Cartesian coordinates in space (Sect. 12.1).

- Overview of Multivariable Calculus.
- ► Cartesian coordinates in space.
- ▶ Right-handed, left-handed Cartesian coordinates.
- ▶ Distance formula between two points in space.
- ► Equation of a sphere.

Overview of Multivariable Calculus

Mth 132, Calculus I: $f : \mathbb{R} \to \mathbb{R}$, f(x), differential calculus.

Mth 133, Calculus II: $f : \mathbb{R} \to \mathbb{R}$, f(x), integral calculus.

Mth 234, Multivariable Calculus:

$$\left. egin{aligned} f: \mathbb{R}^2 & \to \mathbb{R}, & f(x,y) \\ f: \mathbb{R}^3 & \to \mathbb{R}, & f(x,y,z) \end{aligned}
ight.
ight.$$
 scalar-valued.

$$\mathbf{r}: \mathbb{R} \to \mathbb{R}^3, \quad \mathbf{r}(t) = \langle x(t), y(t), z(t)
angle \quad$$
 vector-valued.

We study how to differentiate and integrate such functions.

The functions of Multivariable Calculus

Example

- An example of a scalar-valued function of two variables, $T: \mathbb{R}^2 \to \mathbb{R}$ is the temperature T of a plane surface, say a table. Each point (x, y) on the table is associated with a number, its temperature T(x, y).
- An example of a scalar-valued function of three variables, $T: \mathbb{R}^3 \to \mathbb{R}$ is the temperature T of an object, say a room. Each point (x, y, z) in the room is associated with a number, its temperature T(x, y, z).
- An example of a vector-valued function of one variable, $\mathbf{r}: \mathbb{R} \to \mathbb{R}^3$, is the position function in time of a particle moving in space, say a fly in a room. Each time t is associated with the position vector $\mathbf{r}(t)$ of the fly in the room.

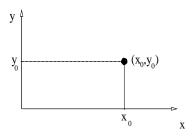
 \triangleleft

Cartesian coordinates in space (Sect. 12.1).

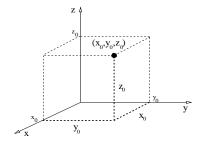
- Overview of vector calculus.
- ► Cartesian coordinates in space.
- ▶ Right-handed, left-handed Cartesian coordinates.
- ▶ Distance formula between two points in space.
- ► Equation of a sphere.

Cartesian coordinates.

Cartesian coordinates on \mathbb{R}^2 : Every point on a plane is labeled by an ordered pair (x, y) by the rule given in the figure.



Cartesian coordinates in \mathbb{R}^3 : Every point in space is labeled by an ordered triple (x, y, z) by the rule given in the figure.

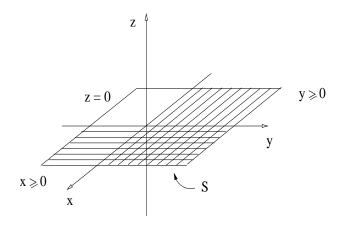


Cartesian coordinates.

Example

Sketch the set $S = \{x \geqslant 0, \ y \geqslant 0, \ z = 0\} \subset \mathbb{R}^3$.

Solution:



Cartesian coordinates.

Example

Sketch the set $S=\{0\leqslant x\leqslant 1,\ -1\leqslant y\leqslant 2,\ z=1\}\subset \mathbb{R}^3.$

Solution:



 \triangleleft

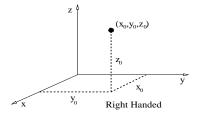
Cartesian coordinates in space (Sect. 12.1).

- Overview of vector calculus.
- ► Cartesian coordinates in space.
- ► Right-handed, left-handed Cartesian coordinates.
- ▶ Distance formula between two points in space.
- ► Equation of a sphere.

Right and left handed Cartesian coordinates.

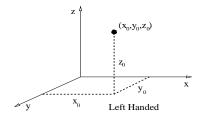
Definition

A Cartesian coordinate system is called *right-handed* (rh) iff it can be rotated into the coordinate system in the figure.



Definition

A Cartesian coordinate system is called *left-handed* (lh) iff it can be rotated into the coordinate system in the figure.

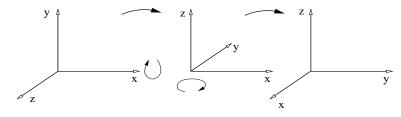


No rotation transforms a rh into a lh system.

