F} = \langle F_x, F_y, 0 \rangle$$
, $\mathbf{r}(t) = \langle x(t), y(t), 0 \rangle$, $ds = |\mathbf{r}'(t)| dt$,

Definition

The *flux* of a vector field $\mathbf{F}: \{z=0\} \subset \mathbb{R}^3 \to \{z=0\} \subset \mathbb{R}^3$ along a closed plane loop $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to \{z=0\} \subset \mathbb{R}^3$ is given by

$$\mathbb{F} = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds,$$

where \mathbf{n} is the unit outer normal vector to the curve inside the plane $\{z=0\}$.



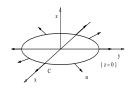
Remark: Since
$$\mathbf{F} = \langle F_x, F_y, 0 \rangle$$
, $\mathbf{r}(t) = \langle x(t), y(t), 0 \rangle$, $ds = |\mathbf{r}'(t)| dt$, and $\mathbf{n} = \frac{1}{|\mathbf{r}'|} \langle y'(t), -x'(t), 0 \rangle$,

Definition

The *flux* of a vector field $\mathbf{F}: \{z=0\} \subset \mathbb{R}^3 \to \{z=0\} \subset \mathbb{R}^3$ along a closed plane loop $\mathbf{r}: [t_0,t_1] \subset \mathbb{R} \to \{z=0\} \subset \mathbb{R}^3$ is given by

$$\mathbb{F} = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds,$$

where **n** is the unit outer normal vector to the curve inside the plane $\{z = 0\}$.



Remark: Since
$$\mathbf{F} = \langle F_x, F_y, 0 \rangle$$
, $\mathbf{r}(t) = \langle x(t), y(t), 0 \rangle$, $ds = |\mathbf{r}'(t)| dt$, and $\mathbf{n} = \frac{1}{|\mathbf{r}'|} \langle y'(t), -x'(t), 0 \rangle$, in components,

$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_{\mathsf{x}}(t) y'(t) - F_{\mathsf{y}}(t) x'(t) \right] \, dt.$$

Example

Evaluate the flux of $\mathbf{F} = \langle -y, x, 0 \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ for $t \in [0, 2\pi]$.

Example

Evaluate the flux of $\mathbf{F} = \langle -y, x, 0 \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ for $t \in [0, 2\pi]$.

Solution: Evaluate **F** along the curve: $\mathbf{F}(t) = \langle -\sin(t), \cos(t), 0 \rangle$.

Example

Evaluate the flux of $\mathbf{F} = \langle -y, x, 0 \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ for $t \in [0, 2\pi]$.

Solution: Evaluate **F** along the curve: $\mathbf{F}(t) = \langle -\sin(t), \cos(t), 0 \rangle$. Now compute the derivative vector $\mathbf{r}'(t) = \langle -\sin(t), \cos(t), 0 \rangle$.

Example

Evaluate the flux of $\mathbf{F} = \langle -y, x, 0 \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ for $t \in [0, 2\pi]$.

Solution: Evaluate **F** along the curve: $\mathbf{F}(t) = \langle -\sin(t), \cos(t), 0 \rangle$. Now compute the derivative vector $\mathbf{r}'(t) = \langle -\sin(t), \cos(t), 0 \rangle$. Now compute the normal vector $\mathbf{n}(t) = \langle y'(t), -x'(t), 0 \rangle$,

Example

Evaluate the flux of $\mathbf{F} = \langle -y, x, 0 \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ for $t \in [0, 2\pi]$.

Example

Evaluate the flux of $\mathbf{F} = \langle -y, x, 0 \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ for $t \in [0, 2\pi]$.

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] dt,$$

Example

Evaluate the flux of $\mathbf{F} = \langle -y, x, 0 \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ for $t \in [0, 2\pi]$.

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] dt,$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{0}^{2\pi} \left[-\sin(t)\cos(t) - \cos(t)(-\sin(t)) \right] dt,$$

Example

Evaluate the flux of $\mathbf{F} = \langle -y, x, 0 \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ for $t \in [0, 2\pi]$.

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] \, dt,$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{0}^{2\pi} \left[-\sin(t)\cos(t) - \cos(t)(-\sin(t)) \right] dt,$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{0}^{2\pi} 0 \, dt$$

Example

Evaluate the flux of $\mathbf{F} = \langle -y, x, 0 \rangle$ along the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ for $t \in [0, 2\pi]$.

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] \, dt,$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{0}^{2\pi} \left[-\sin(t)\cos(t) - \cos(t)(-\sin(t)) \right] dt,$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \int_{0}^{2\pi} 0 \, dt \quad \Rightarrow \quad \oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = 0.$$

Green's Theorem on a plane. (Sect. 16.4)

- ▶ Review: Line integrals and flux integrals.
- ► Green's Theorem on a plane.
 - Circulation-tangential form.
 - Flux-normal form.
- ► Tangential and normal forms equivalence.

Green's Theorem on a plane.

Theorem (Circulation-tangential form)

The counterclockwise line integral $\oint_C \mathbf{F} \cdot \mathbf{u} \, ds$ of the field

 $\mathbf{F} = \langle F_x, F_y \rangle$ along a loop C enclosing a region $R \in \mathbb{R}^2$ and given by the function $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $t \in [t_0, t_1]$ and with unit tangent vector \mathbf{u} , satisfies that

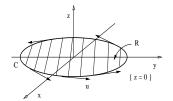
$$\int_{t_0}^{t_1} \left[F_{\mathsf{x}}(t) \, \mathsf{x}'(t) + F_{\mathsf{y}}(t) \, \mathsf{y}'(t) \right] \, dt = \iint_{R} \left(\partial_{\mathsf{x}} F_{\mathsf{y}} - \partial_{\mathsf{y}} F_{\mathsf{x}} \right) \, d\mathsf{x} \, d\mathsf{y}.$$

Theorem (Circulation-tangential form)

The counterclockwise line integral $\oint_C \mathbf{F} \cdot \mathbf{u} \, ds$ of the field

 $\mathbf{F} = \langle F_x, F_y \rangle$ along a loop C enclosing a region $R \in \mathbb{R}^2$ and given by the function $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $t \in [t_0, t_1]$ and with unit tangent vector \mathbf{u} , satisfies that

$$\int_{t_0}^{t_1} \left[F_x(t) \, x'(t) + F_y(t) \, y'(t) \right] \, dt = \iint_{\mathbb{R}} \left(\partial_x F_y - \partial_y F_x \right) \, dx \, dy.$$

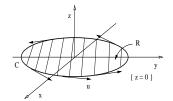


Theorem (Circulation-tangential form)

The counterclockwise line integral $\oint_C \mathbf{F} \cdot \mathbf{u} \, ds$ of the field

 $\mathbf{F} = \langle F_x, F_y \rangle$ along a loop C enclosing a region $R \in \mathbb{R}^2$ and given by the function $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $t \in [t_0, t_1]$ and with unit tangent vector \mathbf{u} , satisfies that

$$\int_{t_0}^{t_1} \left[F_x(t) \, x'(t) + F_y(t) \, y'(t) \right] \, dt = \iint_{\mathbb{R}} \left(\partial_x F_y - \partial_y F_x \right) \, dx \, dy.$$



Equivalently,

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \iint_{R} (\partial_{x} F_{y} - \partial_{y} F_{x}) \, dx \, dy.$$

Example

Verify Green's Theorem tangential form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Example

Verify Green's Theorem tangential form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{u} \ ds = 2\pi$.

