Chapter 1. Review problems

1. Linear systems

1. Let s be a real number, and consider the system

$$
\begin{aligned}
& s x_{1}-2 s x_{2}=-1 \\
& 3 x_{1}+6 s x_{2}=3
\end{aligned}
$$

(a) Determine the values of the parameter s for which the system above has a unique solution.
(b) For all the values of s such that the system above has a unique solution, find that solution.
2. Find the values of k such that the system below has no solution; has one solution; has infinitely many solutions;

$$
\begin{aligned}
& k x_{1}+x_{2}=1 \\
& x_{1}+k x_{2}=1 .
\end{aligned}
$$

3. Find a condition on the components of vector \boldsymbol{b} such that the system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is consistent, where

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 0 & -6 \\
3 & 1 & -7
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

4. Use Cramer's rule to find the solution to the linear system

$$
\begin{array}{r}
x_{1}+4 x_{2}-x_{3}=1 \\
x_{1}+x_{2}+x_{3}=0 \\
2 x_{1}+3 x_{3}=0
\end{array}
$$

2. Matrix algebra

1. Consider the matrix $A=\left[\begin{array}{ccc}5 & 3 & s \\ 1 & 2 & -1 \\ 2 & 1 & 1\end{array}\right]$ Find the value(s) of the constant s such that the matrix A is invertible. For such value(s) of s compute $\operatorname{det}\left(A^{-1}\right)$.
2. Consider the matrix $A=\left[\begin{array}{ccc}5 & 3 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 1\end{array}\right]$. Find the coefficients $\left(A^{-1}\right)_{12}$ and $\left(A^{-1}\right)_{31}$ of the matrix A^{-1}, that is, of the inverse matrix of A. Show your work.
3. Which of the following matrices below is equal to $(A+B)^{2}$ for every square matrices A and B ? $(B+A)^{2}, \quad A^{2}+2 A B+B^{2}, \quad(A+B)(B+A), \quad A^{2}+A B+B A+B^{2}, \quad A(A+B)+(A+B) B$.
4. (a) Find the volume of the parallelepiped formed by the vectors

$$
\boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right], \quad \boldsymbol{v}_{3}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] .
$$

(b) The matrix $A=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$ determines the linear transformation $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Is this linear transformation one-to-one? Is it onto?
5. Find a matrix A solution of the matrix equation

$$
A B+2 I=\left[\begin{array}{cc}
5 & 4 \\
-2 & 3
\end{array}\right], \quad \text { with } \quad B=\left[\begin{array}{ll}
7 & 3 \\
2 & 1
\end{array}\right] \quad \text { and } \quad I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

6. (a) Find the values of the constant k such that $\operatorname{det}(A)=0$, where,

$$
A=\left[\begin{array}{rrr}
1 & 1 & -1 \\
2 & 3 & k \\
1 & k & 3
\end{array}\right]
$$

(b) Determine the values of k such that the following system of equations below has more than one solution.

$$
\begin{array}{r}
x_{1}+x_{2}-x_{3}=0 \\
2 x_{1}+3 x_{2}+k x_{3}=0 \\
x_{1}+k x_{2}+3 x_{3}=0
\end{array}
$$

(c) Fix $k=1$ and compute the coefficients $\left(A^{-1}\right)_{1,2}$ and $\left(A^{-1}\right)_{2,3}$ of A^{-1}. You do not need to compute the rest of the inverse matrix.
7. (a) Find the LU-factorization of the matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & 5 & 7 \\
6 & 9 & 12
\end{array}\right]
$$

(b) Use the LU-factorization above to find the solutions \boldsymbol{x}_{1} and \boldsymbol{x}_{2} of the linear systems $\boldsymbol{A x}=\boldsymbol{e}_{1}$ and $A \boldsymbol{x}_{2}=\boldsymbol{e}_{2}$, where

$$
\boldsymbol{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \boldsymbol{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

(c) Use the LU-factorization above to find A^{1}.
8. Explain in terms of volumes why $\operatorname{det}(3 A)=3^{n} \operatorname{det}(A)$ for any $n \times n$ matrix A.

