
Review for Exam 3.

I Sections 15.1-15.4, 15.6.

I 50 minutes.

I 5 problems, similar to homework problems.

I No calculators, no notes, no books, no phones.

I No green book needed.



Triple integral in spherical coordinates (Sect. 15.6).

Example

Use spherical coordinates to find the volume of the region outside
the sphere ρ = 2 cos(φ) and inside the half sphere ρ = 2 with
φ ∈ [0, π/2].

Solution: First sketch the integration region.

I ρ = 2 cos(φ) is a sphere, since

ρ2 = 2ρ cos(φ) ⇔ x2+y2+z2 = 2z

x2 + y2 + (z − 1)2 = 1.

I ρ = 2 is a sphere radius 2 and
φ ∈ [0, π/2] says we only consider
the upper half of the sphere.
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Triple integral in cylindrical coordinates (Sect. 15.6).

Example

Use cylindrical coordinates to find the volume of a curved wedge
cut out from a cylinder (x − 2)2 + y2 = 4 by the planes z = 0 and
z = −y .

Solution: First sketch the integration region.

I (x − 2)2 + y2 = 4 is a circle, since

x2 + y2 = 4x ⇔ r2 = 4r cos(θ)

r = 4 cos(θ).

I Since 0 6 z 6 −y , the integration
region is on the y 6 0 part of the
z = 0 plane.
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z = − y
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2

(x − 2)   + y   = 42
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Example

Use cylindrical coordinates to find the volume of a curved wedge
cut out from a cylinder (x − 2)2 + y2 = 4 by the planes z = 0 and
z = −y .

Solution: V = −
∫ 2π

3π/2

43

3
cos3(θ) sin(θ) dθ.

Introduce the substitution: u = cos(θ), du = − sin(θ) dθ;

V =
43

3

∫ 1

0
u3 du =
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3

(u4
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∣∣∣1
0
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=

43

3

1

4
.

We conclude: V =
16

3
. C
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Triple integral in Cartesian coordinates (Sect. 15.4).

Example

Find the volume of a parallelepiped whose base is a rectangle in
the z = 0 plane given by 0 6 y 6 2 and 0 6 x 6 1, while the top
side lies in the plane x + y + z = 3.

Solution:
z

x
3

y3

3

V =

∫ 1

0

∫ 2

0

∫ 3−x−y
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Double integrals in polar coordinates. (Sect. 15.3)

Example

Find the area of the region in the plane inside the curve
r = 6 sin(θ) and outside the circle r = 3, where r , θ are polar
coordinates in the plane.

Solution: First sketch the integration region.

I r = 6 sin(θ) is a circle, since

r2 = 6r sin(θ) ⇔ x2 + y2 = 6y

x2 + (y − 3)2 = 32.

I The other curve is a circle r = 3 centered
at the origin.

r = 3

x

y

3

3−3

6 r = 6 cos ( 0 )

The condition 3 = r = 6 sin(θ) determines the range in θ.
Since sin(θ) = 1/2, we get θ1 = 5π/6 and θ0 = π/6.
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3
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, hence A = 3π + 9

√
3/2. C
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Double integrals in Cartesian coordinates. (Sect. 15.2)

Example

Find the y -component of the centroid vector in Cartesian
coordinates in the plane of the region given by the disk
x2 + y2 6 9 minus the first quadrant.

Solution: First sketch the integration region.

3

y

x3

y =
1

A

∫∫
R

y dA, where A = πR2(3/4), with

R = 3. That is, A = 27π/4. We use polar
coordinates to compute y .

y =
4

27π

∫ 2π

π/2

∫ 3

0
r sin(θ) rdr dθ.

y =
4

27π

(
− cos(θ)

∣∣∣2π

π/2

)( r3

3

∣∣∣3
0

)
=

4

27π
(−1)(9) ⇒ y = − 4

3π
.
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Double integrals in polar coordinates. (Sect. 15.2)

Example

Transform to polar coordinates and then evaluate the integral

I =

∫ −
√

2

−2

∫ √
4−x2

−
√

4−x2

(
x2+y2

)
dy dx +

∫ √
2

−
√

2

∫ √
4−x2

x

(
x2+y2

)
dy dx .

Solution: First sketch the integration region.

I x ∈ [−2,
√

2].

I For x ∈ [−2,−
√

2], we have
|y | 6

√
4− x2, so the curve is part

of the circle x2 + y2 = 4.