Example

Verify Green's Theorem tangential form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_C \mathbf{F} \cdot \mathbf{u} \, ds = 2\pi$.

Example

Verify Green's Theorem tangential form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = 2\pi$.

$$I = \iint_{R} \left[1 - (-1) \right] dx \, dy$$

Example

Verify Green's Theorem tangential form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = 2\pi$.

$$I = \iint_{R} [1 - (-1)] \, dx \, dy = 2 \iint_{R} dx \, dy$$

Example

Verify Green's Theorem tangential form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = 2\pi$.

$$I = \iint_{R} [1 - (-1)] dx dy = 2 \iint_{R} dx dy = 2 \int_{0}^{2\pi} \int_{0}^{1} r dr d\theta$$

Example

Verify Green's Theorem tangential form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{u} \, ds = 2\pi$.

$$I = \iint_{R} [1 - (-1)] dx dy = 2 \iint_{R} dx dy = 2 \int_{0}^{2\pi} \int_{0}^{1} r dr d\theta$$
$$I = 2(2\pi) \left(\frac{r^{2}}{2}\Big|_{0}^{1}\right)$$

Example

Verify Green's Theorem tangential form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{u} \, ds = 2\pi$.

$$I = \iint_{R} \left[1 - (-1) \right] dx dy = 2 \iint_{R} dx dy = 2 \int_{0}^{2\pi} \int_{0}^{1} r dr d\theta$$
$$I = 2(2\pi) \left(\frac{r^{2}}{2} \Big|_{0}^{1} \right) \quad \Rightarrow \quad I = 2\pi.$$

Example

Verify Green's Theorem tangential form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = 2\pi$.

Now we compute the double integral $I=\iint_R \left(\partial_x F_y-\partial_y F_x\right)\,dx\,dy$ and we verify that we get the same result, 2π .

$$I = \iint_{R} [1 - (-1)] dx dy = 2 \iint_{R} dx dy = 2 \int_{0}^{2\pi} \int_{0}^{1} r dr d\theta$$

$$I=2(2\pi)\left(\frac{r^2}{2}\Big|_0^1\right) \Rightarrow I=2\pi.$$

We verified that $\oint_C \mathbf{F} \cdot \mathbf{u} \, ds = \iint_B (\partial_x F_y - \partial_y F_x) \, dx \, dy = 2\pi$.

Green's Theorem on a plane. (Sect. 16.4)

- Review: Line integrals and flux integrals.
- ► Green's Theorem on a plane.
 - Circulation-tangential form.
 - Flux-normal form.
- ► Tangential and normal forms equivalence.

Theorem (Flux-normal form)

The counterclockwise flux integral $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ of the field

 $\mathbf{F} = \langle F_x, F_y \rangle$ along a loop C enclosing a region $R \in \mathbb{R}^2$ and given by the function $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $t \in [t_0, t_1]$ and with unit normal vector \mathbf{n} , satisfies that

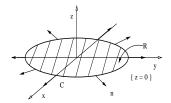
$$\int_{t_0}^{t_1} \left[F_{\mathsf{x}}(t) \, y'(t) - F_{\mathsf{y}}(t) \, x'(t) \right] \, dt = \iint_{\mathbb{R}} \left(\partial_{\mathsf{x}} F_{\mathsf{x}} + \partial_{\mathsf{y}} F_{\mathsf{y}} \right) \, dx \, dy.$$

Theorem (Flux-normal form)

The counterclockwise flux integral $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ of the field

 $\mathbf{F} = \langle F_x, F_y \rangle$ along a loop C enclosing a region $R \in \mathbb{R}^2$ and given by the function $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $t \in [t_0, t_1]$ and with unit normal vector \mathbf{n} , satisfies that

$$\int_{t_0}^{t_1} \left[F_{\mathsf{x}}(t) \, y'(t) - F_{\mathsf{y}}(t) \, x'(t) \right] \, dt = \iint_{\mathsf{R}} \left(\partial_{\mathsf{x}} F_{\mathsf{x}} + \partial_{\mathsf{y}} F_{\mathsf{y}} \right) \, dx \, dy.$$

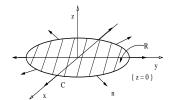


Theorem (Flux-normal form)

The counterclockwise flux integral $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ of the field

 $\mathbf{F} = \langle F_x, F_y \rangle$ along a loop C enclosing a region $R \in \mathbb{R}^2$ and given by the function $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $t \in [t_0, t_1]$ and with unit normal vector \mathbf{n} , satisfies that

$$\int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] dt = \iint_{\mathbb{R}} \left(\partial_x F_x + \partial_y F_y \right) dx dy.$$



Equivalently,

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) \, dx \, dy.$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \ ds = 0$.

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = 0$.

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = 0$.

Now we compute the double integral $I = \iint_R (\partial_x F_x + \partial_y F_y) dx dy$ and we verify that we get the same result, 0.

$$I = \iint_{R} \left[\partial_{x}(-y) + \partial_{y}(x) \right] dx dy$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = 0$.

$$I = \iint_R \left[\partial_x (-y) + \partial_y (x) \right] dx dy = \iint_R 0 dx dy = 0.$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle -y, x \rangle$ and the loop $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ for $t \in [0, 2\pi]$.

