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Mth 132, Calculus I: f : R — R, f(x), differential calculus.
Mth 133, Calculus II: f : R — R, f(x), integral calculus.
Mth 234, Multivariable Calculus:

f:R?2 >R, f(x,y)

3 scalar-valued.
f:R°— R, f(x,y,z)

r:R—R3 r(t) = (x(t),y(t), z(t)) } vector-valued.

We study how to differentiate and integrate such functions.
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number, its temperature T(x,y).
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The functions of Multivariable Calculus

Example

» An example of a scalar-valued function of two variables,
T : R? — R is the temperature T of a plane surface, say a
table. Each point (x, y) on the table is associated with a
number, its temperature T(x,y).

» An example of a scalar-valued function of three variables,
T : R3 — R is the temperature T of an object, say a room.
Each point (x, y, z) in the room is associated with a number,
its temperature T(x,y, z).

» An example of a vector-valued function of one variable,
r: R — R3, is the position function in time of a particle
moving in space, say a fly in a room. Each time t is
associated with the position vector r(t) of the fly in the room.

<
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Cartesian coordinates.

Cartesian coordinates on R?: Every
point on a plane is labeled by an
ordered pair (x, y) by the rule given in
the figure.




Cartesian coordinates.

Cartesian coordinates on R?: Every
point on a plane is labeled by an
ordered pair (x, y) by the rule given in
the figure.

Cartesian coordinates in R3: Every
point in space is labeled by an ordered
triple (x,y, z) by the rule given in the

figure. —




Cartesian coordinates.

Example
Sketch the set S={x >0, y >0, z=0} C R3.



Cartesian coordinates.

Example
Sketch the set S={x >0, y >0, z=0} C R3.

Solution:

x>0 / ‘s
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Cartesian coordinates.

Example
Sketch theset S={0<x<1, —1<y<2, z=1} CcR3.

Solution:
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Definition

A Cartesian coordinate system is called
right-handed (rh) iff it can be rotated
into the coordinate system in the figure.




Right and left handed Cartesian coordinates.

Definition

A Cartesian coordinate system is called
right-handed (rh) iff it can be rotated
into the coordinate system in the figure.

Definition

A Cartesian coordinate system is called
left-handed (Ih) iff it can be rotated
into the coordinate system in the figure.

Yy ° Left Handed

No rotation transforms a rh into a |h system.
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Example
This coordinate system is right-handed.
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Right and left handed Cartesian coordinates.

Example
This coordinate system is right-handed.
4

y i z

Example
This coordinate system is left handed.

i z _—~  Z
[ X
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Right and left handed Cartesian coordinates

Remark: The same classification occurs in R?:

X X
Right Handed Left Handed

This classification is needed because:

» In R3 we will define the cross product of vectors, and this
product has different results in rh or Ih Cartesian coordinates.

» There is no cross product in R?.
In class we use rh Cartesian coordinates.
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Distance formula between two points in space.

Theorem
The distance |P1 Pz‘ between the points P; = (x1,y1,21) and
P> = (x2, y2, 22) is given by

|PLP;| = \/(Xz —x1)2+ (y2 = y1)? + (22 — 21)2.

The distance between points in space is crucial to define the
idea of limit to functions in space.



Proof.
Pythagoras Theorem.

(z,-7)

~U

S e i

a® = (e —x)’+ (2 — yn1)>

0J



Distance formula between two points in space

Example
Find the distance between P; = (1,2,3) and P, = (3,2,1).



Distance formula between two points in space

Example
Find the distance between P; = (1,2,3) and P, = (3,2,1).

Solution:

\P1P2|=\/(3—1)2+(2—2)2+(1—3)2
=V4+4
=V8 =[PP =2V2



Distance formula between two points in space

Example

Use the distance formula to determine whether three points in
space are collinear.



Distance formula between two points in space

Example

Use the distance formula to determine whether three points in

space are collinear.

Solution:

P

do1 + d3p > d3;

Not collinear,

do1 + d3p = d31

Collinear.
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A sphere is a set of points at fixed distance from a center.

Definition 2
A sphere centered at Py = (xo, yo, 20) of
radius R is the set

S = {P: (x,y,2) : ‘POP’ = R}.



A sphere is a set of points at fixed distance from a center.

Definition 2
A sphere centered at Py = (xo, yo, 20) of
radius R is the set

S = {P: (x,y,2) : ‘POP’ = R}.