I For x ∈ [−
√

2,
√

2], we have that y
is between the line y = x and the
upper side of the circle
x2 + y2 = 4.

2

y

x

x  + y   = 4

y = x

2−2 2−    2

2
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Integrals along a curve in space. (Sect. 16.1)

I Line integrals in space.

I The addition of line integrals.

I Mass and center of mass of wires.



Line integrals in space.

Definition
The line integral of a function f : D ⊂ R3 → R along a curve
associated with the function r : [t0, t1] ⊂ R → D ⊂ R3 is given by∫

C

f ds =

∫ s1

s0

f
(
r̂(s)

)
ds,

where r̂(s) is the arc length parametrization of the function r, and
s(t0) = s0, s(t1) = s1 are the arc lengths at the points t0, t1,
respectively.

( f   r )

r ( s )r
f

f ( r (s ) )

s0
0
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Line integrals in space.

Remarks:

I A line integral is an integral of a function along a curved path.

I Why is the function r parametrized with its arc length?

(1) Because in this way the line integral is independent of the
original parametrization of the curve. Given two different
parametrizations of the curve, we have switch them to the
unique arc length parametrization and compute the integral
above.

(2) Because this is the appropriate generalization of the integral of
a function F : R → R.

Recall:

∫ b

a

F (x) dx = lim
n→∞

n∑
i=0

F (x∗i )∆xi , where

∆xi = xi+1 − xi is the distance from xi+1 to x1.

This ∆xi generalizes to ∆si on a curved path. This is why the
arc length parametrization is needed in the line integral.
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Line integrals in space.

Theorem (Arbitrary parametrization.)

The line integral of a continuous function f : D ⊂ R3 → R along a
differentiable curve r : [t0, t1] ⊂ R → D ⊂ R3 is given by∫

C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt,

where t is any parametrization of the vector-valued function r.

Proof: The integration by substitution formula says∫ s1

s0

f
(
r̂(s)

)
ds =

∫ t1

t0

f
[̂
r(s(t))

]
s ′(t) dt,

s0 = s(t0),

s1 = s(t1).

The arc length function is s(t) =
∫ t
t0
|r′(τ)| dτ , then s ′(t) = |r′(t)|.

Noticing that r̂(s(t)) = r(t), then∫
C

f ds =

∫ s1

s0

f
(
r̂(s)

)
ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.
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Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉,

therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3.

The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t)

⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.

∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt

= 3
[(

2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)

= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6

⇒
∫

C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) = xy + y + z
along the curve r(t) = 〈2t, t, 2− 2t〉 in the interval t ∈ [0, 1].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈2, 1,−2〉, therefore its magnitude
is |r′(t)| =

√
4 + 1 + 4 = 3. The values of f along the curve are

f (r(t)) = (2t)t + t + (2− 2t) ⇒ f (r(t)) = 2t2 − t + 2.∫
C

f ds =

∫ 1

0
(2t2 − t + 2) 3 dt = 3

[(
2
t3

3
− t2

2
+ 2t

)∣∣∣1
0

]
.

∫
C

f ds = 3
(2

3
− 1

2
+ 2

)
= 2− 3

2
+ 6 ⇒

∫
C

f ds =
13

2
. C



Line integrals in space.

Example

Evaluate the line integral of the function f (x , y , z) =
√

x2 + z2

along the curve r(t) = 〈0, a cos(t), a sin(t)〉, in t ∈ [0, π/2].

Solution: Recall:

∫
C

f ds =

∫ t1

t0

f (r(t)) |r′(t)| dt.

The derivative vector is r′(t) = 〈0,−a sin(t), a cos(t)〉, therefore its

magnitude is |r′(t)| =
√

a2 sin2(t) + a2 cos2(t) = |a|. The values
of f along the curve are

f (r(t)) =

√
0 + a2 sin2(t) ⇒ f (r(t)) = |a|| sin(t)|.∫

C

f ds =

∫ π/2

0
|a| sin(t) |a| dt = a2
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Integrals along a curve in space. (Sect. 16.1)

I Line integrals in space.

I The addition of line integrals.

I Mass and center of mass of wires.



The addition of line integrals.

Theorem
If a curve C ⊂ D in space is the union of the differentiable curves
C1, · · · , Cn, then the line integral of a continuous function
f : D ⊂ R3 → R along C satisfies∫

C

f ds =

∫
C1

f ds + · · ·+
∫

Cn

f ds.