Solution: Recall: We found that $\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = 0$.

$$I = \iint_R \left[\partial_x (-y) + \partial_y (x) \right] dx dy = \iint_R 0 dx dy = 0.$$

We verified that
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R (\partial_x F_x + \partial_y F_y) \, dx \, dy = 0.$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: We start with the line integral

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] \, dt.$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: We start with the line integral

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] \, dt.$$

It is simple to see that $\mathbf{F}(t) = \langle 2a\cos(t), -3a\sin(t)\rangle$,

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: We start with the line integral

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] \, dt.$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: We start with the line integral

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] dt.$$

Therefore,
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_0^{2\pi} \left[2a^2 \cos^2(t) - 3a^2 \sin^2(t) \right] dt$$
,

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: We start with the line integral

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] \, dt.$$

Therefore,
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_0^{2\pi} \left[2a^2 \cos^2(t) - 3a^2 \sin^2(t) \right] dt$$
,

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{0}^{2\pi} \left[2a^{2} \frac{1}{2} (1 + \cos(2t)) - 3a^{2} \frac{1}{2} (1 - \cos(2t)) \right] \, dt.$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: We start with the line integral

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] \, dt.$$

Therefore,
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_0^{2\pi} \left[2a^2 \cos^2(t) - 3a^2 \sin^2(t) \right] dt$$
,

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{0}^{2\pi} \left[2a^{2} \frac{1}{2} (1 + \cos(2t)) - 3a^{2} \frac{1}{2} (1 - \cos(2t)) \right] \, dt.$$

Since
$$\int_0^{2\pi} \cos(2t) dt = 0,$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: We start with the line integral

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] \, dt.$$

Therefore,
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_0^{2\pi} \left[2a^2 \cos^2(t) - 3a^2 \sin^2(t) \right] dt$$
,

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{0}^{2\pi} \left[2a^{2} \frac{1}{2} (1 + \cos(2t)) - 3a^{2} \frac{1}{2} (1 - \cos(2t)) \right] \, dt.$$

Since
$$\int_0^{2\pi} \cos(2t) dt = 0$$
, we conclude $\oint_C \mathbf{F} \cdot \mathbf{n} ds = -\pi a^2$.

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: Recall:
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = -\pi a^2$$
.

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: Recall:
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = -\pi a^2$$
.

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: Recall:
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = -\pi a^2$$
.

$$I = \iint_{R} \left[\partial_{x}(2x) + \partial_{y}(-3y) \right] dx dy$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: Recall:
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = -\pi a^2$$
.

Now we compute the double integral $I = \iint_{\mathcal{B}} (\partial_x F_x + \partial_y F_y) dx dy$.

$$I = \iint_R \left[\partial_x (2x) + \partial_y (-3y) \right] dx dy = \iint_R (2-3) dx dy.$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: Recall:
$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds = -\pi a^2$$
.

$$I = \iint_R \left[\partial_x (2x) + \partial_y (-3y) \right] dx dy = \iint_R (2-3) dx dy.$$

$$I = -\iint_{\mathbb{R}} dx \, dy$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: Recall:
$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds = -\pi a^2$$
.

$$I = \iint_R \left[\partial_x (2x) + \partial_y (-3y) \right] dx dy = \iint_R (2-3) dx dy.$$

$$I = -\iint_{R} dx \, dy = -\int_{0}^{2\pi} \int_{0}^{a} r \, dr \, d\theta$$

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: Recall:
$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = -\pi a^2$$
.

$$I = \iint_R \left[\partial_x (2x) + \partial_y (-3y) \right] dx dy = \iint_R (2-3) dx dy.$$

$$I = -\iint_{R} dx \, dy = -\int_{0}^{2\pi} \int_{0}^{a} r \, dr \, d\theta = -2\pi \left(\frac{r^{2}}{2}\Big|_{0}^{a}\right)$$

Green's Theorem on a plane.

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: Recall:
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = -\pi a^2$$
.

Now we compute the double integral $I = \iint_{\mathcal{B}} (\partial_x F_x + \partial_y F_y) dx dy$.

$$I = \iint_R \left[\partial_x (2x) + \partial_y (-3y) \right] dx dy = \iint_R (2-3) dx dy.$$

$$I = -\iint_{R} dx \, dy = -\int_{0}^{2\pi} \int_{0}^{a} r \, dr \, d\theta = -2\pi \left(\frac{r^{2}}{2}\Big|_{0}^{a}\right) = -\pi a^{2}.$$

Green's Theorem on a plane.

Example

Verify Green's Theorem normal form for the field $\mathbf{F} = \langle 2x, -3y \rangle$ and the loop $\mathbf{r}(t) = \langle a\cos(t), a\sin(t) \rangle$ for $t \in [0, 2\pi]$, a > 0.

Solution: Recall:
$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = -\pi a^2$$
.

Now we compute the double integral $I = \iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) dx dy$.

$$I = \iint_R \left[\partial_x (2x) + \partial_y (-3y) \right] dx dy = \iint_R (2-3) dx dy.$$

$$I = -\iint_{R} dx \, dy = -\int_{0}^{2\pi} \int_{0}^{a} r \, dr \, d\theta = -2\pi \left(\frac{r^{2}}{2}\Big|_{0}^{a}\right) = -\pi a^{2}.$$

Hence,
$$\oint_{\mathcal{F}} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{\mathcal{F}} (\partial_x F_x + \partial_y F_y) \, dx \, dy = -\pi a^2$$
.

Green's Theorem on a plane. (Sect. 16.4)

- Review: Line integrals and flux integrals.
- ► Green's Theorem on a plane.
 - Circulation-tangential form.
 - Flux-normal form.
- ► Tangential and normal forms equivalence.

Lemma

The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Lemma

The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Proof: Green's Theorem in tangential form for $\mathbf{F} = \langle F_x, F_y \rangle$ says

$$\int_{t_0}^{t_1} \left[F_x(t) \, x'(t) + F_y(t) \, y'(t) \right] \, dt = \iint_{\mathcal{R}} \left(\partial_x F_y - \partial_y F_x \right) \, dx \, dy.$$

Lemma

The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Proof: Green's Theorem in tangential form for $\mathbf{F} = \langle F_x, F_y \rangle$ says

$$\int_{t_0}^{t_1} \left[F_X(t) \, x'(t) + F_Y(t) \, y'(t) \right] \, dt = \iint_{\mathcal{R}} \left(\partial_X F_Y - \partial_Y F_X \right) \, dx \, dy.$$

Apply this Theorem for $\hat{\mathbf{F}} = \langle -F_y, F_x \rangle$,

Lemma

The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Proof: Green's Theorem in tangential form for $\mathbf{F} = \langle F_x, F_y \rangle$ says

$$\int_{t_0}^{t_1} \left[F_x(t) \, x'(t) + F_y(t) \, y'(t) \right] \, dt = \iint_R \left(\partial_x F_y - \partial_y F_x \right) \, dx \, dy.$$

Apply this Theorem for $\hat{\mathbf{F}}=\langle -F_y,F_x\rangle$, that is, $\hat{F}_x=-F_y$ and $\hat{F}_y=F_x$.