Remark: The point (x, y, z) belongs to the sphere S iff holds

(x = x0)? + (v = y0)* + (2 — 20)* = R*.

(“iff” means “if and only iff.")



An open ball is a set of points contained in a sphere.

Definition
An open ball centered at Py = (xo, yo, 20) of radius R is the set

B = {P: (x,y,2) : ’P0P| < R}.



An open ball is a set of points contained in a sphere.

Definition
An open ball centered at Py = (xo, yo, 20) of radius R is the set

B = {P: (x,y,2) : ’P0P| < R}.

Remark: The point (x, y, z) belongs to the open ball B iff holds

(x=x0)>+(y —w0)* + (2= 20)* < R®.



Example
Plot a sphere centered at Py = (0,0, 0) of radius R > 0.



Example
Plot a sphere centered at Py = (0,0, 0) of radius R > 0.

Solution:
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Example
Graph the sphere x% + y? + z2 + 4y = 0.

Solution: Complete the square.

0=x>+y>+4y+ 2

s [ () (] (22
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Example
Graph the sphere x% + y? + z2 + 4y = 0.

Solution: Complete the square.

0=x>+y>+4y+ 2

s [ () (] (22

2 N2 2
=X —|—<y—|—§> +z° -4

Py Ay +22=0 < x2+(y+2)2+22:22.



Example
Graph the sphere x> 4 y? 4+ z2 + 4y = 0.

Solution: Since

Ay 44y +22=0 & X2+ (y+2)7>+2%=2°



Example
Graph the sphere x> 4 y? 4+ z2 + 4y = 0.

Solution: Since
Ay 44y +22=0 o XP4+(y+2)°2+22=22

we conclude that Py = (0, —2,0) and R = 2, therefore,




Exercise

» Given constants a, b, ¢, and d € R, show that
x24+y?+2722 —2ax—2by—2cz=d
is the equation of a sphere iff holds
d>—(a®+b*+ ). (1)

» Furthermore, show that if Eq. (1) is satisfied, then the
expressions for the center Py and the radius R of the sphere
are given by

Po=(abc), R=\/d+(a+b2+c).



Vectors on a plane and in space (12.2)

» Vectors in R? and R3.
» Vector components in Cartesian coordinates.
» Magnitude of a vector and unit vectors.

» Addition and scalar multiplication.
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A vector in R", with n =2, 3, is an BR
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—
P1P5, where P;, P, € R". The point
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P is called the initial point and P; is
called the terminal point.
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P is called the initial point and P; is
called the terminal point.

Remarks:
» A vector in R? or R3 is an oriented line segment.

» A vector is drawn by an arrow pointing to the terminal point.



Vectors in R? and R3.

Definition P

- 2
A vector in R”, with n =2, 3, is an RR
ordered pair of points in R”, denoted as R

bt _
P1P5, where P;, P, € R". The point
P is called the initial point and P; is
called the terminal point.

Remarks:
» A vector in R? or R3 is an oriented line segment.

» A vector is drawn by an arrow pointing to the terminal point.

P
» A vector is denoted not only by P; P, but also by an arrow
over a letter, like V, or by a boldface letter, like v.



Vectors in R? and R3.

Remark: The order of the points determines the direction. For
—) % . . .
example, the vectors P P> and P,P; have opposite directions.

R .
R PR

fine)
fine)




Vectors in R? and R3.

Remark: The order of the points determines the direction. For
% % . . .
example, the vectors P P> and P,P; have opposite directions.

R .
R PR
; ;

Remark: By 1850 it was realized that different physical phenomena
were described using a new concept at that time, called a vector.
A vector was more than a number in the sense that it was needed
more than a single number to specify it. Phenomena described
using vectors included velocities, accelerations, forces, rotations,
electric phenomena, magnetic phenomena, and heat transfer.



Vectors on a plane and in space (12.2)

> Vectors in R? and R3.
» Vector components in Cartesian coordinates.
» Magnitude of a vector and unit vectors.

» Addition and scalar multiplication.



Components of a vector in Cartesian coordinates

Theorem

Given the points Py = (x1,y1), P> = (x2, y2) € R?, the vector
==

P1P, determines a unique ordered pair denoted as follows,

PiPs = ((x2 — x1), (2 — n1)).
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Theorem

Given the points Py = (x1,y1), P> = (x2, y2) € R?, the vector
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Components of a vector in Cartesian coordinates

Theorem

Given the points Py = (x1,y1), P> = (x2, y2) € R?, the vector
==

P1P, determines a unique ordered pair denoted as follows,

PiPs = ((x2 — x1), (2 — n1)).

