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The line integral of a vector field along a curve.

Definition
The line integral of a vector-valued function F : D ⊂ Rn → Rn,
with n = 2, 3, along the curve associated with the function
r : [t0, t1] ⊂ R → D ⊂ R3 is given by∫

C

F · dr =

∫ t1

t0

F(t) · r′(t) dt

Example

F

y

x

r’

Remark: An equivalent expression is:∫
C

F · dr =

∫ t1

t0

F(t) · r′(t)

|r′(t)|
|r′(t)| dt,∫

C

F · dr =

∫ s1

s0

F̂ · û ds,

where û =
r′(t(s))

|r′(t(s))|
, and F̂ = F(t(s)).



Work done by a force on a particle.

Definition
In the case that the vector field F : D ⊂ Rn → Rn, with n = 2, 3,
represents a force acting on a particle with position function
r : [t0, t1] ⊂ R → D ⊂ R3, then the line integral

W =

∫
C

F · dr,

is called the work done by the force on the particle.

Example

F

y

x

r’

A projectile of mass m moving on the
surface of Earth.

I The movement takes place on a
plane, and F = 〈0,−mg〉.

I W 6 0 in the first half of the
trajectory, and W > 0 on the
second half.
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Conservative fields.

Definition
A vector field F : D ⊂ Rn → Rn, with n = 2, 3, is called
conservative iff there exists a scalar function f : D ⊂ Rn → R,
called potential function, such that

F = ∇f .

Example

F

y

x

r’

A projectile of mass m moving on the
surface of Earth.

I The movement takes place on a
plane, and F = 〈0,−mg〉.

I F = ∇f , with f = −mgy .

Conservative fields.

Example

Show that the vector field F =
1

(x2
1 + x2

2 + x2
3 )3/2

〈x1, x2, x3〉 is

conservative and find the potential function.

Solution: The field F = 〈F1,F2,F3〉 is conservative iff there exists a
potential function f such that F = ∇f , that is,

F1 = ∂x1f , F2 = ∂x2f , F3 = ∂x3f .

Since

xi

(x2
1 + x2

2 + x2
3 )3/2

= −∂xi

[(
x2
1 + x2

2 + x2
3

)−1/2
]
, i = 1, 2, 3,

then we conclude that F = ∇f , with f = − 1√
x2
1 + x2

2 + x2
3

. C
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The line integral of conservative fields.

Definition
A set D ⊂ Rn, with n = 2, 3, is called simply connected iff every
two points in D can be connected by a smooth curve inside D and
every loop in D can be smoothly contracted to a point without
leaving D.

Remark: A set is simply connected iff it consists of one piece and
it contains no holes.

D

connected

Simply connected

Not simply

y

x

D



The line integral of conservative fields.
Notation: If the path C ∈ Rn, with n = 2, 3, has end points r0, r1,
then denote the line integral of a field F along C as follows∫

C

F · dr =

∫ r1

r0

F · dr.

(This notation emphasizes the end points, not the path.)

Theorem
A smooth vector field F : D ⊂ Rn → Rn, with n = 2, 3, defined on
a simply connected domain D ⊂ Rn is conservative with F = ∇f

iff for every two points r0, r1 ∈ D the line integral

∫
C

F · dr is

independent of the path C joining r0 to r1 and holds∫ r1

r0

F · dr = f (r1)− f (r0).

Remark: A field F is conservative iff

∫
C

F · dr is path independent.

The line integral of conservative fields.

Summary: F = ∇f equivalent to

∫ r1

r0

F · dr = f (r1)− f (r0).

Proof: Only (⇒).∫ r1

r0

F · dr =

∫ r1

r0

∇f · dr =

∫ t1

t0

(∇f )
∣∣∣
r(t)

· r′(t) dt,

where r(t0) = r0 and r(t1) = r1. Therefore,∫ r1

r0

F · dr =

∫ t1

t0

d

dt

[
f (r(t)

]
dt = f (r(t1))− f (r(t0)).

We conclude that

∫ r1

r0

F · dr = f (r1)− f (r0).

(The statement (⇐) is more complicated to prove.)



The line integral of conservative fields.

Example

Evaluate I =

∫ (1,2,3)

(0,0,0)
2x dx + 2y dy + 2z dz .