Right and left handed Cartesian coordinates.

Example

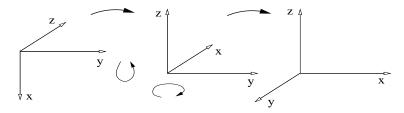
This coordinate system is right-handed.



 \triangleleft

Example

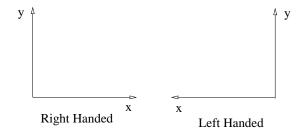
This coordinate system is left handed.



 \triangleleft

Right and left handed Cartesian coordinates

Remark: The same classification occurs in \mathbb{R}^2 :



This classification is needed because:

- ▶ In \mathbb{R}^3 we will define the cross product of vectors, and this product has different results in rh or Ih Cartesian coordinates.
- ▶ There is no cross product in \mathbb{R}^2 .

In class we use rh Cartesian coordinates.

Cartesian coordinates in space (Sect. 12.1).

- Overview of vector calculus.
- ► Cartesian coordinates in space.
- ▶ Right-handed, left-handed Cartesian coordinates.
- **▶** Distance formula between two points in space.
- ► Equation of a sphere.

Distance formula between two points in space.

Theorem

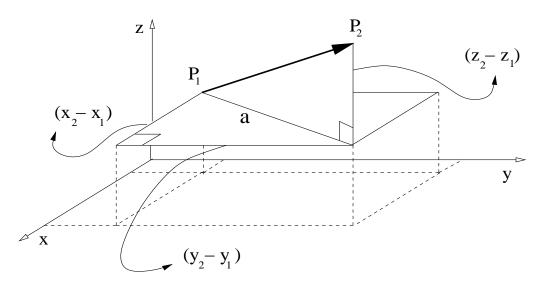
The distance $|P_1P_2|$ between the points $P_1=(x_1,y_1,z_1)$ and $P_2=(x_2,y_2,z_2)$ is given by

$$|P_1P_2| = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}.$$

The distance between points in space is crucial to define the idea of limit to functions in space.

Proof.

Pythagoras Theorem.



$$|P_1P_2|^2 = a^2 + (z_2 - z_1)^2, \qquad a^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2.$$

Distance formula between two points in space

Example

Find the distance between $P_1 = (1, 2, 3)$ and $P_2 = (3, 2, 1)$.

Solution:

$$|P_1P_2| = \sqrt{(3-1)^2 + (2-2)^2 + (1-3)^2}$$

= $\sqrt{4+4}$
= $\sqrt{8}$ \Rightarrow $|P_1P_2| = 2\sqrt{2}$.

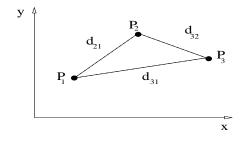
 \triangleleft

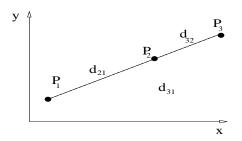
Distance formula between two points in space

Example

Use the distance formula to determine whether three points in space are collinear.

Solution:





$$d_{21} + d_{32} > d_{31}$$

Not collinear,

$$d_{21}+d_{32}=d_{31}$$

Collinear.

Cartesian coordinates in space (12.1)

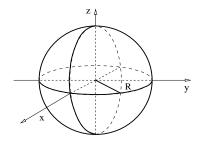
- Overview of vector calculus.
- ► Cartesian coordinates in space.
- ▶ Right-handed, left-handed Cartesian coordinates.
- ▶ Distance formula between two points in space.
- ► Equation of a sphere.

A sphere is a set of points at fixed distance from a center.

Definition

A *sphere* centered at $P_0 = (x_0, y_0, z_0)$ of radius R is the set

$$S = \{P = (x, y, z) : |P_0P| = R\}.$$



Remark: The point (x, y, z) belongs to the sphere S iff holds

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2.$$

("iff" means "if and only iff.")

An open ball is a set of points contained in a sphere.

