Math 234, Practice Test \#3

Show your work in all the problems.

1. Find the volume of the region bounded above by the paraboloid $z=9-$ $x^{2}-y^{2}$, below by the xy-plane and lying outside the cylinder $x^{2}+y^{2}=1$.
2. Evaluate the integral by changing to polar coordinates

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \ln \left(x^{2}+y^{2}+1\right) d x d y
$$

3. Describe the region of integration. Convert the integral to spherical coordinates and evaluate it

$$
\int_{-1}^{+1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{1} d z d y d x
$$

4. Sketch the region of integration, and write an integral with the order of integration reversed. Do not evaluate the integral.

$$
\int_{0}^{4} \int_{-\sqrt{4-y}}^{(y-4) / 2} d x d y
$$

5. Find the centroid of the triangular region cut from the first quadrant by the line $x+y=3$.

Solutions

1. The most convenient coordinates for this problem are cylindrical coordinates $x=r \cos \theta, y=r \sin \theta$. We have to figure out when the paraboloid intersects the xy-plane. This is the case for $0=z=9-x^{2}-y^{2}$, i.e. $x^{2}+y^{2}=9$ or $r=3$. The integral is then given by

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{1}^{3} \int_{0}^{9-r^{2}} r d z d r d \theta & =\int_{0}^{2 \pi} \int_{1}^{3}\left(9-r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi}\left(\frac{9 r^{2}}{2}-\left.\frac{r^{4}}{4}\right|_{1} ^{3}\right) d \theta \\
& =32 \pi
\end{aligned}
$$

2. The equations $x= \pm \sqrt{1-y^{2}}$ are equivalent to $x^{2}+y^{2}=1$ which describes a circle with radius 1 centered at the origin. In polar coordinates $x=r \cos \theta, y=r \sin \theta$ this is given by $r=1$. Hence

$$
\begin{aligned}
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \ln \left(x^{2}+y^{2}+1\right) d x d y= & \int_{0}^{2 \pi} \int_{0}^{1} \ln \left(r^{2}+1\right) r d r d \theta \\
& \left(\text { substitute } u=r^{2}+1, d u=2 r d r\right) \\
= & \frac{1}{2} \int_{0}^{2 \pi} \int_{1}^{2} \ln (u) d u \\
= & \left.\frac{1}{2} \int_{0}^{2 \pi}(u \ln (u)-u)\right|_{1} ^{2} d \theta \\
= & \pi(2 \ln (2)-1)
\end{aligned}
$$

Recall from Calculus II that the integral of the logarithm function is calculated as follows:

$$
\begin{aligned}
\int \ln (x) d x= & \int 1 \cdot \ln (x) d x \\
& \text { (integration by parts } d u=1 d x, v=\ln (x), \\
& d v=d x / x, u=x) \\
= & x \ln (x)-\int d x \\
= & x \ln (x)-x+C
\end{aligned}
$$

3. The equation $z=\sqrt{x^{2}+y^{2}}$ describes a cone in upper half space $z \geq 0$ with tip at the origin and opening angle of $\pi / 4$. The region of integration is bounded below by the cone and above by the horizontal plane
$z=1$. In spherical coordinates the plane $z=1$ corresponds to

$$
1=z=\rho \cos \phi \text { i.e. } \rho=\sec \phi .
$$

The converted integral is then

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\sec \phi} \rho^{2} \sin \phi d \rho d \phi d \theta & =\frac{1}{3} \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \sec ^{3} \phi \sin \phi d \phi d \theta \\
& =\frac{1}{3} \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \sec \phi(\sec \phi \tan \phi) d \phi d \theta \\
& =\left.\frac{2 \pi}{3} \frac{\sec ^{2} \phi}{2}\right|_{0} ^{\pi / 4} \\
& =\frac{2 \pi}{3}\left(1-\frac{1}{2}\right) \\
& =\frac{\pi}{3}
\end{aligned}
$$

4. The region of integration is the region enclosed by the parabola $y=$ $4-x^{2}$ and the line $y=4+2 x$. Reversing the order of integration yields

$$
\begin{aligned}
\int_{-2}^{0} \int_{4+2 x}^{4-x^{2}} d y d x & =\int_{-2}^{0}\left(-x^{2}-2 x\right) d x \\
& =-\left.\left(\frac{x^{3}}{3}+x^{2}\right)\right|_{-2} ^{0} \\
& =\frac{4}{3}
\end{aligned}
$$

5. The area of the triangle equals $9 / 2$. We compute the first moments

$$
\begin{aligned}
M_{x} & =\int_{0}^{3} \int_{0}^{3-x} y d y d x \\
& =\frac{1}{2} \int_{0}^{3}(3-x)^{2} d x \\
& =\frac{1}{2} \int_{0}^{3}\left(9-6 x+x^{2}\right) d x \\
& =\left.\frac{1}{2}\left(9 x-3 x^{2}+\frac{x^{3}}{3}\right)\right|_{0} ^{3} \\
& =\frac{9}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
M_{y} & =\int_{0}^{3} \int_{0}^{3-x} x d y d x \\
& =\int_{0}^{3}\left(3 x-x^{2}\right) d x \\
& =\left.\left(\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{3} \\
& =\frac{9}{2}
\end{aligned}
$$

The center of mass is then given by

$$
(\bar{x}, \bar{y})=\left(M_{y} / M, M_{x} / M\right)=(1,1)
$$