Solution: I is a line integral for a field in R3, since

I =

∫ (1,2,3)

(0,0,0)
〈2x , 2y , 2z〉 · 〈dx , dy , dz〉.

Introduce F = 〈2x , 2y , 2z〉, r0 = (0, 0, 0) and r1 = (1, 2, 3), then

I =

∫ r1

r0

F · dr. The field F is conservative, since F = ∇f with

potential f (x , y , z) = x2 + y2 + z2. That is f (r) = |r|2. Therefore,

I =

∫ r1

r0

∇f · dr = f (r1)− f (r0) = |r1|2 − |r0|2 = (1 + 4 + 9).

We conclude that I = 14. C

The line integral of conservative fields. (Along a path.)

Example

Evaluate I =

∫ (1,2,3)

(0,0,0)
2x dx + 2y dy + 2z dz along a straight line.

Solution: Consider the path C given by r(t) = 〈1, 2, 3〉 t.
Then r(0) = 〈0, 0, 0〉, and r(1) = 〈1, 2, 3〉. We now evaluate
F = 〈2x , 2y , 2z〉 along r(t), that is, F(t) = 〈2t, 4t, 6t〉. Therefore,

I =

∫ t1

t0

F(t) · r′(t) dt =

∫ 1

0
〈2t, 4t, 6t〉 · 〈1, 2, 3〉 dt

I =

∫ 1

0
(2t + 8t + 18t) dt =

∫ 1

0
28t dt = 28

( t2

2

∣∣∣1
0

)
.

We conclude that I = 14. C
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Finding the potential of a conservative field.

Theorem (Characterization of potential fields)

A smooth field F = 〈F1,F2,F3〉 on a simply connected domain
D ⊂ R3 is a conservative field iff hold

∂2F3 = ∂3F2, ∂3F1 = ∂1F3, ∂1F2 = ∂2F1.

Proof: Only (⇒).
Since the vector field F is conservative, there exists a scalar field f
such that F = ∇f . Then the equations above are satisfied, since
for i , j = 1, 2, 3 hold

Fi = ∂i f ⇒ ∂iFj = ∂i∂j f = ∂j∂i f = ∂jFi .

(The statement (⇐) is more complicated to prove.)



Finding the potential of a conservative field.

Example

Show that the field F = 〈2xy , (x2 − z2),−2yz〉 is conservative.

Solution: We need to show that the equations in the Theorem
above hold, that is

∂2F3 = ∂3F2, ∂3F1 = ∂1F3, ∂1F2 = ∂2F1.

with x1 = x , x2 = y , and x3 = z . This is the case, since

∂1F2 = 2x , ∂2F1 = 2x ,

∂2F3 = −2z , ∂3F2 = −2z ,

∂3F1 = 0, ∂1F3 = 0.

C

Finding the potential of a conservative field.
Example

Find the potential function of the conservative field
F = 〈2xy , (x2 − z2),−2yz〉.

Solution: We know there exists a scalar function f solution of

F = ∇f ⇔ ∂x f = 2xy , ∂y f = x2 − z2, ∂z f = −2yz .

f =

∫
2xy dx + g(y , z) ⇒ f = x2y + g(y , z).

∂y f = x2 + ∂yg(y , z) = x2 − z2 ⇒ ∂yg(y , z) = −z2.

g(y , z) = −
∫

z2 dy+h(z) = −z2y +h(z) ⇒ f = x2y−z2y +h(z).

∂z f = −2zy+∂zh(z) = −2yz ⇒ ∂zh(z) = 0 ⇒ f = (x2−z2)y+c0.

C
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Comments on exact differential forms.

Notation: We call a differential form to the integrand in a line
integral for a smooth field F, that is,

F · dr = 〈Fx ,Fy ,Fz〉 · 〈dx , dy , dz〉 = Fxdx + Fydy + Fzdz .

Remark: A differential form is a quantity that can be integrated
along a path.

Definition
A differential form F · dr = Fxdx + Fydy + Fzdz is called exact iff
there exists a scalar function f such that

Fxdx + Fydy + Fzdz = ∂x f dx + ∂y f dy + ∂z f dz .

Remarks:

I A differential form F · dr is exact iff F = ∇f .

I An exact differential form is nothing else than another name
for a conservative field.