Definition

An open ball centered at $P_0 = (x_0, y_0, z_0)$ of radius R is the set

$$B = \{ P = (x, y, z) : |P_0 P| < R \}.$$

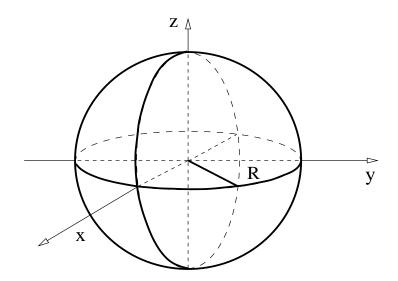
Remark: The point (x, y, z) belongs to the open ball B iff holds

$$(x-x_0)^2+(y-y_0)^2+(z-z_0)^2< R^2.$$

Example

Plot a sphere centered at $P_0 = (0, 0, 0)$ of radius R > 0.

Solution:



Example

Graph the sphere $x^{2} + y^{2} + z^{2} + 4y = 0$.

Solution: Complete the square.

$$0 = x^{2} + y^{2} + 4y + z^{2}$$

$$= x^{2} + \left[y^{2} + 2\left(\frac{4}{2}\right)y + \left(\frac{4}{2}\right)^{2}\right] - \left(\frac{4}{2}\right)^{2} + z^{2}$$

$$= x^{2} + \left(y + \frac{4}{2}\right)^{2} + z^{2} - 4.$$

$$x^{2} + y^{2} + 4y + z^{2} = 0$$
 \Leftrightarrow $x^{2} + (y+2)^{2} + z^{2} = 2^{2}$.

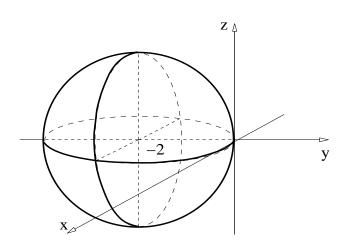
Example

Graph the sphere $x^{2} + y^{2} + z^{2} + 4y = 0$.

Solution: Since

$$x^{2} + y^{2} + 4y + z^{2} = 0$$
 \Leftrightarrow $x^{2} + (y+2)^{2} + z^{2} = 2^{2}$,

we conclude that $P_0 = (0, -2, 0)$ and R = 2, therefore,



Exercise

▶ Given constants a, b, c, and $d \in \mathbb{R}$, show that

$$x^2 + y^2 + z^2 - 2ax - 2by - 2cz = d$$

is the equation of a sphere iff holds

$$d > -(a^2 + b^2 + c^2). (1)$$

▶ Furthermore, show that if Eq. (1) is satisfied, then the expressions for the center P_0 and the radius R of the sphere are given by

$$P_0 = (a, b, c),$$
 $R = \sqrt{d + (a^2 + b^2 + c^2)}.$

 \triangleleft

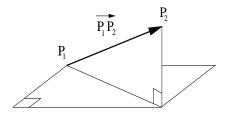
Vectors on a plane and in space (12.2)

- ▶ Vectors in \mathbb{R}^2 and \mathbb{R}^3 .
- ▶ Vector components in Cartesian coordinates.
- ▶ Magnitude of a vector and unit vectors.
- ▶ Addition and scalar multiplication.

Vectors in \mathbb{R}^2 and \mathbb{R}^3 .

Definition

A *vector* in \mathbb{R}^n , with n=2,3, is an ordered pair of points in \mathbb{R}^n , denoted as $\overrightarrow{P_1P_2}$, where P_1 , $P_2 \in \mathbb{R}^n$. The point P_1 is called the *initial point* and P_2 is called the *terminal point*.

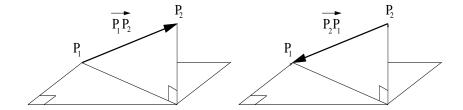


Remarks:

- ▶ A vector in \mathbb{R}^2 or \mathbb{R}^3 is an oriented line segment.
- ▶ A vector is drawn by an arrow pointing to the terminal point.
- A vector is denoted not only by $\overrightarrow{P_1P_2}$ but also by an arrow over a letter, like \vec{v} , or by a boldface letter, like \vec{v} .

Vectors in \mathbb{R}^2 and \mathbb{R}^3 .

Remark: The order of the points determines the direction. For example, the vectors $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_2P_1}$ have opposite directions.



Remark: By 1850 it was realized that different physical phenomena were described using a new concept at that time, called a vector. A vector was more than a number in the sense that it was needed more than a single number to specify it. Phenomena described using vectors included velocities, accelerations, forces, rotations, electric phenomena, magnetic phenomena, and heat transfer.

Vectors on a plane and in space (12.2)

- ▶ Vectors in \mathbb{R}^2 and \mathbb{R}^3 .
- ▶ Vector components in Cartesian coordinates.
- ▶ Magnitude of a vector and unit vectors.
- ▶ Addition and scalar multiplication.