3. Vector spaces

1. Find the dimension and give a basis of the vector space V on \mathbb{R}^{3} given by

$$
V=\left\{\left[\begin{array}{c}
-a+b+c-3 d \\
b+3 c-d \\
a+2 b+8 c
\end{array}\right] \quad \text { with } \quad a, b, c, d \in \mathbb{R}\right\}
$$

2. Determine whether the subset $V \subset \mathbb{R}^{2}$ is a subspace, where

$$
V=\left\{\left[\begin{array}{c}
-a+1 \\
a-1
\end{array}\right] \quad \text { with } \quad a \in \mathbb{R}\right\}
$$

If the set is a subspace, find a basis.
3. Determine whether the subset $V \subset \mathbb{R}^{2}$ is a subspace, where

$$
V=\left\{\left[\begin{array}{c}
-a+1 \\
a-2
\end{array}\right] \quad \text { with } \quad a \in \mathbb{R}\right\}
$$

If the set is a subspace, find a basis.
4. Determine which of the following subsets of $M_{3,3}$ are subspaces. In the case that the set is a subspace, find a basis.
(a) The set of all symmetric matrices.
(b) The set of all skew-symmetric matrices.
(c) The set of al matrices A such that $A^{2}=A$.
(d) The set of al matrices A such that $\operatorname{tr}(A)=0$.
(e) The set of al matrices A such that $\operatorname{det}(A)=0$.
5. (a) Find the dimension of both the null space and the column space of the matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 5 & 2 \\
2 & 1 & 4 & 7 & 3 \\
0 & -1 & 2 & -3 & -1
\end{array}\right]
$$

(b) Is the linear transformation given by the matrix A one-to-one? Is it onto? Justify your answers and show your work.
6. (a) Find the dimension of both the null space and the column space of the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 5 & 1 & 2 \\
2 & 1 & 7 & 4 & 3 \\
0 & -1 & -3 & 2 & -1
\end{array}\right]
$$

(b) Is the linear transformation given by the matrix A one-to-one? Is it onto? Justify your answers and show your work.
7. Let $b=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right\}$ and $e=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ be two bases of the vector space \mathbb{R}^{2}, where e is the standard basis. Let $P=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ be the matrix that transforms the components of a vector $\boldsymbol{x} \in \mathbb{R}^{2}$ from the basis e into the basis b, that is, $[\boldsymbol{x}]_{b}=P[\boldsymbol{x}]_{e}$. Find the components of the basis vectors $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$ in the standard basis, that is, find $\left[\boldsymbol{b}_{1}\right]_{e}$ and $\left[\boldsymbol{b}_{2}\right]_{e}$.
8. Let $b=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right\}$ and $e=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ be two bases of the vector space \mathbb{R}^{2}, where e is the standard basis. Let $P=\left[\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right]$ be the matrix that transforms the components of a vector $\boldsymbol{x} \in \mathbb{R}^{2}$ from the basis e into the basis b, that is, $[\boldsymbol{x}]_{b}=P[\boldsymbol{x}]_{e}$. Find the components of the basis vectors $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$ in the standard basis, that is, find $\left[\boldsymbol{b}_{1}\right]_{e}$ and $\left[\boldsymbol{b}_{2}\right]_{e}$.
9. Consider the matrix $A=\left[\begin{array}{llll}1 & 1 & 3 & 4 \\ 2 & 2 & 2 & 0\end{array}\right]$.
(a) Verify that the vector $\boldsymbol{v}=\left[\begin{array}{c}4 \\ 2 \\ -6 \\ 3\end{array}\right]$ belongs to the null space of A.
(b) Extend the set $\{\boldsymbol{v}\}$ into a basis of the null space of A.
10. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & 5 \\
0 & 1 & -2 \\
1 & 3 & -3
\end{array}\right]
$$

(a) Find a basis for the subspace of all vectors \boldsymbol{b} such that the linear system $A \boldsymbol{x}=\boldsymbol{b}$ has solutions. Show your work.
(b) Find a basis for the null space of A. Show you work.
(c) Find a solution to the linear system $A \boldsymbol{x}=\boldsymbol{b}$ with $\boldsymbol{b}=\left[\begin{array}{l}1 \\ 1 \\ 5\end{array}\right]$.