Comments on exact differential forms.

Example

Show that the differential form given below is exact, where
F · dr = 2xy dx + (x2 − z2) dy − 2yz dz .

Solution: We need to do the same calculation we did above:
Writing F · dr = F1 dx1 + F2 dx2 + F3 dx3, show that

∂2F3 = ∂3F2, ∂3F1 = ∂1F3, ∂1F2 = ∂2F1.

with x1 = x , x2 = y , and x3 = z . We showed that this is the case,
since

∂1F2 = 2x , ∂2F1 = 2x ,

∂2F3 = −2z , ∂3F2 = −2z ,

∂3F1 = 0, ∂1F3 = 0.

So, there exists f such that F · dr = ∇f · dr. C
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Review: The line integral of a vector field along a curve.

Definition
The line integral of a vector-valued function F : D ⊂ Rn → Rn,
with n = 2, 3, along the curve r : [t0, t1] ⊂ R → D ⊂ R3, with arc
length function s, is given by∫ s1

s0

F · u ds =

∫ t1

t0

F(t) · r′(t) dt,

where u =
r′

|r′|
, and s0 = s(t0), s1 = s(t1).

Example

C

{ z = 0 }

y

x

z

u

Remark: Since F = 〈Fx ,Fy 〉 and
r(t) = 〈x(t), y(t)〉, in components,∫ t1

t0

F(t) · r′(t) dt

=

∫ t1

t0

[
Fx(t)x

′(t) + Fy (t)y ′(t)
]
dt.

Review: The line integral of a vector field along a curve.

Example

Evaluate the line integral of F = 〈−y , x〉 along the loop
r(t) = 〈cos(t), sin(t)〉 for t ∈ [0, 2π].

Solution: Evaluate F along the curve: F(t) = 〈− sin(t), cos(t)〉.
Now compute the derivative vector r′(t) = 〈− sin(t), cos(t)〉.
Then evaluate the line integral in components,∮

C

F · u ds =

∫ t1

t0

[
Fx(t)x

′(t) + Fy (t)y ′(t)
]
dt,

∮
C

F · u ds =

∫ 2π

0

[
(− sin(t))(− sin(t)) + cos(t) cos(t)

]
dt,

∮
C

F · u ds =

∫ 2π

0

[
sin2(t) + cos2(t)

]
dt ⇒

∮
C

F · u ds = 2π.



Review: The flux across a plane loop.

Definition
The flux of a vector field F : {z = 0} ⊂ R3 → {z = 0} ⊂ R3 along
a closed plane loop r : [t0, t1] ⊂ R → {z = 0} ⊂ R3 is given by

F =

∮
C

F · n ds,

where n is the unit outer normal vector to the curve inside the
plane {z = 0}.

Example

C
n

{ z = 0 }

y

x

z

Remark: Since F = 〈Fx ,Fy , 0〉,
r(t) = 〈x(t), y(t), 0〉, ds = |r′(t)| dt, and

n =
1

|r′|
〈y ′(t),−x ′(t), 0〉, in components,

∮
C

F · n ds =

∫ t1

t0

[
Fx(t)y

′(t)− Fy (t)x ′(t)
]
dt.

Review: The flux across a plane loop.
Example

Evaluate the flux of F = 〈−y , x , 0〉 along the loop
r(t) = 〈cos(t), sin(t), 0〉 for t ∈ [0, 2π].

Solution: Evaluate F along the curve: F(t) = 〈− sin(t), cos(t), 0〉.
Now compute the derivative vector r′(t) = 〈− sin(t), cos(t), 0〉.
Now compute the normal vector n(t) = 〈y ′(t),−x ′(t), 0〉, that is,
n(t) = 〈cos(t), sin(t), 0〉. Evaluate the flux integral in components,∮

C

F · n ds =

∫ t1

t0

[
Fx(t)y

′(t)− Fy (t)x ′(t)
]
dt,

∮
C

F · n ds =

∫ 2π

0

[
− sin(t) cos(t)− cos(t)(− sin(t))

]
dt,

∮
C

F · u ds =

∫ 2π

0
0 dt ⇒

∮
C

F · u ds = 0.
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Green’s Theorem on a plane.