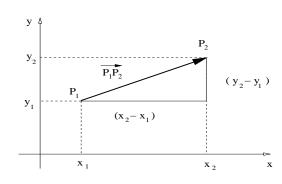
Components of a vector in Cartesian coordinates

Theorem

Given the points $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2) \in \mathbb{R}^2$, the vector $\overrightarrow{P_1P_2}$ determines a unique ordered pair denoted as follows,

$$\overrightarrow{P_1P_2} = \langle (x_2-x_1), (y_2-y_1) \rangle.$$

Proof: Draw the vector $\overrightarrow{P_1P_2}$ in Cartesian coordinates.



Remark: A similar result holds for vectors in space.

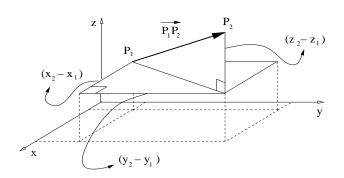
Components of a vector in Cartesian coordinates

Theorem

Given the points $P_1=(x_1,y_1,z_1)$, $P_2=(x_2,y_2,z_2) \in \mathbb{R}^3$, the vector $\overrightarrow{P_1P_2}$ determines a unique ordered triple denoted as follows,

$$\overrightarrow{P_1P_2} = \langle (x_2 - x_1), (y_2 - y_1), (z_2 - z_1) \rangle.$$

Proof: Draw the vector $\overrightarrow{P_1P_2}$ in Cartesian coordinates.



Components of a vector in Cartesian coordinates

Example

Find the components of a vector with initial point $P_1 = (1, -2, 3)$ and terminal point $P_2 = (3, 1, 2)$.

Solution:

$$\overrightarrow{P_1P_2} = \langle (3-1), (1-(-2)), (2-3) \rangle \quad \Rightarrow \quad \overrightarrow{P_1P_2} = \langle 2, 3, -1 \rangle.$$

Example

Find the components of a vector with initial point $P_3 = (3, 1, 4)$ and terminal point $P_4 = (5, 4, 3)$.

Solution:

$$\overrightarrow{P_3P_4} = \langle (5-3), (4-1), (3-4) \rangle \quad \Rightarrow \quad \overrightarrow{P_3P_4} = \langle 2, 3, -1 \rangle.$$

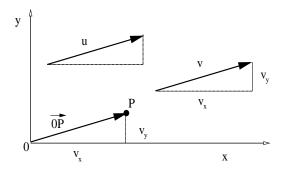
Remark: $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_3P_4}$ have the same components although they are different vectors.

Components of a vector in Cartesian coordinates

Remark:

The vector components do not determine a unique vector.

The vectors \mathbf{u} , \mathbf{v} and $\overrightarrow{0P}$ have the same components but they are all different, since they have different initial and terminal points.



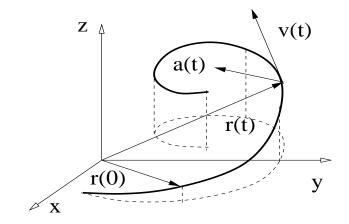
Definition

Given a vector $\overrightarrow{P_1P_2} = \langle v_x, v_y \rangle$, the *standard position* vector is the vector $\overrightarrow{0P}$, where the point 0 = (0,0) is the origin of the Cartesian coordinates and the point $P = (v_x, v_y)$.

Components of a vector in Cartesian coordinates

Remark: Vectors are used to describe motion of particles.

The position $\mathbf{r}(t)$, velocity $\mathbf{v}(t)$, and acceleration $\mathbf{a}(t)$ at the time t of a moving particle are described by vectors in space.



Vectors on a plane and in space (12.2)

- ▶ Vectors in \mathbb{R}^2 and \mathbb{R}^3 .
- ▶ Vector components in Cartesian coordinates.
- ► Magnitude of a vector and unit vectors.
- ▶ Addition and scalar multiplication.

Magnitude of a vector and unit vectors.

Definition

The *magnitude* or *length* of a vector $\overrightarrow{P_1P_2}$ is the distance from the initial point to the terminal point.