—
Proof: Draw the vector P{ P> in , P

Cartesian coordinates. L] -y )

Remark: A similar result holds for vectors in space.
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Components of a vector in Cartesian coordinates

Theorem

Given the points P; = (Xl,yl,Zl), P> = (X27y2722) € R?’, the
e

vector P1 P, determines a unique ordered triple denoted as follows,

PPy = ((x2 — x1), (v2 — 1), (22 — 1)).

Proof: Draw the vector
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coordinates. O




Components of a vector in Cartesian coordinates

Example
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PP = ((3—1), (1 —(—2)),(2—3))
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Components of a vector in Cartesian coordinates

Example
Find the components of a vector with initial point P; = (1,—2,3)
and terminal point P, = (3,1,2).

Solution:
PP = ((3-1).(1-(-2).2-3)) = PP=(23-1).

Example
Find the components of a vector with initial point P; = (3,1,4)
and terminal point Py = (5,4, 3).

Solution:

P3Py = ((5—3),(4—1),(3—4))



Components of a vector in Cartesian coordinates

Example
Find the components of a vector with initial point P; = (1,—2,3)
and terminal point P, = (3,1,2).

Solution:
PP = ((3-1).(1-(-2).2-3)) = PP=(23-1).

Example
Find the components of a vector with initial point P; = (3,1,4)
and terminal point Py = (5,4, 3).

Solution:

PsPr=((5-3).(4—1),3-4)) = PsPy=(2,3,-1).



Components of a vector in Cartesian coordinates

Example
Find the components of a vector with initial point P; = (1,—2,3)
and terminal point P, = (3,1,2).

Solution:
PP = ((3-1).(1-(-2).2-3)) = PP=(23-1).

Example
Find the components of a vector with initial point P; = (3,1,4)
and terminal point Py = (5,4, 3).

Solution:

PsPr=((5-3).(4—1),3-4)) = PsPy=(2,3,-1).

— —_—
Remark: P;P, and P3P, have the same components although
they are different vectors.
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The vector components do not determine a unique vector.



Components of a vector in Cartesian coordinates

Remark:
The vector components do not determine a unique vector.

The vectors u, v and (F; have
the same components but they
are all different, since they have
different initial and terminal
points.




Components of a vector in Cartesian coordinates

Remark:
The vector components do not determine a unique vector.

The vectors u, v and 6,3 have
the same components but they
are all different, since they have
different initial and terminal
points.

Definition N

Given a vector P1Py = (v, vy), the standard position vector is the
vector 0_15 where the point 0 = (0, 0) is the origin of the Cartesian
coordinates and the point P = (vy, vy ).



Components of a vector in Cartesian coordinates

Remark: Vectors are used to describe motion of particles.

The position r(t), velocity
v(t), and acceleration a(t)
at the time t of a moving
particle are described by
vectors in space.




Vectors on a plane and in space (12.2)

> Vectors in R? and R3.
» Vector components in Cartesian coordinates.
» Magnitude of a vector and unit vectors.

» Addition and scalar multiplication.



Magnitude of a vector and unit vectors.

Definition
The magnitude or length of a vector P;P5 is the distance from the
initial point to the terminal point.
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Magnitude of a vector and unit vectors.

Definition
The magnitude or length of a vector P;P5 is the distance from the
initial point to the terminal point.
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—
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—
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Magnitude of a vector and unit vectors.

Definition
The magnitude or length of a vector P;P5 is the distance from the
initial point to the terminal point.

——
» If the vector P; P, has components

—

P1Py = ((x2 — x1), (y2 — y1), (22 — 1)),

. . P . .
then its magnitude, denoted as ‘Png‘, is given by

—
|PLP| = \/(Xz —x1)2+ (2 = y1)?> + (22 — 21)2.

> If the vector v has components v = (v,, vy, v;), then its
magnitude, denoted as |v|, is given by

Iv| = /v +v2 + vz



Magnitude of a vector and unit vectors.

Example

Find the length of a vector with initial point P; = (1,2, 3) and
terminal point P, = (4,3,2).



Magnitude of a vector and unit vectors.