Remark:
This result is useful to compute line
integral along piecewise differentiable
curves.
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C 1

C = C  U C1
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The addition of line integrals.
Example

Evaluate the line integral of f (x , y , z) = x +
√

y − z2 along the
path C = C1 ∪ C2, where C1 is the image of r1(t) = 〈t, t2, 0〉 for
t ∈ [0, 1], and C2 is the image of r2(t) = 〈1, 1, t〉 for t ∈ [0, 1].

Solution:

C

z

2

1

1

x

yC 1

∫
C

f ds =

∫
C1

f ds +

∫
C2

f ds.

r′1(t) = 〈1, 2t, 0〉 ⇒ |r′1(t)| =
√

1 + 4t2.

f (r1(t)) = t + t = 2t.∫
C1

f ds =

∫ 1

0
2t

√
1 + 4t2 dt, u = 1 + 4t2, du = 8t dt.

∫
C1

f ds =
1

4

∫ 5

1
u1/2 du =

1

4

2

3

(
u3/2

∣∣∣5
1

)
⇒

∫
C1

f ds =
1

6
(5
√

5− 1).
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Integrals along a curve in space. (Sect. 16.1)

I Line integrals in space.

I The addition of line integrals.

I Mass and center of mass of wires.



Mass and center of mass of wires.

Remark:
The total mass, the center of mass, and the moments of inertia of
wires with arbitrary shapes in space, given by a curve C and having
a density function ρ, can be computed using line integrals.

I M =
∫

C
ρ ds;

I x =
1

M

∫
C

xρ ds, y =
1

M

∫
C

yρ ds, z =
1

M

∫
C

zρ ds;

I Ix =
1

M

∫
C

(y2 + z2)ρ ds,

I Iy =
1

M

∫
C

(x2 + z2)ρ ds,

I Iz =
1

M

∫
C

(x2 + y2)ρ ds.



Mass and center of mass of wires.

Example

Find the moments of inertia of a wheel of radius R and density ρ0.

Solution: We place the wheel at the center of the z = 0 plane. The
curve for the wheel is r(t) = 〈R cos(t),R sin(t), 0〉, t ∈ [0, 2π].
Therefore, r′(t) = 〈−R sin(t),R cos(t), 0〉, hence |r′(t)| = R.
Recall: Ix =

∫
C
(y2 + z2)ρ0 ds, Iz =

∫
C
(x2 + y2)ρ0 ds.

Ix =

∫ 2π

0
R2 sin2(t)ρ0R dt = R3ρ0

∫ 2π

0

1

2

[
1− cos(2t)

]
dt

Ix = R3ρ0

[
π − 1

4

(
sin(2t)

∣∣∣2π

0

)]
⇒ Ix = πR3ρ0.

By symmetry, Ix = Iy . Finally,

Iz =

∫ 2π

0
R2ρ0R dt ⇒ Iz = 2πR3ρ0. C
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Integrals of vector fields. (Sect. 16.2)

I Vector fields on a plane and in space.
I The gradient field of a scalar-valued function.

I The line integral of a vector field along a curve.
I Work done by a force on a particle.
I The flow of a fluid along a curve.

I The flux across a plane curve.



Vector fields on a plane and in space.

Definition
A vector field on a plane or in space is a vector-valued function
F : D ⊂ Rn → Rn, with n = 2, 3, respectively.

Examples from physics:

I Electric and magnetic fields.

I The gravitational field of the Earth.

I The velocity field in a fluid or gas.

I The variation of temperature in a
room. (Gradient field.)

Magnetic field of a small magnet.
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Integrals of vector fields. (Sect. 16.2)

I Vector fields on a plane and in space.
I The gradient field of a scalar-valued function.

I The line integral of a vector field along a curve.
I Work done by a force on a particle.
I The flow of a fluid along a curve.

I The flux across a plane curve.



The gradient field of a scalar-valued function.

Remark:
I Given a scalar-valued function f : D ⊂ Rn → R, with n = 2, 3,

its gradient vector, ∇f = 〈∂x f , ∂y f 〉 or ∇f = 〈∂x f , ∂y f , ∂z f 〉,
respectively, is a vector field in a plane or in space.

Example

Find and sketch a graph of the gradient field of the function
f (x , y) = x2 + y2.

Solution: We know the graph of f is a paraboloid. The gradient
field is ∇f = 〈2x , 2y〉.

z f(x,y) = x  + y

x
y

2 2

D fu

x

y

  f
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Integrals of vector fields. (Sect. 16.2)

I Vector fields on a plane and in space.
I The gradient field of a scalar-valued function.