Lemma

The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Proof: Green's Theorem in tangential form for $\mathbf{F} = \langle F_x, F_y \rangle$ says

$$\int_{t_0}^{t_1} \left[F_{\mathsf{x}}(t) \, \mathsf{x}'(t) + F_{\mathsf{y}}(t) \, \mathsf{y}'(t) \right] \, dt = \iint_{\mathbb{R}} \left(\partial_{\mathsf{x}} F_{\mathsf{y}} - \partial_{\mathsf{y}} F_{\mathsf{x}} \right) \, d\mathsf{x} \, d\mathsf{y}.$$

Apply this Theorem for $\hat{\bf F}=\langle -F_y,F_x\rangle$, that is, $\hat{F}_x=-F_y$ and $\hat{F}_y=F_x$. We obtain

$$\int_{t_0}^{t_1} \left[-F_y(t) \, x'(t) + F_x(t) \, y'(t) \right] \, dt = \iint_R \left(\partial_x F_x - \partial_y (-F_y) \right) \, dx \, dy,$$

Lemma

The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Proof: Green's Theorem in tangential form for $\mathbf{F} = \langle F_{\mathsf{x}}, F_{\mathsf{y}} \rangle$ says

$$\int_{t_0}^{t_1} \left[F_{\mathsf{x}}(t) \, \mathsf{x}'(t) + F_{\mathsf{y}}(t) \, \mathsf{y}'(t) \right] \, dt = \iint_{\mathbb{R}} \left(\partial_{\mathsf{x}} F_{\mathsf{y}} - \partial_{\mathsf{y}} F_{\mathsf{x}} \right) \, d\mathsf{x} \, d\mathsf{y}.$$

Apply this Theorem for $\hat{\mathbf{F}}=\langle -F_y,F_x\rangle$, that is, $\hat{F}_x=-F_y$ and $\hat{F}_y=F_x$. We obtain

$$\int_{t_0}^{t_1} \left[-F_y(t) x'(t) + F_x(t) y'(t) \right] dt = \iint_{R} \left(\partial_x F_x - \partial_y (-F_y) \right) dx dy,$$

so,
$$\int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] dt = \iint_R \left(\partial_x F_x + \partial_y F_y \right) dx dy,$$

Lemma

The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Proof: Green's Theorem in tangential form for $\mathbf{F} = \langle F_x, F_y \rangle$ says

$$\int_{t_0}^{t_1} \left[F_x(t) \, x'(t) + F_y(t) \, y'(t) \right] \, dt = \iint_R \left(\partial_x F_y - \partial_y F_x \right) \, dx \, dy.$$

Apply this Theorem for $\hat{\mathbf{F}}=\langle -F_y,F_x\rangle$, that is, $\hat{F}_x=-F_y$ and $\hat{F}_y=F_x$. We obtain

$$\int_{t_0}^{t_1} \left[-F_y(t) \, x'(t) + F_x(t) \, y'(t) \right] \, dt = \iint_{\mathcal{R}} \left(\partial_x F_x - \partial_y (-F_y) \right) \, dx \, dy,$$

so,
$$\int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] dt = \iint_R \left(\partial_x F_x + \partial_y F_y \right) dx dy,$$

which is Green's Theorem in normal form.

Lemma

The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Proof: Green's Theorem in tangential form for $\mathbf{F} = \langle F_x, F_y \rangle$ says $\int_{t_0}^{t_1} \left[F_x(t) \, x'(t) + F_y(t) \, y'(t) \right] \, dt = \iint_{\mathbb{R}} \left(\partial_x F_y - \partial_y F_x \right) \, dx \, dy.$

Apply this Theorem for $\hat{\mathbf{F}}=\langle -F_y,F_x\rangle$, that is, $\hat{F}_x=-F_y$ and $\hat{F}_y=F_x$. We obtain

$$\int_{t_0}^{t_1} \left[-F_y(t) \, x'(t) + F_x(t) \, y'(t) \right] \, dt = \iint_{\mathcal{R}} \left(\partial_x F_x - \partial_y (-F_y) \right) \, dx \, dy,$$

so,
$$\int_{t_0}^{t_1} \left[F_x(t) y'(t) - F_y(t) x'(t) \right] dt = \iint_R \left(\partial_x F_x + \partial_y F_y \right) dx dy,$$

which is Green's Theorem in normal form. The converse implication is proved in the same way.

Example

Example

Solution: Recall:
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (\partial_x F_y - \partial_y F_x) dx dy$$
.

Example

Solution: Recall:
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (\partial_x F_y - \partial_y F_x) dx dy$$
.

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (2x - 2y) \, dx \, dy$$

Example

Solution: Recall:
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (\partial_x F_y - \partial_y F_x) dx dy$$
.

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (2x - 2y) \, dx \, dy = \int_{0}^{3} \int_{0}^{x} (2x - 2y) \, dy \, dx,$$

Example

Solution: Recall:
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (\partial_x F_y - \partial_y F_x) dx dy$$
.

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (2x - 2y) \, dx \, dy = \int_{0}^{3} \int_{0}^{x} (2x - 2y) \, dy \, dx,$$

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{3} \left[2x \left(y \Big|_{0}^{x} \right) - \left(y^{2} \Big|_{0}^{x} \right) \right] dx$$

Example

Solution: Recall:
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (\partial_x F_y - \partial_y F_x) dx dy$$
.

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (2x - 2y) \, dx \, dy = \int_{0}^{3} \int_{0}^{x} (2x - 2y) \, dy \, dx,$$

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{3} \left[2x \left(y \Big|_{0}^{x} \right) - \left(y^{2} \Big|_{0}^{x} \right) \right] dx = \int_{0}^{3} \left(2x^{2} - x^{2} \right) dx,$$

Example

Solution: Recall:
$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (\partial_{x} F_{y} - \partial_{y} F_{x}) \, dx \, dy.$$

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (2x - 2y) \, dx \, dy = \int_{0}^{3} \int_{0}^{x} (2x - 2y) \, dy \, dx,$$

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{3} \left[2x \left(y \Big|_{0}^{x} \right) - \left(y^{2} \Big|_{0}^{x} \right) \right] \, dx = \int_{0}^{3} \left(2x^{2} - x^{2} \right) \, dx,$$

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{3} x^{2} \, dx$$

Example

Solution: Recall:
$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (\partial_{x} F_{y} - \partial_{y} F_{x}) \, dx \, dy.$$

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (2x - 2y) \, dx \, dy = \int_{0}^{3} \int_{0}^{x} (2x - 2y) \, dy \, dx,$$

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{3} \left[2x \left(y \Big|_{0}^{x} \right) - \left(y^{2} \Big|_{0}^{x} \right) \right] \, dx = \int_{0}^{3} \left(2x^{2} - x^{2} \right) \, dx,$$

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{3} x^{2} \, dx = \frac{x^{3}}{3} \Big|_{0}^{3}$$

Example

Solution: Recall:
$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (\partial_{x} F_{y} - \partial_{y} F_{x}) dx dy$$
.

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} (2x - 2y) \, dx \, dy = \int_{0}^{3} \int_{0}^{x} (2x - 2y) \, dy \, dx,$$

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{3} \left[2x \left(y \Big|_{0}^{x} \right) - \left(y^{2} \Big|_{0}^{x} \right) \right] dx = \int_{0}^{3} \left(2x^{2} - x^{2} \right) dx,$$

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{3} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{3} \quad \Rightarrow \quad \oint_{C} \mathbf{F} \cdot d\mathbf{r} = 9.$$

Green's Theorem on a plane. (Sect. 16.4)

- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

Review: Green's Theorem on a plane.