Example
Find the length of a vector with initial point P; = (1,2, 3) and
terminal point P, = (4,3,2).

- - . ——%
Solution: First find the component of the vector P; P,



Magnitude of a vector and unit vectors.

Example
Find the length of a vector with initial point P; = (1,2,3) and
terminal point P, = (4,3,2).

—_—
Solution: First find the component of the vector Py P,, that is,

PP = ((4—1),(3—-2),(2—3))



Magnitude of a vector and unit vectors.

Example
Find the length of a vector with initial point P; = (1,2,3) and
terminal point P, = (4,3,2).

—_—
Solution: First find the component of the vector Py P,, that is,

PiPr=((4-1),(3-2),(2-3)) = PiP>=(3,1,-1).



Magnitude of a vector and unit vectors.

Example
Find the length of a vector with initial point P; = (1,2,3) and
terminal point P, = (4,3,2).

—_—
Solution: First find the component of the vector Py P,, that is,
—_— —_—
P1P2:<(4_1)7(3_2)?(2_3)> = P1P2:<3717_1>'

Therefore, its length is

[PLPy| = /32 12 4 (1)



Magnitude of a vector and unit vectors.

Example
Find the length of a vector with initial point P; = (1,2,3) and
terminal point P, = (4,3,2).

—_—
Solution: First find the component of the vector Py P,, that is,
—_— —_—
P1P2:<(4_1)7(3_2)?(2_3)> = P1P2:<3717_1>'

Therefore, its length is

PPy = /2 + 12+ (-1)2 =[PPy = VIL



Magnitude of a vector and unit vectors.

Example

Find the length of a vector with initial point P; = (1,2,3) and
terminal point P, = (4,3,2).

. ——% .
Solution: First find the component of the vector Py P,, that is,
—_— —_—
P1P2: <(4—1),(3—2),(2—3)> = P1P2: <3,1,—1>.

Therefore, its length is

PPy = /2 + 12+ (-1)2 =[PPy = VIL

Example

If the vector v represents the velocity of a moving particle, then its
length |v| represents the speed of the particle. <



Magnitude of a vector and unit vectors.

Definition
A vector v is a unit vector iff v has length one, that is, |v| = 1.



Magnitude of a vector and unit vectors.

Definition
A vector v is a unit vector iff v has length one, that is, |[v| = 1.
Example

3
Show that v = <

"V14 /14

> is a unit vector.

==
N



Magnitude of a vector and unit vectors.

Definition
A vector v is a unit vector iff v has length one, that is, |[v| = 1.
Example
Show that v = ( . ’ ) is a unit vect
ow that v = , , is a unit vector.
V14’ /14 /14

Solution:

1 4 9

12" 12" 12



Magnitude of a vector and unit vectors.
Definition
A vector v is a unit vector iff v has length one, that is, |[v| = 1.

Example
Show that v = <

> is a unit vector.

1
V14 /147 /14
Solution:

1 4 9 14

VRV VERR Y



Magnitude of a vector and unit vectors.

Definition
A vector v is a unit vector iff v has length one, that is, |[v| = 1.
Example
Show that <1 . 3>' it vect
ow that v = , , is a unit vector.
V14 /14 /14

Solution:

v 1+4+9 14 = =1
= —_— —_— _— = —_— V| = .
Viza " 12 "1~ Vs



Magnitude of a vector and unit vectors.

Definition
A vector v is a unit vector iff v has length one, that is, |[v| = 1.
Example
Show that <1 . 3>' it vect
ow that v = , , is a unit vector.
V14’ /14 /14
Solution:
v 1 n 4 n 9 14 = =1
= —_— —_— _— = —_— V| = .
Viza " 12 "1~ Vs
Example

The unit vectors i = (1,0,0), j = (0,1,0), and
k = (0,0,1) are useful to express any other
vector in R3,




Vectors on a plane and in space (12.2)

> Vectors in R? and R3.
» Vector components in Cartesian coordinates.
» Magnitude of a vector and unit vectors.

» Addition and scalar multiplication.



Addition and scalar multiplication.

Definition

Given the vectors v = (vy, vy, V), W = (Wy, Wy, W) in R3, and a
number a € R, then the vector addition, v + w, and the scalar
multiplication, av, are given by

v+ w = (v + wy), (vy +wy), (vz + wz)),

av = (avy, avy, avz).
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Remarks:
» The vector —v = (—1)v is called the opposite of vector v .
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Addition and scalar multiplication.