I The line integral of a vector field along a curve.
I Work done by a force on a particle.
I The flow of a fluid along a curve.

I The flux across a plane curve.



The line integral of a vector field along a curve.

Definition
The line integral of a vector-valued function F : D ⊂ Rn → Rn,
with n = 2, 3, along the curve associated with the function
r : [t0, t1] ⊂ R → D ⊂ R3 is given by∫

C

F · dr =

∫ t1

t0

F(t) · r′(t) dt

Example

F

y

x

r’

Remark: An equivalent expression is:∫
C

F · dr =

∫ t1

t0

F(t) · r′(t)

|r′(t)|
|r′(t)| dt,∫

C

F · dr =

∫ s1

s0

F̂ · û ds,

where û =
r′(t(s))

|r′(t(s))|
, and F̂ = F(t(s)).
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Integrals of vector fields. (Sect. 16.2)

I Vector fields on a plane and in space.
I The gradient field of a scalar-valued function.

I The line integral of a vector field along a curve.
I Work done by a force on a particle.
I The flow of a fluid along a curve.

I The flux across a plane curve.



Work done by a force on a particle.

Definition
In the case that the vector field F : D ⊂ Rn → Rn, with n = 2, 3,
represents a force acting on a particle with position function
r : [t0, t1] ⊂ R → D ⊂ R3, then the line integral

W =

∫
C

F · dr,

is called the work done by the force on the particle.

Example

F

y

x

r’

A projectile of mass m moving on the
surface of Earth.

I The movement takes place on a
plane, and F = 〈0,−mg〉.

I W 6 0 in the first half of the
trajectory, and W > 0 on the
second half.
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Work done by a force on a particle.

Example

Find the work done by the force F(x , y , z) = 〈(3x2 − 3x), 3z , 1〉 on
a particle moving along the curve with r(t) = 〈t, t2, t4〉, t ∈ [0, 1].

Solution:
First: Evaluate F along r. This is: F(t) = 〈(3t2 − 3t), 3t4, 1〉.

Second: Compute r′(t). This is: r′(t) = 〈1, 2t, 4t3〉.

Third: Integrate the dot product F(t) · r′(t).

W =

∫ 1

0

[
(3t2 − 3t) + (6t5) + (4t3)

]
dt

=
(
t3 − 3

2
t2 + t6 + t4

)∣∣∣1
0

= 1− 3

2
+ 1 + 1.

So, W = 3− 3

2
. We conclude: The work done is W =

3

2
. C
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Integrals of vector fields. (Sect. 16.2)

I Vector fields on a plane and in space.
I The gradient field of a scalar-valued function.

I The line integral of a vector field along a curve.
I Work done by a force on a particle.
I The flow of a fluid along a curve.

I The flux across a plane curve.



The flow of a fluid along a curve.

Definition
In the case that the vector field v : D ⊂ Rn → Rn, with n = 2, 3, is
the velocity field of a flow and r : [t0, t1] ⊂ R → D ⊂ R3 is any
smooth curve, then the line integral

F =

∫
C

v · dr,

is called a flow integral. If the curve is a closed loop, the flow
integral is called the circulation of the fluid around the loop.

Example

Viscous fluid in a pipe.

x

z

v

y

I The flow of a viscous fluid in a
pipe is maximal along a line
through the center of the pipe.

I The flow vanishes on any curve
perpendicular to the section of the
pipe.
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The flow of a fluid along a curve.
Example

Find the circulation of a fluid with velocity field v = 〈−y , x〉 along
the closed loop given by r1 = 〈a cos(t), a sin(t)〉 for t ∈ [0, π], and
r2 = 〈t, 0〉 for t ∈ [−a, a].

Solution: The circulation is: F =

∫
C1

v · dr1 +

∫
C2

v · dr2.

1

y

x−a aC2

C

The first term is given by:∫
C1

v · dr1 =

∫ π

0
v(t) · r′1(t) dt.

v(t) = 〈−a sin(t), a cos(t)〉,

r′1(t) = 〈−a sin(t), a cos(t)〉.

∫
C1

v · dr1 =

∫ π

0
a2

[
sin2(t) + cos2(t)

]
dt ⇒

∫
C1

v · dr1 = πa2.
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Integrals of vector fields. (Sect. 16.2)

I Vector fields on a plane and in space.
I The gradient field of a scalar-valued function.