Is this solution unique? If yes, say why. If no, find a second solution \boldsymbol{x} with the same \boldsymbol{b}.

4. LINEAR TRANSFORMATIONS

1. Consider the matrix $A=\left[\begin{array}{cccc}1 & 2 & 6 & -7 \\ -2 & 3 & 2 & 0 \\ 0 & -1 & -2 & 2\end{array}\right]$.
(a) Find a basis for $\operatorname{Col}(A)$, the column space of A.
(b) Find a basis for $N(A)$, the null space of A.
(c) Is the linear transformation determined by A one-to-one? Is it onto? Give reasons for your answers.
2. The matrices $A=\left[\begin{array}{cccc}3 & 1 & 6 & -2 \\ 2 & 1 & 5 & 0 \\ 0 & -1 & -3 & -4\end{array}\right]$ and $B=\left[\begin{array}{cccc}1 & 0 & 1 & -2 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0\end{array}\right]$ are row equivalent.
(a) Find a basis for $\operatorname{Col}(A)$, the column space of A.
(b) Find a basis for $N(A)$, the null space of A.
(c) Is the linear transformation determined by A one-to-one? Is it onto? Give reasons for your answers.
3. (a) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by

$$
T(\boldsymbol{x})=\left[\begin{array}{l}
2 x_{1}+6 x_{2}-2 x_{3} \\
3 x_{1}+8 x_{2}+2 x_{3}
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Find all solutions of the linear system $T(\boldsymbol{x})=\boldsymbol{b}$, where $\boldsymbol{b}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$, and write these solutions in parametric form.
(b) Is the set of all solutions found in part (a) a subspace of \mathbb{R}^{3} ? Give reasons for your answer.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{\mathcal{S}_{2}}\right)=\left[\begin{array}{c}
x_{1}-2 x_{2} \\
3 x_{1}+x_{2} \\
x_{2}
\end{array}\right]_{\mathcal{S}_{3}}
$$

(a) Find the matrix $[T]_{\mathcal{S}_{2} \mathcal{S}_{3}}$ associated to the linear transformation T using the standard bases \mathcal{S}_{2} and \mathcal{S}_{3} of \mathbb{R}^{2} and \mathbb{R}^{3}, respectively.
(b) Is T one-to-one? Justify your answer.
(c) Is T onto? Justify your answer.
5. Let $\boldsymbol{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \boldsymbol{v}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$, and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation given by

$$
T(\boldsymbol{u})=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad T(\boldsymbol{v})=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

(a) Find the matrix $A=\left[T\left(\boldsymbol{e}_{1}\right), T\left(\boldsymbol{e}_{2}\right)\right]$ of the linear transformation, where $\boldsymbol{e}_{1}=\frac{1}{2}(\boldsymbol{u}+\boldsymbol{v})$ and $e_{2}=\frac{1}{2}(\boldsymbol{u}-\boldsymbol{v})$. Show your work.
(b) Compute the area of the parallelogram formed by \boldsymbol{u} and \boldsymbol{v}. Compute also the area of the parallelogram formed by $T(\boldsymbol{u})$ and $T(\boldsymbol{v})$. Show your work.
6. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]_{\mathcal{S}_{3}}\right)=\left[\begin{array}{c}
x_{1}-2 x_{2}+3 x_{3} \\
-3 x_{1}+x_{2}
\end{array}\right]_{\mathcal{S}_{2}} .
$$

