
Cartesian coordinates in space (Sect. 12.1).

I Overview of Multivariable Calculus.

I Cartesian coordinates in space.

I Right-handed, left-handed Cartesian coordinates.

I Distance formula between two points in space.

I Equation of a sphere.



Overview of Multivariable Calculus

Mth 132, Calculus I: f : R → R, f (x), differential calculus.

Mth 133, Calculus II: f : R → R, f (x), integral calculus.

Mth 234, Multivariable Calculus:

f : R2 → R, f (x , y)

f : R3 → R, f (x , y , z)

}
scalar-valued.

r : R → R3, r(t) = 〈x(t), y(t), z(t)〉
}

vector-valued.

We study how to differentiate and integrate such functions.
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The functions of Multivariable Calculus

Example

I An example of a scalar-valued function of two variables,
T : R2 → R is the temperature T of a plane surface, say a
table. Each point (x , y) on the table is associated with a
number, its temperature T (x , y).

I An example of a scalar-valued function of three variables,
T : R3 → R is the temperature T of an object, say a room.
Each point (x , y , z) in the room is associated with a number,
its temperature T (x , y , z).

I An example of a vector-valued function of one variable,
r : R → R3, is the position function in time of a particle
moving in space, say a fly in a room. Each time t is
associated with the position vector r(t) of the fly in the room.
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Cartesian coordinates in space (Sect. 12.1).

I Overview of vector calculus.

I Cartesian coordinates in space.

I Right-handed, left-handed Cartesian coordinates.

I Distance formula between two points in space.

I Equation of a sphere.



Cartesian coordinates.

Cartesian coordinates on R2: Every
point on a plane is labeled by an
ordered pair (x , y) by the rule given in
the figure.
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Cartesian coordinates in R3: Every
point in space is labeled by an ordered
triple (x , y , z) by the rule given in the
figure.
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Cartesian coordinates.

Example

Sketch the set S = {x > 0, y > 0, z = 0} ⊂ R3.

Solution:

y > 0

z

x

y

S

z = 0

x > 0
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Cartesian coordinates.

Example

Sketch the set S = {0 6 x 6 1, − 1 6 y 6 2, z = 1} ⊂ R3.

Solution:
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x
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Cartesian coordinates in space (Sect. 12.1).

I Overview of vector calculus.

I Cartesian coordinates in space.

I Right-handed, left-handed Cartesian coordinates.
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Right and left handed Cartesian coordinates.

Definition
A Cartesian coordinate system is called
right-handed (rh) iff it can be rotated
into the coordinate system in the figure. y
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Definition
A Cartesian coordinate system is called
left-handed (lh) iff it can be rotated
into the coordinate system in the figure.
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x

No rotation transforms a rh into a lh system.
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Right and left handed Cartesian coordinates.

Example

This coordinate system is right-handed.
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Example

This coordinate system is left handed.
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Right and left handed Cartesian coordinates.

Example
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Right and left handed Cartesian coordinates

Remark: The same classification occurs in R2:

xx

y y

Left HandedRight Handed

This classification is needed because:

I In R3 we will define the cross product of vectors, and this
product has different results in rh or lh Cartesian coordinates.

I There is no cross product in R2.

In class we use rh Cartesian coordinates.
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Cartesian coordinates in space (Sect. 12.1).

I Overview of vector calculus.

I Cartesian coordinates in space.

I Right-handed, left-handed Cartesian coordinates.

I Distance formula between two points in space.

I Equation of a sphere.



Distance formula between two points in space.

Theorem
The distance

∣∣P1P2

∣∣ between the points P1 = (x1, y1, z1) and
P2 = (x2, y2, z2) is given by∣∣P1P2

∣∣ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

The distance between points in space is crucial to define the
idea of limit to functions in space.



Proof.
Pythagoras Theorem.
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z
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1

P2

2

2 1  

(x − x )

(y − y )

P

y

(z − z )

2

1  

1  

∣∣P1P2

∣∣2 = a2 + (z2 − z1)
2, a2 = (x2 − x1)

2 + (y2 − y1)
2.