I The line integral of a vector field along a curve.
I Work done by a force on a particle.
I The flow of a fluid along a curve.

I The flux across a plane curve.



The flux across a plane curve.

Definition
The flux of a vector field F : {z = 0} ⊂ R3 → {z = 0} ⊂ R3 along
a closed plane loop r : [t0, t1] ⊂ R → {z = 0} ⊂ R3 is given by

F =

∮
C

F · n ds,

where n is the unit outer normal vector to the curve inside the
plane {z = 0}.

Example

C
n

{ z = 0 }

y

x

z
Remarks:

I F is defined on {z = 0}.
I The loop C lies on {z = 0}.
I Simple formula for n?



The flux across a plane curve.

Definition
The flux of a vector field F : {z = 0} ⊂ R3 → {z = 0} ⊂ R3 along
a closed plane loop r : [t0, t1] ⊂ R → {z = 0} ⊂ R3 is given by

F =

∮
C

F · n ds,

where n is the unit outer normal vector to the curve inside the
plane {z = 0}.

Example

C
n

{ z = 0 }

y

x

z

Remarks:

I F is defined on {z = 0}.
I The loop C lies on {z = 0}.
I Simple formula for n?



The flux across a plane curve.

Definition
The flux of a vector field F : {z = 0} ⊂ R3 → {z = 0} ⊂ R3 along
a closed plane loop r : [t0, t1] ⊂ R → {z = 0} ⊂ R3 is given by

F =

∮
C

F · n ds,

where n is the unit outer normal vector to the curve inside the
plane {z = 0}.

Example

C
n

{ z = 0 }

y

x

z
Remarks:

I F is defined on {z = 0}.

I The loop C lies on {z = 0}.
I Simple formula for n?



The flux across a plane curve.

Definition
The flux of a vector field F : {z = 0} ⊂ R3 → {z = 0} ⊂ R3 along
a closed plane loop r : [t0, t1] ⊂ R → {z = 0} ⊂ R3 is given by

F =

∮
C

F · n ds,

where n is the unit outer normal vector to the curve inside the
plane {z = 0}.

Example

C
n

{ z = 0 }

y

x

z
Remarks:

I F is defined on {z = 0}.
I The loop C lies on {z = 0}.

I Simple formula for n?



The flux across a plane curve.

Definition
The flux of a vector field F : {z = 0} ⊂ R3 → {z = 0} ⊂ R3 along
a closed plane loop r : [t0, t1] ⊂ R → {z = 0} ⊂ R3 is given by

F =

∮
C

F · n ds,

where n is the unit outer normal vector to the curve inside the
plane {z = 0}.

Example

C
n

{ z = 0 }

y

x

z
Remarks:

I F is defined on {z = 0}.
I The loop C lies on {z = 0}.
I Simple formula for n?



The flux across a plane curve.

Theorem (Counterclockwise loops.)

The flux of a vector field F = 〈Fx(x , y),Fy (x , y), 0〉 along a closed,
counterclockwise plane loop r(t) = 〈x(t), y(t), 0〉 for t ∈ [t0, t1] is
given by ∮

C

F · n ds =

∫ t1

t0

[
Fx y ′(t)− Fy x ′(t)

]
dt.

Proof:

n = u x k

y

x

z

C
{ z = 0 }

k

u

Remarks: Since C is counterclockwise
traversed, n = u× k, where u = r′/|r′|.

u(t) =
1

|r′(t)|
〈x ′(t), y ′(t), 0〉, k = 〈0, 0, 1〉.

n =
1

|r′|

∣∣∣∣∣∣
i j k
x ′ y ′ 0
0 0 1

∣∣∣∣∣∣ ⇒ n =
1

|r′|
〈y ′(t),−x ′(t), 0〉.
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The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:
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C
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Along C1 we have: F1(t) = 〈−a sin(t), a cos(t), 0〉 and

x ′(t) = −a sin(t), y ′(t) = a cos(t).

Therefore,

F1x(t) y ′(t)−F1y (t) x ′(t) = −a2 sin(t) cos(t)+a2 sin(t) cos(t) = 0.

Hence:

∫
C1

F · n ds = 0.



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C1 we have: F1(t) = 〈−a sin(t), a cos(t), 0〉 and

x ′(t) = −a sin(t), y ′(t) = a cos(t).

Therefore,

F1x(t) y ′(t)−F1y (t) x ′(t) = −a2 sin(t) cos(t)+a2 sin(t) cos(t) = 0.