Theorem (Circulation-tangential form)

The counterclockwise line integral

∮
C

F · u ds of the field

F = 〈Fx ,Fy 〉 along a loop C enclosing a region R ∈ R2 and given
by the function r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1] and with unit
tangent vector u, satisfies that∫ t1

t0

[
Fx(t) x ′(t) + Fy (t) y ′(t)

]
dt =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

R

{ z = 0 }

y

x

z

u

C

Equivalently,∮
C

F · u ds =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .



Green’s Theorem on a plane.

Example

Verify Green’s Theorem tangential form for the field F = 〈−y , x〉
and the loop r(t) = 〈cos(t), sin(t)〉 for t ∈ [0, 2π].

Solution: Recall: We found that

∮
C

F · u ds = 2π.

Now we compute the double integral I =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy

and we verify that we get the same result, 2π.

I =

∫∫
R

[
1− (−1)

]
dx dy = 2

∫∫
R

dx dy = 2

∫ 2π

0

∫ 1

0
r dr dθ

I = 2(2π)
( r2

2

∣∣∣1
0

)
⇒ I = 2π.

We verified that

∮
C

F · u ds =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy = 2π. C
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Green’s Theorem on a plane.

Theorem (Flux-normal form)

The counterclockwise flux integral

∮
C

F · n ds of the field

F = 〈Fx ,Fy 〉 along a loop C enclosing a region R ∈ R2 and given
by the function r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1] and with unit
normal vector n, satisfies that∫ t1

t0

[
Fx(t) y ′(t)− Fy (t) x ′(t)

]
dt =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .

R

n

{ z = 0 }

y

x

z

C

Equivalently,∮
C

F · n ds =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .

Green’s Theorem on a plane.

Example

Verify Green’s Theorem normal form for the field F = 〈−y , x〉 and
the loop r(t) = 〈cos(t), sin(t)〉 for t ∈ [0, 2π].

Solution: Recall: We found that

∮
C

F · n ds = 0.

Now we compute the double integral I =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy

and we verify that we get the same result, 0.

I =

∫∫
R

[
∂x(−y) + ∂y (x)

]
dx dy =

∫∫
R

0 dx dy = 0.

We verified that

∮
C

F · n ds =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy = 0. C



Green’s Theorem on a plane.

Example

Verify Green’s Theorem normal form for the field F = 〈2x ,−3y〉
and the loop r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π], a > 0.

Solution: We start with the line integral∮
C

F · n ds =

∫ t1

t0

[
Fx(t)y

′(t)− Fy (t)x ′(t)
]
dt.

It is simple to see that F(t) = 〈2a cos(t),−3a sin(t)〉,
and also that r′(t) = 〈−a sin(t), a cos(t)〉.

Therefore,

∮
C

F · n ds =

∫ 2π

0

[
2a2 cos2(t)− 3a2 sin2(t)

]
dt,∮

C

F · n ds =

∫ 2π

0

[
2a2 1

2

(
1 + cos(2t)

)
− 3a2 1

2

(
1− cos(2t)

)]
dt.

Since

∫ 2π

0
cos(2t) dt = 0, we conclude

∮
C

F · n ds = −πa2.

Green’s Theorem on a plane.

Example

Verify Green’s Theorem normal form for the field F = 〈2x ,−3y〉
and the loop r(t) = 〈a cos(t), a sin(t)〉 for t ∈ [0, 2π], a > 0.

Solution: Recall:

∮
C

F · n ds = −πa2.

Now we compute the double integral I =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .

I =

∫∫
R

[
∂x(2x) + ∂y (−3y)

]
dx dy =

∫∫
R

(2− 3) dx dy .

I = −
∫∫

R

dx dy = −
∫ 2π

0

∫ a

0
r dr dθ = −2π

( r2

2

∣∣∣a
0

)
= −πa2.

Hence,

∮
C

F · n ds =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy = −πa2. C
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Tangential and normal forms equivalence.

Lemma
The Green Theorem in tangential form is equivalent to the Green
Theorem in normal form.