Definition

Given the vectors v = (vy, vy, V), W = (Wy, Wy, W) in R3, and a
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multiplication, av, are given by

v+ w = (v + wy), (vy +wy), (vz + wz)),

av = (avy, avy, avz).
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» The vector —v = (—1)v is called the opposite of vector v .
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Addition and scalar multiplication.

Definition

Given the vectors v = (vy, vy, V), W = (Wy, Wy, W) in R3, and a
number a € R, then the vector addition, v + w, and the scalar
multiplication, av, are given by

v+ w = (v + wy), (vy +wy), (vz + wz)),

av = (avy, avy, avz).

Remarks:
» The vector —v = (—1)v is called the opposite of vector v .

» The difference of two vectors is the addition of one vector and
the opposite of the other vector, that is, v—w =v + (—1)w.
This equation in components is

v—w = (v = w), (v — wy), (V2 — wz)).



Addition and scalar multiplication.

Remark: The addition of two vectors is equivalent to the
parallelogram law: The vector v + w is the diagonal of the
parallelogram formed by vectors v and w when they are in their
standard position.

VAW S (v+w)
J 3 v y

\ V y
Vx
w o
Wy
W, X
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difference of two vectors.




Addition and scalar multiplication.

Remark: The addition and
difference of two vectors.

aV

a1

Remark: The scalar
multiplication stretches a vector ! a -
if a > 1 and compresses the / e /

vector if 0 < a < 1. /
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of the vectors v+ w and v — w.
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Example
Given the vectors v = (2,3) and w = (—1,2), find the magnitude
of the vectors v+ w and v —w.

Solution: We first compute the components of v + w, that is,

v+w=(2-1),(3+2)) = v+w=(1,5).
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Example
Given the vectors v = (2,3) and w = (—1,2), find the magnitude
of the vectors v+ w and v —w.

Solution: We first compute the components of v + w, that is,
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Therefore, its magnitude is
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Example
Given the vectors v = (2,3) and w = (—1,2), find the magnitude
of the vectors v+ w and v —w.

Solution: We first compute the components of v + w, that is,
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Therefore, its magnitude is
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Example
Given the vectors v = (2,3) and w = (—1,2), find the magnitude
of the vectors v+ w and v —w.

Solution: We first compute the components of v + w, that is,
v+w=(2-1),(342) = v+w=(15).
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Example
Given the vectors v = (2,3) and w = (—1,2), find the magnitude
of the vectors v+ w and v — w.

Solution: We first compute the components of v + w, that is,
v+w=(2-1),(3+2)) = v+w=(1,5).
Therefore, its magnitude is
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A similar calculation can be done for v — w, that is,
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Addition and scalar multiplication.

Example
Given the vectors v = (2,3) and w = (—1,2), find the magnitude
of the vectors v+ w and v — w.

Solution: We first compute the components of v + w, that is,
v+w=(2-1),(3+2)) = v+w=(1,5).
Therefore, its magnitude is
v+ w| = V12452 = v+ w| = V/26.
A similar calculation can be done for v — w, that is,

v—w=(2+1),3-2)) = v—w=(31).



Addition and scalar multiplication.

Example
Given the vectors v = (2,3) and w = (—1,2), find the magnitude
of the vectors v+ w and v — w.

Solution: We first compute the components of v + w, that is,
v+w=(2-1),(3+2)) = v+w=(1,5).
Therefore, its magnitude is
v+ w| = V12452 = v+ w| = V/26.
A similar calculation can be done for v — w, that is,
v—w=(2+1),3-2)) = v—w=(31).
Therefore, its magnitude is

v —w|=132+12



Addition and scalar multiplication.

Example
Given the vectors v = (2,3) and w = (—1,2), find the magnitude
of the vectors v+ w and v — w.

Solution: We first compute the components of v + w, that is,
v+w=(2-1),(3+2)) = v+w=(1,5).
Therefore, its magnitude is
v+ w| = V12452 = v+ w| = V/26.
A similar calculation can be done for v — w, that is,
v—w=(2+1),3-2)) = v—w=(31).
Therefore, its magnitude is

v—w|=v32+12 = |v—w|=10.
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Addition and scalar multiplication.

Theorem v
If the vector v # 0, then the vector u = — s a unit vector.

v

Proof: (Case v € R? only).