Distance formula between two points in space

Example

Find the distance between P1 = (1, 2, 3) and P2 = (3, 2, 1).

Solution: ∣∣P1P2

∣∣ =
√

(3− 1)2 + (2− 2)2 + (1− 3)2

=
√

4 + 4

=
√

8 ⇒
∣∣P1P2

∣∣ = 2
√

2.
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Distance formula between two points in space

Example

Use the distance formula to determine whether three points in
space are collinear.

Solution:
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31d

d21 + d32 > d31 d21 + d32 = d31

Not collinear, Collinear.
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Cartesian coordinates in space (12.1)

I Overview of vector calculus.

I Cartesian coordinates in space.

I Right-handed, left-handed Cartesian coordinates.

I Distance formula between two points in space.

I Equation of a sphere.



A sphere is a set of points at fixed distance from a center.

Definition
A sphere centered at P0 = (x0, y0, z0) of
radius R is the set

S =
{
P = (x , y , z) :

∣∣P0P
∣∣ = R

}
.

R

z

x

y

Remark: The point (x , y , z) belongs to the sphere S iff holds

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = R2.

(“iff” means “if and only iff.”)
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An open ball is a set of points contained in a sphere.

Definition
An open ball centered at P0 = (x0, y0, z0) of radius R is the set

B =
{
P = (x , y , z) :

∣∣P0P
∣∣ < R

}
.

Remark: The point (x , y , z) belongs to the open ball B iff holds

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 < R2.
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Example

Plot a sphere centered at P0 = (0, 0, 0) of radius R > 0.

Solution:

R
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x

y
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Example

Graph the sphere x2 + y2 + z2 + 4y = 0.

Solution: Complete the square.

0 = x2 + y2 + 4y + z2

= x2 +
[
y2 + 2

(4

2

)
y +

(4

2

)2]
−

(4

2

)2
+ z2

= x2 +
(
y +

4

2

)2
+ z2 − 4.

x2 + y2 + 4y + z2 = 0 ⇔ x2 + (y + 2)2 + z2 = 22.
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Example

Graph the sphere x2 + y2 + z2 + 4y = 0.

Solution: Since

x2 + y2 + 4y + z2 = 0 ⇔ x2 + (y + 2)2 + z2 = 22,

we conclude that P0 = (0,−2, 0) and R = 2, therefore,
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Exercise

I Given constants a, b, c , and d ∈ R, show that

x2 + y2 + z2 − 2a x − 2b y − 2c z = d

is the equation of a sphere iff holds

d > −(a2 + b2 + c2). (1)

I Furthermore, show that if Eq. (1) is satisfied, then the
expressions for the center P0 and the radius R of the sphere
are given by

P0 = (a, b, c), R =
√

d + (a2 + b2 + c2).

C



Vectors on a plane and in space (12.2)

I Vectors in R2 and R3.

I Vector components in Cartesian coordinates.

I Magnitude of a vector and unit vectors.

I Addition and scalar multiplication.



Vectors in R2 and R3.

Definition
A vector in Rn, with n = 2, 3, is an
ordered pair of points in Rn, denoted as−−−→
P1P2, where P1, P2 ∈ Rn. The point
P1 is called the initial point and P2 is
called the terminal point.

P1

P2
P P21

Remarks:

I A vector in R2 or R3 is an oriented line segment.

I A vector is drawn by an arrow pointing to the terminal point.

I A vector is denoted not only by
−−−→
P1P2 but also by an arrow

over a letter, like ~v , or by a boldface letter, like v.
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Vectors in R2 and R3.

Remark: The order of the points determines the direction. For

example, the vectors
−−−→
P1P2 and

−−−→
P2P1 have opposite directions.

P1

P2
P P21

P1

P2
P P

2 1

Remark: By 1850 it was realized that different physical phenomena
were described using a new concept at that time, called a vector.
A vector was more than a number in the sense that it was needed
more than a single number to specify it. Phenomena described
using vectors included velocities, accelerations, forces, rotations,
electric phenomena, magnetic phenomena, and heat transfer.
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Vectors on a plane and in space (12.2)

I Vectors in R2 and R3.

I Vector components in Cartesian coordinates.