• If the vector $\overrightarrow{P_1P_2}$ has components

$$\overrightarrow{P_1P_2} = \langle (x_2-x_1), (y_2-y_1), (z_2-z_1) \rangle,$$

then its magnitude, denoted as $|\overrightarrow{P_1P_2}|$, is given by

$$|\overrightarrow{P_1P_2}| = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}.$$

▶ If the vector \mathbf{v} has components $\mathbf{v} = \langle v_x, v_y, v_z \rangle$, then its magnitude, denoted as $|\mathbf{v}|$, is given by

$$|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}.$$

Magnitude of a vector and unit vectors.

Example

Find the length of a vector with initial point $P_1 = (1, 2, 3)$ and terminal point $P_2 = (4, 3, 2)$.

Solution: First find the component of the vector $\overrightarrow{P_1P_2}$, that is,

$$\overrightarrow{P_1P_2} = \langle (4-1), (3-2), (2-3) \rangle \quad \Rightarrow \quad \overrightarrow{P_1P_2} = \langle 3, 1, -1 \rangle.$$

Therefore, its length is

$$\left|\overrightarrow{P_1P_2}\right| = \sqrt{3^2 + 1^2 + (-1)^2} \quad \Rightarrow \quad \left|\overrightarrow{P_1P_2}\right| = \sqrt{11}.$$

Example

If the vector \mathbf{v} represents the velocity of a moving particle, then its length $|\mathbf{v}|$ represents the speed of the particle.

Magnitude of a vector and unit vectors.

Definition

A vector \mathbf{v} is a *unit vector* iff \mathbf{v} has length one, that is, $|\mathbf{v}| = 1$.

Example

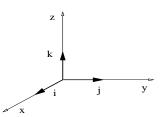
Show that $\mathbf{v} = \left\langle \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right\rangle$ is a unit vector.

Solution:

$$|\mathbf{v}| = \sqrt{\frac{1}{14} + \frac{4}{14} + \frac{9}{14}} = \sqrt{\frac{14}{14}} \quad \Rightarrow \quad |\mathbf{v}| = 1.$$

Example

The unit vectors $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$ are useful to express any other vector in \mathbb{R}^3 .



Vectors on a plane and in space (12.2)

- ▶ Vectors in \mathbb{R}^2 and \mathbb{R}^3 .
- ▶ Vector components in Cartesian coordinates.
- ▶ Magnitude of a vector and unit vectors.
- ► Addition and scalar multiplication.

Addition and scalar multiplication.

Definition

Given the vectors $\mathbf{v} = \langle v_x, v_y, v_z \rangle$, $\mathbf{w} = \langle w_x, w_y, w_z \rangle$ in \mathbb{R}^3 , and a number $a \in \mathbb{R}$, then the vector addition, $\mathbf{v} + \mathbf{w}$, and the scalar multiplication, $a\mathbf{v}$, are given by

$$\mathbf{v} + \mathbf{w} = \langle (v_x + w_x), (v_y + w_y), (v_z + w_z) \rangle,$$

 $a\mathbf{v} = \langle av_x, av_y, av_z \rangle.$

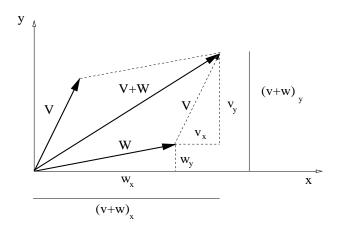
Remarks:

- ▶ The vector $-\mathbf{v} = (-1)\mathbf{v}$ is called the *opposite* of vector \mathbf{v} .
- ▶ The difference of two vectors is the addition of one vector and the opposite of the other vector, that is, $\mathbf{v} \mathbf{w} = \mathbf{v} + (-1)\mathbf{w}$. This equation in components is

$$\mathbf{v}-\mathbf{w}=\langle (v_x-w_x),(v_y-w_y),(v_z-w_z)\rangle.$$

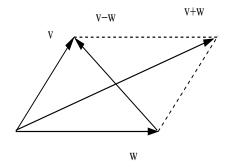
Addition and scalar multiplication.

Remark: The addition of two vectors is equivalent to the parallelogram law: The vector $\mathbf{v} + \mathbf{w}$ is the diagonal of the parallelogram formed by vectors \mathbf{v} and \mathbf{w} when they are in their standard position.

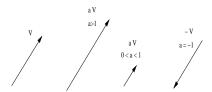


Addition and scalar multiplication.

Remark: The addition and difference of two vectors.