If v = (v, v,) € B2, then |v| = \/m and

v _ <£ Q>
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Theorem v
If the vector v # 0, then the vector u = — s a unit vector.

v

Proof: (Case v € R? only).

If v=(vi,vy) € R?, then |v| =, /v2+ v2, and
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This is a unit vector, since
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Theorem v
If the vector v # 0, then the vector u = — s a unit vector.
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Proof: (Case v € R? only).

If v=(vi,vy) € R?, then |v| =, /v2+ v2, and
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This is a unit vector, since
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Theorem v
If the vector v # 0, then the vector u = — s a unit vector.

v

Proof: (Case v € R? only).

If v = (v, v,) € B2, then |v| = \/m and
Y (e
Vi v|” [v|/

This is a unit vector, since
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Theorem v
If the vector v # 0, then the vector u = — s a unit vector.

v

Proof: (Case v € R? only).

If v = (v, v,) € B2, then |v| = \/m and
Y (e
Vi v|” [v|/

This is a unit vector, since
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Theorem v
If the vector v # 0, then the vector u = — s a unit vector.

v

Proof: (Case v € R? only).
If v=(vi,vy) € R?, then |v| =, /v2+ v2, and
Y _ /%Y
vi <|V!’ |V|>

This is a unit vector, since

|u|:‘i‘: (£)2+<Q>2:1 2=
vl vl vl vV
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vV = v+ v, j+ vk
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Addition and scalar multiplication.

Theorem

Every vector v = {(vx, vy, v;) in R® can be expressed in a unique
way as a linear combination of vectors i = (1,0,0),

j =(0,1,0),and k = (0,0, 1) as follows

vV = v+ v, j+ vk

Proof: Use the definitions of vector addition
and scalar multiplication as follows,

V= (Vy, Vy, Vz)
= (vx,0,0) + (0, vy, 0) + (0,0, v;)
= v(1,0,0) + v,,(0,1,0) + v,(0,0,1)
= Vi + vy j + vk
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Theorem

Every vector v = {(vx, vy, v;) in R® can be expressed in a unique
way as a linear combination of vectors i = (1,0,0),

j =(0,1,0),and k = (0,0, 1) as follows

vV = v+ v, j+ vk

Proof: Use the definitions of vector addition
and scalar multiplication as follows,

V= (Vy, Vy, Vz)
= (vx,0,0) + (0, vy, 0) + (0,0, v;)
= v(1,0,0) + v,,(0,1,0) + v,(0,0,1)
= Vi + vy j + vk
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Example

Express the vector with initial and terminal points P; = (1,0, 3),
P> = (—1,4,5) in the form v = v,i+ v, j + vk.
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Solution: First compute the components of v = Py P,, that is,

v={((-1-1),(4—0),(5—3)) = (—2,4,2).



Addition and scalar multiplication.

Example
Express the vector with initial and terminal points P; = (1,0, 3),
P> = (—1,4,5) in the form v = v,i+ v, j + vk.
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Solution: First compute the components of v = Py P,, that is,
v=((-1-1),(4-0),(5—-3)) =(-2,4,2).

Then, v = —2i 4+ 4j + 2k.
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—
Solution: First compute the components of v = Py P,, that is,
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Example

Express the vector with initial and terminal points P; = (1,0, 3),
P> = (—1,4,5) in the form v = v,i+ v, j + vk.

—
Solution: First compute the components of v = Py P,, that is,

v=((-1-1),(4-0),(5—-3)) =(-2,4,2).
Then, v = —2i 4+ 4j + 2k.

Example

Find a unit vector w opposite to v found above.

Solution: Since |v| = \/(—2)2 +42 +22 = /4 + 16 + 4
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Example

Express the vector with initial and terminal points P; = (1,0, 3),
P> = (—1,4,5) in the form v = v,i+ v, j + vk.

—
Solution: First compute the components of v = Py P,, that is,
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Addition and scalar multiplication.

Example

Express the vector with initial and terminal points P; = (1,0, 3),
P> = (—1,4,5) in the form v = v,i+ v, j + vk.

—
Solution: First compute the components of v = Py P,, that is,
v=((-1-1),(4-0),(5—-3)) =(-2,4,2).
Then, v = —2i 4+ 4j + 2k. <

Example
Find a unit vector w opposite to v found above.

Solution: Since |v| = \/(—2)2 +42 422 =\/4+16 + 4 = /24,

we conclude that w = ———(—2,4,2). <

NeT