I Magnitude of a vector and unit vectors.

I Addition and scalar multiplication.



Components of a vector in Cartesian coordinates

Theorem
Given the points P1 = (x1, y1), P2 = (x2, y2) ∈ R2, the vector
−−−→
P1P2 determines a unique ordered pair denoted as follows,

−−−→
P1P2 = 〈(x2 − x1), (y2 − y1)〉.

Proof: Draw the vector
−−−→
P1P2 in

Cartesian coordinates.
1

P

P

y

xxx

y

y

2

1

1

2

1 2

P P1 2 ( y  − y  )

(x  − x  )1

2

2

Remark: A similar result holds for vectors in space.
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Components of a vector in Cartesian coordinates

Theorem
Given the points P1 = (x1, y1, z1), P2 = (x2, y2, z2) ∈ R3, the
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Components of a vector in Cartesian coordinates

Example

Find the components of a vector with initial point P1 = (1,−2, 3)
and terminal point P2 = (3, 1, 2).

Solution:

−−−→
P1P2 = 〈(3− 1), (1− (−2)), (2− 3)〉 ⇒

−−−→
P1P2 = 〈2, 3,−1〉.

Example

Find the components of a vector with initial point P3 = (3, 1, 4)
and terminal point P4 = (5, 4, 3).

Solution:
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Components of a vector in Cartesian coordinates

Remark:
The vector components do not determine a unique vector.

The vectors u, v and
−→
0P have

the same components but they
are all different, since they have
different initial and terminal
points.

x

y

x

y

0
x

v

u

y

v

v

v

v0P

P

Definition
Given a vector

−−−→
P1P2 = 〈vx , vy 〉, the standard position vector is the

vector
−→
0P, where the point 0 = (0, 0) is the origin of the Cartesian

coordinates and the point P = (vx , vy ).
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Components of a vector in Cartesian coordinates

Remark: Vectors are used to describe motion of particles.

The position r(t), velocity
v(t), and acceleration a(t)
at the time t of a moving
particle are described by
vectors in space.
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Vectors on a plane and in space (12.2)

I Vectors in R2 and R3.

I Vector components in Cartesian coordinates.

I Magnitude of a vector and unit vectors.

I Addition and scalar multiplication.



Magnitude of a vector and unit vectors.

Definition
The magnitude or length of a vector

−−−→
P1P2 is the distance from the

initial point to the terminal point.

I If the vector
−−−→
P1P2 has components

−−−→
P1P2 = 〈(x2 − x1), (y2 − y1), (z2 − z1)〉,

then its magnitude, denoted as
∣∣−−−→P1P2

∣∣, is given by∣∣−−−→P1P2

∣∣ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

I If the vector v has components v = 〈vx , vy , vz〉, then its
magnitude, denoted as |v|, is given by

|v| =
√

v2
x + v2

y + v2
z .
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Magnitude of a vector and unit vectors.

Example

Find the length of a vector with initial point P1 = (1, 2, 3) and
terminal point P2 = (4, 3, 2).

Solution: First find the component of the vector
−−−→
P1P2, that is,

−−−→
P1P2 = 〈(4− 1), (3− 2), (2− 3)〉 ⇒

−−−→
P1P2 = 〈3, 1,−1〉.

Therefore, its length is∣∣−−−→P1P2

∣∣ =
√

32 + 12 + (−1)2 ⇒
∣∣−−−→P1P2

∣∣ =
√

11.

Example

If the vector v represents the velocity of a moving particle, then its
length |v| represents the speed of the particle. C
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Magnitude of a vector and unit vectors.

Definition
A vector v is a unit vector iff v has length one, that is, |v | = 1.

Example

Show that v =
〈 1√

14
,

2√
14

,
3√
14

〉
is a unit vector.

Solution:

|v| =
√

1

14
+

4

14
+

9

14
=

√
14

14
⇒ |v| = 1.

Example

The unit vectors i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and
k = 〈0, 0, 1〉 are useful to express any other
vector in R3. x

i j

k

z

y
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Vectors on a plane and in space (12.2)

I Vectors in R2 and R3.

I Vector components in Cartesian coordinates.