Theorem

Given a field $\mathbf{F} = \langle F_x, F_y \rangle$ and a loop C enclosing a region $R \in \mathbb{R}^2$ described by the function $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $t \in [t_0, t_1]$, with unit tangent vector \mathbf{u} and exterior normal vector \mathbf{n} , then holds:

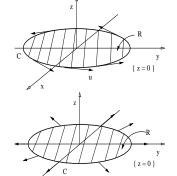
► The counterclockwise line integral $\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds$ satisfies:

$$\int_{t_0}^{t_1} \left[F_{\mathsf{x}}(t) \, \mathsf{x}'(t) + F_{\mathsf{y}}(t) \, \mathsf{y}'(t) \right] \, dt = \iint_{\mathbb{R}} \left(\partial_{\mathsf{x}} F_{\mathsf{y}} - \partial_{\mathsf{y}} F_{\mathsf{x}} \right) \, d\mathsf{x} \, d\mathsf{y}.$$

► The counterclockwise line integral $\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds$ satisfies:

$$\int_{t_0}^{t_1} \left[F_{\mathsf{x}}(t) \, y'(t) - F_{\mathsf{y}}(t) \, x'(t) \right] \, dt = \iint_{\mathbb{R}} \left(\partial_{\mathsf{x}} F_{\mathsf{x}} + \partial_{\mathsf{y}} F_{\mathsf{y}} \right) \, dx \, dy.$$

Review: Green's Theorem on a plane.



Circulation-tangential form:

$$\oint_{C} \mathbf{F} \cdot \mathbf{u} \, ds = \iint_{R} (\partial_{x} F_{y} - \partial_{y} F_{x}) \, dx \, dy.$$

Flux-normal form:

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) \, dx \, dy.$$

Lemma

The Green Theorem in tangential form is equivalent to the Green Theorem in normal form.

Green's Theorem on a plane. (Sect. 16.4)

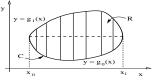
- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

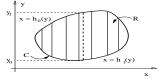
We want to prove that for every differentiable vector field $\mathbf{F} = \langle F_x, F_y \rangle$ the Green Theorem in tangential form holds, $\int_{\mathcal{F}} \left[F_x(t) \, x'(t) + F_y(t) \, y'(t) \right] \, dt = \iint_{\mathcal{F}} \left(\partial_x F_y - \partial_y F_x \right) \, dx \, dy.$

We want to prove that for every differentiable vector field $\mathbf{F} = \langle F_x, F_y \rangle$ the Green Theorem in tangential form holds,

$$\int_{C} \left[F_{x}(t) x'(t) + F_{y}(t) y'(t) \right] dt = \iint_{R} \left(\partial_{x} F_{y} - \partial_{y} F_{x} \right) dx dy.$$

We only consider a simple domain like the one in the pictures.

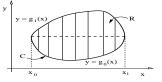


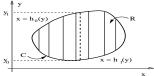


We want to prove that for every differentiable vector field $\mathbf{F} = \langle F_x, F_y \rangle$ the Green Theorem in tangential form holds,

$$\int_{C} \left[F_{x}(t) x'(t) + F_{y}(t) y'(t) \right] dt = \iint_{R} \left(\partial_{x} F_{y} - \partial_{y} F_{x} \right) dx dy.$$

We only consider a simple domain like the one in the pictures.





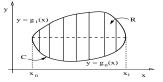
Using the picture on the left we show that

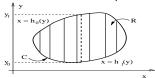
$$\int_{C} F_{x}(t) x'(t) dt = \iint_{R} (-\partial_{y} F_{x}) dx dy;$$

We want to prove that for every differentiable vector field $\mathbf{F} = \langle F_x, F_y \rangle$ the Green Theorem in tangential form holds,

$$\int_{C} \left[F_{x}(t) x'(t) + F_{y}(t) y'(t) \right] dt = \iint_{R} \left(\partial_{x} F_{y} - \partial_{y} F_{x} \right) dx dy.$$

We only consider a simple domain like the one in the pictures.



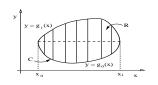


Using the picture on the left we show that

$$\int_{C} F_{x}(t) x'(t) dt = \iint_{R} (-\partial_{y} F_{x}) dx dy;$$

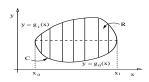
and using the picture on the right we show that

$$\int_{C} F_{y}(t) y'(t) dt = \iint_{R} (\partial_{x} F_{y}) dx dy.$$



Show that for $F_x(t) = F_x(x(t), y(t))$ holds

$$\int_{C} F_{x}(t) \, x'(t) \, dt = \iint_{R} \left(-\partial_{y} F_{x} \right) \, dx \, dy;$$

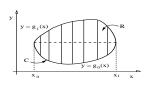


Show that for $F_x(t) = F_x(x(t), y(t))$ holds

$$\int_{C} F_{x}(t) \, x'(t) \, dt = \iint_{R} \left(-\partial_{y} F_{x} \right) \, dx \, dy;$$

The path C can be described by the curves \mathbf{r}_0 and \mathbf{r}_1 given by

$$\mathbf{r}_{0}(t) = \langle t, g_{0}(t) \rangle,$$
 $t \in [x_{0}, x_{1}]$
 $\mathbf{r}_{1}(t) = \langle (x_{1} + x_{0} - t), g_{1}(x_{1} + x_{0} - t) \rangle$ $t \in [x_{0}, x_{1}].$



Show that for $F_x(t) = F_x(x(t), y(t))$ holds

$$\int_{C} F_{x}(t) \, x'(t) \, dt = \iint_{R} \left(-\partial_{y} F_{x} \right) \, dx \, dy;$$

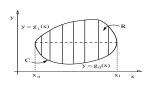
The path C can be described by the curves \mathbf{r}_0 and \mathbf{r}_1 given by

$$\mathbf{r}_0(t) = \langle t, g_0(t) \rangle,$$
 $t \in [x_0, x_1]$
 $\mathbf{r}_1(t) = \langle (x_1 + x_0 - t), g_1(x_1 + x_0 - t) \rangle$ $t \in [x_0, x_1].$

Therefore,

$$\mathbf{r}'_0(t) = \langle 1, g'_0(t) \rangle, \qquad t \in [x_0, x_1]$$

 $\mathbf{r}'_1(t) = \langle -1, -g'_1(x_1 + x_0 - t) \rangle \qquad t \in [x_0, x_1].$



Show that for $F_x(t) = F_x(x(t), y(t))$ holds

$$\int_{C} F_{x}(t) \, x'(t) \, dt = \iint_{R} \left(-\partial_{y} F_{x} \right) \, dx \, dy;$$