Remark: The scalar multiplication stretches a vector if a > 1 and compresses the vector if 0 < a < 1.



Addition and scalar multiplication.

Example

Given the vectors $\mathbf{v} = \langle 2, 3 \rangle$ and $\mathbf{w} = \langle -1, 2 \rangle$, find the magnitude of the vectors $\mathbf{v} + \mathbf{w}$ and $\mathbf{v} - \mathbf{w}$.

Solution: We first compute the components of $\mathbf{v} + \mathbf{w}$, that is,

$$\mathbf{v} + \mathbf{w} = \langle (2-1), (3+2) \rangle \Rightarrow \mathbf{v} + \mathbf{w} = \langle 1, 5 \rangle.$$

Therefore, its magnitude is

$$|\mathbf{v} + \mathbf{w}| = \sqrt{1^2 + 5^2} \quad \Rightarrow \quad |\mathbf{v} + \mathbf{w}| = \sqrt{26}.$$

A similar calculation can be done for $\mathbf{v} - \mathbf{w}$, that is,

$$\mathbf{v} - \mathbf{w} = \langle (2+1), (3-2) \rangle \quad \Rightarrow \quad \mathbf{v} - \mathbf{w} = \langle 3, 1 \rangle.$$

Therefore, its magnitude is

$$|\mathbf{v} - \mathbf{w}| = \sqrt{3^2 + 1^2} \quad \Rightarrow \quad |\mathbf{v} - \mathbf{w}| = \sqrt{10}.$$

Addition and scalar multiplication.

Theorem

If the vector $\mathbf{v} \neq \mathbf{0}$, then the vector $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$ is a unit vector.

Proof: (Case $\mathbf{v} \in \mathbb{R}^2$ only).

If
$$\mathbf{v}=\langle v_x,v_y
angle \in \mathbb{R}^2$$
, then $|\mathbf{v}|=\sqrt{v_x^2+v_y^2}$, and

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \left\langle \frac{v_x}{|\mathbf{v}|}, \frac{v_y}{|\mathbf{v}|} \right\rangle.$$

This is a unit vector, since

$$|\mathbf{u}| = \left| \frac{\mathbf{v}}{|\mathbf{v}|} \right| = \sqrt{\left(\frac{v_x}{|\mathbf{v}|} \right)^2 + \left(\frac{v_y}{|\mathbf{v}|} \right)^2} = \frac{1}{|\mathbf{v}|} \sqrt{v_x^2 + v_y^2} = \frac{|\mathbf{v}|}{|\mathbf{v}|} = 1.$$

Addition and scalar multiplication.

Theorem

Every vector $\mathbf{v} = \langle v_x, v_y, v_z \rangle$ in \mathbb{R}^3 can be expressed in a unique way as a linear combination of vectors $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$ as follows

$$\mathbf{v} = v_{\mathbf{x}}\mathbf{i} + v_{\mathbf{y}}\mathbf{j} + v_{\mathbf{z}}\mathbf{k}.$$

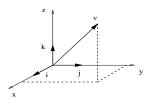
Proof: Use the definitions of vector addition and scalar multiplication as follows,

$$\mathbf{v} = \langle v_x, v_y, v_z \rangle$$

$$= \langle v_x, 0, 0 \rangle + \langle 0, v_y, 0 \rangle + \langle 0, 0, v_z \rangle$$

$$= v_x \langle 1, 0, 0 \rangle + v_y \langle 0, 1, 0 \rangle + v_z \langle 0, 0, 1 \rangle$$

$$= v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}.$$



Addition and scalar multiplication.

Example

Express the vector with initial and terminal points $P_1 = (1, 0, 3)$, $P_2 = (-1, 4, 5)$ in the form $\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$.

Solution: First compute the components of $\mathbf{v} = \overrightarrow{P_1P_2}$, that is,

$$\mathbf{v} = \langle (-1-1), (4-0), (5-3) \rangle = \langle -2, 4, 2 \rangle.$$

Then,
$$\mathbf{v} = -2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$$
.

Example

Find a unit vector \mathbf{w} opposite to \mathbf{v} found above.

Solution: Since
$$|\mathbf{v}| = \sqrt{(-2)^2 + 4^2 + 2^2} = \sqrt{4 + 16 + 4} = \sqrt{24}$$
, we conclude that $\mathbf{w} = -\frac{1}{\sqrt{24}} \langle -2, 4, 2 \rangle$.