(a) Find the matrix A associated to the linear transformation T using the standard bases in \mathbb{R}^{3} and \mathbb{R}^{2}. Show your work.
(b) Find a basis for the column space of A. Show your work.
(c) Is T one-to-one? Is T onto? Justify your answer.
7. Consider the linear transformations $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]_{\mathcal{S}}\right)=\left[\begin{array}{c}
2 x_{1}-x_{2}+3 x_{3} \\
-x_{1}+2 x_{2}-4 x_{3} \\
x_{2}+3 x_{3}
\end{array}\right]_{\mathcal{S}}, \quad S\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]_{\mathcal{S}}\right)=\left[\begin{array}{c}
-x_{1} \\
2 x_{2} \\
3 x_{3}
\end{array}\right]_{\mathcal{S}}
$$

where \mathcal{S} is a standard basis of \mathbb{R}^{3}.
(a) Find a matrix $[T]_{\mathcal{S S}}$ and the matrix $[S]_{\mathcal{S S}}$. Show your work.
(b) Is T one-to-one? Is T onto? Justify your answer.
(c) Find the matrix of the composition $T \circ S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ in the standard basis, that is, find $[T \circ S]_{\mathcal{S S}}$. Justify your answer.

5. Change of basis

1. Consider the vector space \mathbb{R}^{2} and with bases

$$
\mathcal{S}=\left\{\left[\boldsymbol{e}_{1}\right]_{\mathcal{S}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{\mathcal{S}},\left[\boldsymbol{e}_{2}\right]_{\mathcal{S}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]_{\mathcal{S}}\right\}, \quad \mathcal{U}=\left\{\left[\boldsymbol{u}_{1}\right]_{\mathcal{S}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{\mathcal{S}},\left[\boldsymbol{u}_{2}\right]_{\mathcal{S}}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]_{\mathcal{S}}\right\} .
$$

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation given by

$$
\left[T\left(\boldsymbol{u}_{1}\right)\right]_{\mathcal{S}}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]_{\mathcal{S}}, \quad\left[T\left(\boldsymbol{u}_{2}\right)\right]_{\mathcal{S}}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]_{\mathcal{S}}
$$

Find the matrix $[T]_{\mathcal{U S}}$, then the matrix $[T]_{\mathcal{S S}}$, and finally the matrix $[T]_{\mathcal{U U}}$, all matrices associated to the linear transformation above.
2. Let $\mathcal{U}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ be a basis of \mathbb{R}^{2} given by

$$
\boldsymbol{u}_{1}=2 \boldsymbol{e}_{1}-9 \boldsymbol{e}_{2}, \quad \boldsymbol{u}_{2}=\boldsymbol{e}_{1}+8 \boldsymbol{e}_{2}
$$

where $\mathcal{S}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is the standard basis of \mathbb{R}^{2}.
(a) Find both change of bases matrices $[I]_{\mathcal{U S}}$ and $[I]_{\mathcal{S U}}$.
(b) Consider the vector $\boldsymbol{x}=2 \boldsymbol{u}_{1}+\boldsymbol{u}_{2}$. Find both $[\boldsymbol{x}]_{\mathcal{S}}$ and $[\boldsymbol{x}]_{\mathcal{U}}$, that is, the components of \boldsymbol{x} in the standard basis and in the \mathcal{U} basis, respectively.
3. Let $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}\right\}$ and $\mathcal{C}=\left\{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right\}$ be two bases of \mathbb{R}^{3}, and suppose that

$$
\boldsymbol{c}_{1}=\boldsymbol{b}_{1}-2 \boldsymbol{b}_{2}+\boldsymbol{b}_{3}, \quad \boldsymbol{c}_{2}=-\boldsymbol{b}_{2}+3 \boldsymbol{b}_{3}, \quad \boldsymbol{c}_{3}=-2 \boldsymbol{b}_{1}+\boldsymbol{b}_{3} .
$$