I Magnitude of a vector and unit vectors.

I Addition and scalar multiplication.



Addition and scalar multiplication.

Definition
Given the vectors v = 〈vx , vy , vz〉, w = 〈wx ,wy ,wz〉 in R3, and a
number a ∈ R, then the vector addition, v + w, and the scalar
multiplication, av , are given by

v + w = 〈(vx + wx), (vy + wy ), (vz + wz)〉,
av = 〈avx , avy , avz〉.

Remarks:

I The vector −v = (−1)v is called the opposite of vector v .

I The difference of two vectors is the addition of one vector and
the opposite of the other vector, that is, v−w = v + (−1)w.
This equation in components is

v−w = 〈(vx − wx), (vy − wy ), (vz − wz)〉.
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Addition and scalar multiplication.

Remark: The addition of two vectors is equivalent to the
parallelogram law: The vector v + w is the diagonal of the
parallelogram formed by vectors v and w when they are in their
standard position.

y

(v+w)

W

V+W

w

v
(v+w)

x

y

x

x

y
yV V

vx

w



Addition and scalar multiplication.

Remark: The addition and
difference of two vectors.

v−w v+w

v

w

Remark: The scalar
multiplication stretches a vector
if a > 1 and compresses the
vector if 0 < a < 1.

− V

a = −1a V

0 < a < 1

a>1

a V
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Addition and scalar multiplication.

Example

Given the vectors v = 〈2, 3〉 and w = 〈−1, 2〉, find the magnitude
of the vectors v + w and v−w.

Solution: We first compute the components of v + w, that is,

v + w = 〈(2− 1), (3 + 2)〉 ⇒ v + w = 〈1, 5〉.

Therefore, its magnitude is

|v + w| =
√

12 + 52 ⇒ |v + w| =
√

26.

A similar calculation can be done for v−w, that is,

v−w = 〈(2 + 1), (3− 2)〉 ⇒ v−w = 〈3, 1〉.

Therefore, its magnitude is

|v−w| =
√

32 + 12 ⇒ |v−w| =
√

10.
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Addition and scalar multiplication.

Theorem
If the vector v 6= 0, then the vector u =

v

|v |
is a unit vector.

Proof: (Case v ∈ R2 only).

If v = 〈vx , vy 〉 ∈ R2, then |v| =
√

v2
x + v2

y , and

u =
v

|v|
=

〈 vx

|v|
,
vy

|v|

〉
.

This is a unit vector, since

|u| =
∣∣∣ v

|v|

∣∣∣ =

√( vx

|v|

)2
+

( vy

|v|

)2
=

1

|v|

√
v2
x + v2

y =
|v|
|v|

= 1.
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Addition and scalar multiplication.

Theorem
Every vector v = 〈vx , vy , vz〉 in R3 can be expressed in a unique
way as a linear combination of vectors i = 〈1, 0, 0〉,
j = 〈0, 1, 0〉,and k = 〈0, 0, 1〉 as follows

v = vx i + vy j + vzk.

Proof: Use the definitions of vector addition
and scalar multiplication as follows,

v = 〈vx , vy , vz〉
= 〈vx , 0, 0〉+ 〈0, vy , 0〉+ 〈0, 0, vz〉
= vx〈1, 0, 0〉+ vy 〈0, 1, 0〉+ vz〈0, 0, 1〉
= vx i + vy j + vzk.

v

i j

k

x

y

z
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Addition and scalar multiplication.

Example

Express the vector with initial and terminal points P1 = (1, 0, 3),
P2 = (−1, 4, 5) in the form v = vx i + vy j + vzk.

Solution: First compute the components of v =
−−−→
P1P2, that is,

v = 〈(−1− 1), (4− 0), (5− 3)〉 = 〈−2, 4, 2〉.

Then, v = −2i + 4j + 2k. C

Example

Find a unit vector w opposite to v found above.

Solution: Since |v| =
√

(−2)2 + 42 + 22 =
√

4 + 16 + 4 =
√

24,

we conclude that w = − 1√
24
〈−2, 4, 2〉. C
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24
〈−2, 4, 2〉. C
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