Proof: Green’s Theorem in tangential form for F = 〈Fx ,Fy 〉 says∫ t1

t0

[
Fx(t) x ′(t) + Fy (t) y ′(t)

]
dt =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

Apply this Theorem for F̂ = 〈−Fy ,Fx〉, that is, F̂x = −Fy and
F̂y = Fx . We obtain∫ t1

t0

[
−Fy (t) x ′(t) + Fx(t) y ′(t)

]
dt =

∫∫
R

(
∂xFx − ∂y (−Fy )

)
dx dy ,

so,

∫ t1

t0

[
Fx(t) y ′(t)− Fy (t) x ′(t)

]
dt =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy ,

which is Green’s Theorem in normal form. The converse
implication is proved in the same way.



Using Green’s Theorem

Example

Use Green’s Theorem to find the counterclockwise circulation of
the field F = 〈(y2 − x2), (x2 + y2)〉 along the curve C that is the
triangle bounded by y = 0, x = 3 and y = x .

Solution: Recall:

∮
C

F · dr =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

∮
C

F · dr =

∫∫
R

(2x − 2y) dx dy =

∫ 3

0

∫ x

0
(2x − 2y) dy dx ,

∮
C

F · dr =

∫ 3

0

[
2x

(
y
∣∣∣x
0

)
−

(
y2

∣∣∣x
0

)]
dx =

∫ 3

0

(
2x2 − x2

)
dx ,

∮
C

F · dr =

∫ 3

0
x2 dx =

x3

3

∣∣∣3
0

⇒
∮

C

F · dr = 9. C
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Review: Green’s Theorem on a plane.

Theorem
Given a field F = 〈Fx ,Fy 〉 and a loop C enclosing a region R ∈ R2

described by the function r(t) = 〈x(t), y(t)〉 for t ∈ [t0, t1], with
unit tangent vector u and exterior normal vector n, then holds:

I The counterclockwise line integral

∮
C

F · u ds satisfies:∫ t1

t0

[
Fx(t) x ′(t) + Fy (t) y ′(t)

]
dt =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

I The counterclockwise line integral

∮
C

F · n ds satisfies:∫ t1

t0

[
Fx(t) y ′(t)− Fy (t) x ′(t)

]
dt =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .

Review: Green’s Theorem on a plane.

R

{ z = 0 }

y

x

z

u

C

Circulation-tangential form:∮
C

F · u ds =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

R

n

{ z = 0 }

y

x

z

C

Flux-normal form:∮
C

F · n ds =

∫∫
R

(
∂xFx + ∂yFy

)
dx dy .

Lemma
The Green Theorem in tangential form is equivalent to the Green
Theorem in normal form.
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Sketch of the proof of Green’s Theorem.

We want to prove that for every differentiable vector field
F = 〈Fx ,Fy 〉 the Green Theorem in tangential form holds,∫

C

[
Fx(t) x ′(t) + Fy (t) y ′(t)

]
dt =

∫∫
R

(
∂xFy − ∂yFx

)
dx dy .

We only consider a simple domain like the one in the pictures.
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Using the picture on the left we show that∫
C

Fx(t) x ′(t) dt =

∫∫
R

(
−∂yFx

)
dx dy ;

and using the picture on the right we show that∫
C

Fy (t) y ′(t) dt =

∫∫
R

(
∂xFy

)
dx dy .



Sketch of the proof of Green’s Theorem.
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Show that for Fx(t) = Fx(x(t), y(t)) holds∫
C

Fx(t) x ′(t) dt =

∫∫
R

(
−∂yFx

)
dx dy ;

The path C can be described by the curves r0 and r1 given by

r0(t) = 〈t, g0(t)〉, t ∈ [x0, x1]

r1(t) = 〈(x1 + x0 − t), g1(x1 + x0 − t)〉 t ∈ [x0, x1].

Therefore,

r′0(t) = 〈1, g ′
0(t)〉, t ∈ [x0, x1]

r′1(t) = 〈−1,−g ′
1(x1 + x0 − t)〉 t ∈ [x0, x1].

Recall: Fx(t) = Fx(t, g0(t)) on r0,
and Fx(t) = Fx((x1 + x0 − t), g1(x1 + x0 − t)) on r1.

Sketch of the proof of Green’s Theorem.∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

Fx(t, g0(t)) dt

−
∫ x1

x0

Fx((x1 + x0 − t), g1(x1 + x0 − t)) dt

Substitution in the second term: τ = x1 + x0 − t, so dτ = −dt.