The path C can be described by the curves \mathbf{r}_0 and \mathbf{r}_1 given by

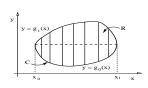
$$\mathbf{r}_0(t) = \langle t, g_0(t) \rangle,$$
 $t \in [x_0, x_1]$
 $\mathbf{r}_1(t) = \langle (x_1 + x_0 - t), g_1(x_1 + x_0 - t) \rangle$ $t \in [x_0, x_1].$

Therefore,

$$\mathbf{r}'_0(t) = \langle 1, g'_0(t) \rangle, \qquad t \in [x_0, x_1]$$

 $\mathbf{r}'_1(t) = \langle -1, -g'_1(x_1 + x_0 - t) \rangle \qquad t \in [x_0, x_1].$

Recall: $F_x(t) = F_x(t, g_0(t))$ on \mathbf{r}_0 ,



Show that for $F_x(t) = F_x(x(t), y(t))$ holds

$$\int_{C} F_{x}(t) \, x'(t) \, dt = \iint_{R} \left(-\partial_{y} F_{x} \right) \, dx \, dy;$$

The path C can be described by the curves \mathbf{r}_0 and \mathbf{r}_1 given by

$$\mathbf{r}_0(t) = \langle t, g_0(t) \rangle,$$
 $t \in [x_0, x_1]$
 $\mathbf{r}_1(t) = \langle (x_1 + x_0 - t), g_1(x_1 + x_0 - t) \rangle$ $t \in [x_0, x_1].$

Therefore,

$$\mathbf{r}'_0(t) = \langle 1, g'_0(t) \rangle, \qquad \qquad t \in [x_0, x_1] \\ \mathbf{r}'_1(t) = \langle -1, -g'_1(x_1 + x_0 - t) \rangle \qquad \qquad t \in [x_0, x_1].$$

Recall:
$$F_x(t) = F_x(t, g_0(t))$$
 on \mathbf{r}_0 , and $F_x(t) = F_x((x_1 + x_0 - t), g_1(x_1 + x_0 - t))$ on \mathbf{r}_1 .

$$\int_{C} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} F_{x}(t, g_{0}(t)) dt$$
$$- \int_{x_{0}}^{x_{1}} F_{x}((x_{1} + x_{0} - t), g_{1}(x_{1} + x_{0} - t)) dt$$

$$\int_{C} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} F_{x}(t, g_{0}(t)) dt$$
$$- \int_{x_{0}}^{x_{1}} F_{x}((x_{1} + x_{0} - t), g_{1}(x_{1} + x_{0} - t)) dt$$

Substitution in the second term: $\tau = x_1 + x_0 - t$, so $d\tau = -dt$.

$$-\int_{x_0}^{x_1} F_x((x_1+x_0-t),g_1(x_1+x_0-t)) dt =$$

$$-\int_{x_0}^{x_0} F_x(\tau,g_1(\tau)) (-d\tau)$$

$$\int_{C} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} F_{x}(t, g_{0}(t)) dt$$
$$- \int_{x_{0}}^{x_{1}} F_{x}((x_{1} + x_{0} - t), g_{1}(x_{1} + x_{0} - t)) dt$$

Substitution in the second term: $\tau = x_1 + x_0 - t$, so $d\tau = -dt$.

$$-\int_{x_0}^{x_1} F_x((x_1+x_0-t),g_1(x_1+x_0-t)) dt =$$

$$\int_{x_0}^{x_0} F_x(\tau,g_1(\tau))(-d\tau) = -\int_{x_0}^{x_1} F_x(\tau,g_1(\tau)) dt$$

$$\int_{C} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} F_{x}(t, g_{0}(t)) dt$$
$$- \int_{x_{0}}^{x_{1}} F_{x}((x_{1} + x_{0} - t), g_{1}(x_{1} + x_{0} - t)) dt$$

Substitution in the second term: $\tau = x_1 + x_0 - t$, so $d\tau = -dt$.

$$-\int_{x_0}^{x_1} F_x((x_1+x_0-t),g_1(x_1+x_0-t)) dt =$$

$$-\int_{x_1}^{x_0} F_x(\tau, g_1(\tau)) (-d\tau) = -\int_{x_0}^{x_1} F_x(\tau, g_1(\tau)) d\tau.$$

Therefore,
$$\int_C F_x(t) x'(t) dt = \int_{x_0}^{x_1} \left[F_x(t, g_0(t)) - F_x(t, g_1(t)) \right] dt$$
.

$$\int_{C} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} F_{x}(t, g_{0}(t)) dt$$
$$- \int_{x_{0}}^{x_{1}} F_{x}((x_{1} + x_{0} - t), g_{1}(x_{1} + x_{0} - t)) dt$$

Substitution in the second term: $\tau = x_1 + x_0 - t$, so $d\tau = -dt$.

$$-\int_{x_0}^{x_1} F_x((x_1+x_0-t),g_1(x_1+x_0-t)) dt =$$

$$-\int_{x_1}^{x_0} F_x(\tau, g_1(\tau)) (-d\tau) = -\int_{x_0}^{x_1} F_x(\tau, g_1(\tau)) d\tau.$$

Therefore,
$$\int_C F_x(t) x'(t) dt = \int_{x_0}^{x_1} \left[F_x(t, g_0(t)) - F_x(t, g_1(t)) \right] dt$$
.

We obtain:
$$\int_C F_x(t)x'(t) dt = \int_{x_0}^{x_1} \int_{g_0(t)}^{g_1(t)} \left[-\partial_y F_x(t,y) \right] dy dt.$$

Recall:
$$\int_{C} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)} \left[-\partial_{y}F_{x}(t,y) \right] dy dt.$$

Recall:
$$\int_{C} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)} \left[-\partial_{y}F_{x}(t,y) \right] dy dt.$$

This result is precisely what we wanted to prove:

$$\int_{C} F_{x}(t)x'(t) dt = \iint_{R} (-\partial_{y}F_{x}) dy dx.$$

Recall:
$$\int_{C} F_{x}(t)x'(t) dt = \int_{x_{0}}^{x_{1}} \int_{g_{0}(t)}^{g_{1}(t)} [-\partial_{y}F_{x}(t,y)] dy dt.$$

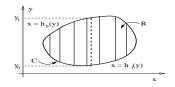
This result is precisely what we wanted to prove:

$$\int_{C} F_{x}(t)x'(t) dt = \iint_{R} (-\partial_{y}F_{x}) dy dx.$$

We just mention that the result

$$\int_{C} F_{y}(t) y'(t) dt = \iint_{R} (\partial_{x} F_{y}) dx dy.$$

is proven in a similar way using the parametrization of the ${\cal C}$ given in the picture.



Green's Theorem on a plane. (Sect. 16.4)

- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- ▶ Divergence and curl of a function on a plane.
- Area computed with a line integral.