Hence:

∫
C1

F · n ds = 0.



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C1 we have: F1(t) = 〈−a sin(t), a cos(t), 0〉

and

x ′(t) = −a sin(t), y ′(t) = a cos(t).

Therefore,

F1x(t) y ′(t)−F1y (t) x ′(t) = −a2 sin(t) cos(t)+a2 sin(t) cos(t) = 0.

Hence:

∫
C1

F · n ds = 0.



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C1 we have: F1(t) = 〈−a sin(t), a cos(t), 0〉 and

x ′(t) = −a sin(t), y ′(t) = a cos(t).

Therefore,

F1x(t) y ′(t)−F1y (t) x ′(t) = −a2 sin(t) cos(t)+a2 sin(t) cos(t) = 0.

Hence:

∫
C1

F · n ds = 0.



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C1 we have: F1(t) = 〈−a sin(t), a cos(t), 0〉 and

x ′(t) = −a sin(t), y ′(t) = a cos(t).

Therefore,

F1x(t) y ′(t)−F1y (t) x ′(t)

= −a2 sin(t) cos(t)+a2 sin(t) cos(t) = 0.

Hence:

∫
C1

F · n ds = 0.



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C1 we have: F1(t) = 〈−a sin(t), a cos(t), 0〉 and

x ′(t) = −a sin(t), y ′(t) = a cos(t).

Therefore,

F1x(t) y ′(t)−F1y (t) x ′(t) = −a2 sin(t) cos(t)+a2 sin(t) cos(t) = 0.

Hence:

∫
C1

F · n ds = 0.



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C1 we have: F1(t) = 〈−a sin(t), a cos(t), 0〉 and

x ′(t) = −a sin(t), y ′(t) = a cos(t).

Therefore,

F1x(t) y ′(t)−F1y (t) x ′(t) = −a2 sin(t) cos(t)+a2 sin(t) cos(t) = 0.

Hence:

∫
C1

F · n ds = 0.



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉 and x ′(t) = 1, y ′(t) = 0. So,

F2x(t) y ′(t)− F2y (t) x ′(t) = 0− t ⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)
⇒

∫
C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉 and x ′(t) = 1, y ′(t) = 0. So,

F2x(t) y ′(t)− F2y (t) x ′(t) = 0− t ⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)
⇒

∫
C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉

and x ′(t) = 1, y ′(t) = 0. So,

F2x(t) y ′(t)− F2y (t) x ′(t) = 0− t ⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)
⇒

∫
C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉 and x ′(t) = 1, y ′(t) = 0.

So,

F2x(t) y ′(t)− F2y (t) x ′(t) = 0− t ⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)
⇒

∫
C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉 and x ′(t) = 1, y ′(t) = 0. So,

F2x(t) y ′(t)− F2y (t) x ′(t)

= 0− t ⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)
⇒

∫
C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉 and x ′(t) = 1, y ′(t) = 0. So,

F2x(t) y ′(t)− F2y (t) x ′(t) = 0− t

⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)
⇒

∫
C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉 and x ′(t) = 1, y ′(t) = 0. So,

F2x(t) y ′(t)− F2y (t) x ′(t) = 0− t ⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)
⇒

∫
C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉 and x ′(t) = 1, y ′(t) = 0. So,

F2x(t) y ′(t)− F2y (t) x ′(t) = 0− t ⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)

⇒
∫

C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉 and x ′(t) = 1, y ′(t) = 0. So,

F2x(t) y ′(t)− F2y (t) x ′(t) = 0− t ⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)
⇒

∫
C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C



The flux across a plane curve.

Example

Find the flux of a field F = 〈−y , x , 0〉 across the plane closed loop
given by r1 = 〈a cos(t), a sin(t), 0〉 for t ∈ [0, π], and r2 = 〈t, 0, 0〉
for t ∈ [−a, a].

Solution: Recall:

∮
C

F · n ds =

∫
C1

F1 · n1 ds +

∫
C2

F2 · n2 ds

Along C2 we have: F2(t) = 〈0, t, 0〉 and x ′(t) = 1, y ′(t) = 0. So,

F2x(t) y ′(t)− F2y (t) x ′(t) = 0− t ⇒
∫

C2

F · n ds =

∫ a

−a
−t dt,

∫
C2

F · n ds = −
( t2

2

∣∣∣a
−a

)
⇒

∫
C2

F · n ds = 0.

We conclude:

∮
C

F · n ds = 0. C