−
∫ x1

x0

Fx((x1 + x0 − t), g1(x1 + x0 − t)) dt =

−
∫ x0

x1

Fx(τ, g1(τ)) (−dτ) = −
∫ x1

x0

Fx(τ, g1(τ)) dτ.

Therefore,

∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

[
Fx(t, g0(t))− Fx(t, g1(t))

]
dt.

We obtain:

∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

∫ g1(t)

g0(t)

[
−∂yFx(t, y)

]
dy dt.



Sketch of the proof of Green’s Theorem.

Recall:

∫
C

Fx(t)x
′(t) dt =

∫ x1

x0

∫ g1(t)

g0(t)

[
−∂yFx(t, y)

]
dy dt.

This result is precisely what we wanted to prove:∫
C

Fx(t)x
′(t) dt =

∫∫
R

(
−∂yFx

)
dy dx .

We just mention that the result∫
C

Fy (t) y ′(t) dt =

∫∫
R

(
∂xFy

)
dx dy .

is proven in a similar way using the
parametrization of the C given in the
picture.
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Divergence and curl of a function on a plane.

Definition
The curl of a vector field F = 〈Fx ,Fy 〉 in R2 is the scalar(

curlF
)
z

= ∂xFy − ∂yFx .

The divergence of a vector field F = 〈Fx ,Fy 〉 in R2 is the scalar

divF = ∂xFx + ∂yFy .

Remark: Both forms of Green’s Theorem can be written as:∮
C

F · u ds =

∫∫
R

(
curlF

)
z
dx dy .

∮
C

F · n ds =

∫∫
R

divF dx dy .

Divergence and curl of a function on a plane.

Remark: What type of information about F is given in
(
curlF

)
z
?

Example: Suppose F is the velocity field of a viscous fluid and

F = 〈−y , x〉 ⇒
(
curlF

)
z

= ∂xFy − ∂yFx = 2.

x

y

If we place a small ball at (0, 0), the ball will
spin around the z-axis with speed proportional
to

(
curlF

)
z
.

x

y
If we place a small ball at everywhere in the
plane, the ball will spin around the z-axis with
speed proportional to

(
curlF

)
z
.

Remark: The curl of a field measures its rotation.



Divergence and curl of a function on a plane.

Remark: What type of information about F is given in divF?

Example: Suppose F is the velocity field of a gas and

F = 〈x , y〉 ⇒ divF = ∂xFx + ∂yFy = 2.

x

y

The field F represents the gas as is heated
with a heat source at (0, 0). The heated gas
expands in all directions, radially out form
(0, 0). The divF measures that expansion.

Remark: The divergence of a field measures its expansion.

Remarks:

I Notice that for F = 〈x , y〉 we have
(
curlF

)
z

= 0.

I Notice that for F = 〈−y , x〉 we have divF = 0.
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Area computed with a line integral.
Remark: Any of the two versions of Green’s Theorem can be used
to compute areas using a line integral. For example:∫∫

R

(
∂xFx + ∂yFy

)
dx dy =

∮
C

(
Fx dy − Fy dx)

If F is such that the left-hand side above has integrand 1, then
that integral is the area A(R) of the region R. Indeed:

F = 〈x , 0〉 ⇒
∫∫

R

dx dy = A(R) =

∮
C

x dy .

F = 〈0, y〉 ⇒
∫∫

R

dx dy = A(R) =

∮
C

−y dx .

F =
1

2
〈x , y〉 ⇒

∫∫
R

dx dy = A(R) =
1

2

∮
C

(
x dy − y dx

)
.

Area computed with a line integral.

Example

Use Green’s Theorem to find the area of the region enclosed by the
ellipse r(t) = 〈a cos(t), b sin(t)〉, with t ∈ [0, 2π] and a, b positive.

Solution: We use: A(R) =

∮
C

x dy .

We need to compute r′(t) = 〈−a sin(t), b cos(t)〉. Then,

A(R) =

∫ 2π

0
x(t) y ′(t) dt =

∫ 2π

0
a cos(t) b cos(t) dt.

A(R) = ab

∫ 2π

0
cos2(t) dt = ab

∫ 2π

0

1

2

[
1 + cos(2t)

]
dt.

Since

∫ 2π

0
cos(2t) dt = 0, we obtain A(R) =

ab

2
2π, that is,

A(R) = πab. C