Definition

The *curl* of a vector field $\mathbf{F} = \langle F_x, F_y \rangle$ in \mathbb{R}^2 is the scalar

$$\left(\operatorname{curl} \mathbf{F}\right)_z = \partial_x F_y - \partial_y F_x.$$

The *divergence* of a vector field $\mathbf{F} = \langle F_x, F_y \rangle$ in \mathbb{R}^2 is the scalar

$$\operatorname{div} \mathbf{F} = \partial_x F_x + \partial_y F_y.$$

Definition

The *curl* of a vector field $\mathbf{F} = \langle F_x, F_y \rangle$ in \mathbb{R}^2 is the scalar

$$\left(\operatorname{curl} \mathbf{F}\right)_z = \partial_x F_y - \partial_y F_x.$$

The *divergence* of a vector field $\mathbf{F} = \langle F_x, F_y \rangle$ in \mathbb{R}^2 is the scalar

$$\operatorname{div} \mathbf{F} = \partial_x F_x + \partial_y F_y.$$

Remark: Both forms of Green's Theorem can be written as:

$$\oint_{\mathcal{E}} \mathbf{F} \cdot \mathbf{u} \, ds = \iint_{\mathcal{E}} (\operatorname{curl} \mathbf{F})_{z} \, dx \, dy.$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{R} \operatorname{div} \mathbf{F} \, dx \, dy.$$

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_z$?

Remark: What type of information about \mathbf{F} is given in $(\operatorname{curl} \mathbf{F})_z$?

Example: Suppose ${f F}$ is the velocity field of a viscous fluid and

$$\mathbf{F} = \langle -y, x \rangle$$

Remark: What type of information about **F** is given in $(\operatorname{curl} \mathbf{F})_z$?

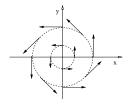
Example: Suppose F is the velocity field of a viscous fluid and

$$\mathbf{F} = \langle -y, x \rangle \quad \Rightarrow \quad (\operatorname{curl} \mathbf{F})_z = \partial_x F_y - \partial_y F_x = 2.$$

Remark: What type of information about **F** is given in $(\operatorname{curl} \mathbf{F})_z$?

Example: Suppose F is the velocity field of a viscous fluid and

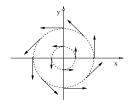
$$\mathbf{F} = \langle -y, x \rangle \quad \Rightarrow \quad (\operatorname{curl} \mathbf{F})_z = \partial_x F_y - \partial_y F_x = 2.$$



Remark: What type of information about **F** is given in $(\operatorname{curl} \mathbf{F})_z$?

Example: Suppose **F** is the velocity field of a viscous fluid and

$$\mathbf{F} = \langle -y, x \rangle \quad \Rightarrow \quad (\operatorname{curl} \mathbf{F})_z = \partial_x F_y - \partial_y F_x = 2.$$

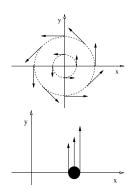


If we place a small ball at (0,0), the ball will spin around the *z*-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_z$.

Remark: What type of information about **F** is given in $(\operatorname{curl} \mathbf{F})_z$?

Example: Suppose \mathbf{F} is the velocity field of a viscous fluid and

$$\mathbf{F} = \langle -y, x \rangle \quad \Rightarrow \quad (\operatorname{curl} \mathbf{F})_z = \partial_x F_y - \partial_y F_x = 2.$$

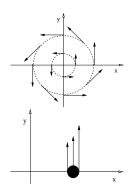


If we place a small ball at (0,0), the ball will spin around the *z*-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_z$.

Remark: What type of information about **F** is given in $(\operatorname{curl} \mathbf{F})_z$?

Example: Suppose **F** is the velocity field of a viscous fluid and

$$\mathbf{F} = \langle -y, x \rangle \quad \Rightarrow \quad (\operatorname{curl} \mathbf{F})_z = \partial_x F_y - \partial_y F_x = 2.$$



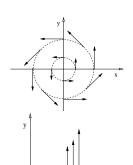
If we place a small ball at (0,0), the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_z$.

If we place a small ball at everywhere in the plane, the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_z$.

Remark: What type of information about **F** is given in $(\operatorname{curl} \mathbf{F})_z$?

Example: Suppose **F** is the velocity field of a viscous fluid and

$$\mathbf{F} = \langle -y, x \rangle \quad \Rightarrow \quad (\operatorname{curl} \mathbf{F})_z = \partial_x F_y - \partial_y F_x = 2.$$



If we place a small ball at (0,0), the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_z$.

If we place a small ball at everywhere in the plane, the ball will spin around the z-axis with speed proportional to $(\operatorname{curl} \mathbf{F})_z$.

Remark: The curl of a field measures its rotation.

Remark: What type of information about **F** is given in div **F**?

Remark: What type of information about **F** is given in div **F**?

Example: Suppose **F** is the velocity field of a gas and

$$\mathbf{F} = \langle x, y \rangle$$

Remark: What type of information about **F** is given in div **F**?

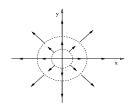
Example: Suppose F is the velocity field of a gas and

$$\textbf{F} = \langle x,y \rangle \quad \Rightarrow \quad \mathrm{div}\, \textbf{F} = \partial_x F_x + \partial_y F_y = 2.$$

Remark: What type of information about **F** is given in div **F**?

Example: Suppose **F** is the velocity field of a gas and

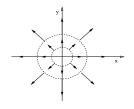
$$\label{eq:F} \textbf{F} = \langle x,y \rangle \quad \Rightarrow \quad \mathrm{div}\, \textbf{F} = \partial_x F_x + \partial_y F_y = 2.$$



Remark: What type of information about **F** is given in div **F**?

Example: Suppose **F** is the velocity field of a gas and

$$\textbf{F} = \langle x,y \rangle \quad \Rightarrow \quad \mathrm{div}\, \textbf{F} = \partial_x F_x + \partial_y F_y = 2.$$

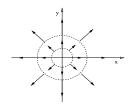


The field \mathbf{F} represents the gas as is heated with a heat source at (0,0). The heated gas expands in all directions, radially out form (0,0). The $\operatorname{div}\mathbf{F}$ measures that expansion.

Remark: What type of information about **F** is given in div **F**?

Example: Suppose **F** is the velocity field of a gas and

$$\mathbf{F} = \langle x, y \rangle \quad \Rightarrow \quad \operatorname{div} \mathbf{F} = \partial_x F_x + \partial_y F_y = 2.$$



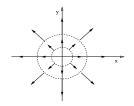
The field \mathbf{F} represents the gas as is heated with a heat source at (0,0). The heated gas expands in all directions, radially out form (0,0). The $\operatorname{div} \mathbf{F}$ measures that expansion.

Remark: The divergence of a field measures its expansion.

Remark: What type of information about **F** is given in div **F**?

Example: Suppose **F** is the velocity field of a gas and

$$\mathbf{F} = \langle x, y \rangle \quad \Rightarrow \quad \operatorname{div} \mathbf{F} = \partial_x F_x + \partial_y F_y = 2.$$



The field ${\bf F}$ represents the gas as is heated with a heat source at (0,0). The heated gas expands in all directions, radially out form (0,0). The ${\rm div}\,{\bf F}$ measures that expansion.

Remark: The divergence of a field measures its expansion.

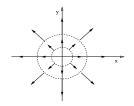
Remarks:

▶ Notice that for $\mathbf{F} = \langle x, y \rangle$ we have $(\operatorname{curl} \mathbf{F})_z = 0$.

Remark: What type of information about **F** is given in div **F**?

Example: Suppose **F** is the velocity field of a gas and

$$\mathbf{F} = \langle x, y \rangle \quad \Rightarrow \quad \mathrm{div} \, \mathbf{F} = \partial_x F_x + \partial_y F_y = 2.$$



The field ${\bf F}$ represents the gas as is heated with a heat source at (0,0). The heated gas expands in all directions, radially out form (0,0). The ${\rm div}\,{\bf F}$ measures that expansion.

Remark: The divergence of a field measures its expansion.

Remarks:

- ▶ Notice that for $\mathbf{F} = \langle x, y \rangle$ we have $(\operatorname{curl} \mathbf{F})_z = 0$.
- ▶ Notice that for $\mathbf{F} = \langle -y, x \rangle$ we have $\operatorname{div} \mathbf{F} = 0$.

Green's Theorem on a plane. (Sect. 16.4)

- Review of Green's Theorem on a plane.
- Sketch of the proof of Green's Theorem.
- Divergence and curl of a function on a plane.
- Area computed with a line integral.

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral.

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$\iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) dx dy = \oint_{C} (F_{x} dy - F_{y} dx)$$

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$\iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) dx dy = \oint_{C} (F_{x} dy - F_{y} dx)$$

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$\iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) dx dy = \oint_{C} (F_{x} dy - F_{y} dx)$$

$$\mathbf{F} = \langle x, 0 \rangle$$

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$\iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) dx dy = \oint_{C} (F_{x} dy - F_{y} dx)$$

$$\mathbf{F} = \langle x, 0 \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \oint_{C} x \, dy.$$

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$\iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) dx dy = \oint_{C} (F_{x} dy - F_{y} dx)$$

$$\mathbf{F} = \langle x, 0 \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \oint_{C} x \, dy.$$

$$\mathbf{F} = \langle 0, y \rangle$$

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$\iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) dx dy = \oint_{C} (F_{x} dy - F_{y} dx)$$

$$\mathbf{F} = \langle x, 0 \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \oint_{C} x \, dy.$$

$$\mathbf{F} = \langle 0, y \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \oint_{C} -y \, dx.$$

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$\iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) dx dy = \oint_{C} (F_{x} dy - F_{y} dx)$$

$$\mathbf{F} = \langle x, 0 \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \oint_{C} x \, dy.$$

$$\mathbf{F} = \langle 0, y \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \oint_{C} -y \, dx.$$

$$\mathbf{F} = \frac{1}{2} \langle x, y \rangle$$

Remark: Any of the two versions of Green's Theorem can be used to compute areas using a line integral. For example:

$$\iint_{R} (\partial_{x} F_{x} + \partial_{y} F_{y}) dx dy = \oint_{C} (F_{x} dy - F_{y} dx)$$

$$\mathbf{F} = \langle x, 0 \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \oint_{C} x \, dy.$$

$$\mathbf{F} = \langle 0, y \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \oint_{C} -y \, dx.$$

$$\mathbf{F} = \frac{1}{2} \langle x, y \rangle \quad \Rightarrow \quad \iint_{R} dx \, dy = A(R) = \frac{1}{2} \oint_{C} (x \, dy - y \, dx).$$

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use:
$$A(R) = \oint_C x \, dy$$
.

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t)\rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use:
$$A(R) = \oint_C x \, dy$$
. We need to compute $\mathbf{r}'(t)$

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use:
$$A(R) = \oint_C x \, dy$$
.

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use: $A(R) = \oint_C x \, dy$.

$$A(R) = \int_0^{2\pi} x(t) \, y'(t) \, dt$$

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use: $A(R) = \oint_C x \, dy$.

$$A(R) = \int_0^{2\pi} x(t) \, y'(t) \, dt = \int_0^{2\pi} a \cos(t) \, b \cos(t) \, dt.$$

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use:
$$A(R) = \oint_C x \, dy$$
.

$$A(R) = \int_0^{2\pi} x(t) y'(t) dt = \int_0^{2\pi} a \cos(t) b \cos(t) dt.$$

$$A(R) = ab \int_0^{2\pi} \cos^2(t) dt$$

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use: $A(R) = \oint_C x \, dy$.

$$A(R) = \int_0^{2\pi} x(t) y'(t) dt = \int_0^{2\pi} a \cos(t) b \cos(t) dt.$$

$$A(R) = ab \int_0^{2\pi} \cos^2(t) dt = ab \int_0^{2\pi} \frac{1}{2} [1 + \cos(2t)] dt.$$

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use:
$$A(R) = \oint_C x \, dy$$
.

$$A(R) = \int_0^{2\pi} x(t) y'(t) dt = \int_0^{2\pi} a \cos(t) b \cos(t) dt.$$

$$A(R) = ab \int_0^{2\pi} \cos^2(t) dt = ab \int_0^{2\pi} \frac{1}{2} [1 + \cos(2t)] dt.$$

Since
$$\int_0^{2\pi} \cos(2t) dt = 0,$$

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use:
$$A(R) = \oint_C x \, dy$$
.

$$A(R) = \int_0^{2\pi} x(t) \, y'(t) \, dt = \int_0^{2\pi} a \cos(t) \, b \cos(t) \, dt.$$

$$A(R) = ab \int_0^{2\pi} \cos^2(t) dt = ab \int_0^{2\pi} \frac{1}{2} [1 + \cos(2t)] dt.$$

Since
$$\int_0^{2\pi} \cos(2t) dt = 0$$
, we obtain $A(R) = \frac{ab}{2} 2\pi$,

Example

Use Green's Theorem to find the area of the region enclosed by the ellipse $\mathbf{r}(t) = \langle a\cos(t), b\sin(t) \rangle$, with $t \in [0, 2\pi]$ and a, b positive.

Solution: We use:
$$A(R) = \oint x \, dy$$
.

$$A(R) = \int_0^{2\pi} x(t) y'(t) dt = \int_0^{2\pi} a \cos(t) b \cos(t) dt.$$

$$A(R) = ab \int_0^{2\pi} \cos^2(t) dt = ab \int_0^{2\pi} \frac{1}{2} [1 + \cos(2t)] dt.$$

Since
$$\int_0^{2\pi} \cos(2t) dt = 0$$
, we obtain $A(R) = \frac{ab}{2} 2\pi$, that is,

$$A(R) = \pi ab$$
.