(a) Find the change of basis matrices $[I]_{\mathcal{B C}}$ and $[I]_{\mathcal{C B}}$.
(b) Consider the vector $\boldsymbol{x}=\boldsymbol{c}_{1}-2 \boldsymbol{c}_{2}+2 \boldsymbol{c}_{3}$. Find both $[\boldsymbol{x}]_{\mathcal{B}}$ and $[\boldsymbol{x}]_{\mathcal{C}}$, that is, the components of \boldsymbol{x} in the bases \mathcal{B} and \mathcal{C}, respectively.
4. Consider the bases \mathcal{U} and \mathcal{S} of \mathbb{R}^{2} given by

$$
\left\{\left[\boldsymbol{u}_{1}\right]_{\mathcal{S}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]_{\mathcal{S}},\left[\boldsymbol{u}_{2}\right]_{\mathcal{S}}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{\mathcal{S}}\right\}, \quad \mathcal{S}=\left\{\left[\boldsymbol{e}_{1}\right]_{\mathcal{S}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{\mathcal{S}},\left[\boldsymbol{e}_{2}\right]_{\mathcal{S}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]_{\mathcal{S}}\right\} .
$$

(a) Given $[\boldsymbol{x}]_{\mathcal{U}}=\left[\begin{array}{l}3 \\ 2\end{array}\right]_{\mathcal{U}}$ find $[\boldsymbol{x}]_{\mathcal{S}}$, that is, the components of the vector \boldsymbol{x} in the standard basis of \mathbb{R}^{2}.
(b) Find the components of the standard basis in terms of the \mathcal{U} basis, that is, find $\left[\boldsymbol{e}_{1}\right]_{\mathcal{U}}$ and $\left[\boldsymbol{e}_{2}\right]_{\mathcal{U}}$.
5. Let $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right\}$ and $\mathcal{S}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ be two bases of the vector space \mathbb{R}^{2}, where \mathcal{S} is the standard basis. Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ be the matrix that transforms the components of a vector $\boldsymbol{x} \in \mathbb{R}^{2}$ from the basis \mathcal{S} into the basis \mathcal{B}, that is, $[\boldsymbol{x}]_{\mathcal{B}}=A[\boldsymbol{x}]_{\mathcal{S}}$. Find the components of the basis vectors $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$ in the standard basis, that is, find $\left[\boldsymbol{b}_{1}\right]_{\mathcal{S}}$ and $\left[\boldsymbol{b}_{2}\right]_{\mathcal{S}}$.
6. Let \mathcal{S}_{3} and \mathcal{S}_{2} be standard bases of \mathbb{R}^{3} and \mathbb{R}^{2}, respectively, and consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]_{\mathcal{S}_{3}}\right)=\left[\begin{array}{c}
x_{1}-x_{2}+x_{3} \\
x_{2}-x_{3}
\end{array}\right]_{\mathcal{S}_{2}}
$$

and introduce the bases

$$
\begin{gathered}
\mathcal{U}=\left\{\left[\boldsymbol{u}_{1}\right]_{\mathcal{S}_{3}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]_{\mathcal{S}_{3}},\left[\boldsymbol{u}_{2}\right]_{\mathcal{S}_{3}}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]_{\mathcal{S}_{3}},\left[\boldsymbol{u}_{3}\right]_{\mathcal{S}_{3}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]_{\mathcal{S}_{3}}\right\} \subset \mathbb{R}^{3} \\
\mathcal{V}=\left\{\left[\boldsymbol{v}_{1}\right]_{\mathcal{S}_{2}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]_{\mathcal{S}_{2}},\left[\boldsymbol{v}_{2}\right]_{\mathcal{S}_{2}}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{\mathcal{S}_{2}}\right\} \subset \mathbb{R}^{2}
\end{gathered}
$$

Find the matrices $[T]_{\mathcal{S}_{3} \mathcal{S}_{2}}$ and $[T]_{\mathcal{U V}}$.

6. INNER PRODUCT

1. Let V be an inner product space, with inner product \langle,$\rangle , and let \boldsymbol{x}, \boldsymbol{y} \in V$. Show that $\boldsymbol{x}-\boldsymbol{y}$ is orthogonal to $\boldsymbol{x}+\boldsymbol{y}$ iff $\|\boldsymbol{x}\|=\|\boldsymbol{y}\|$.
2. Consider the subspace $W=\operatorname{Span}\left\{\boldsymbol{u}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \boldsymbol{u}_{2}=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]\right\}$ of \mathbb{R}^{3}.
(a) Find an orthogonal decomposition of the vector \boldsymbol{u}_{2} with respect to the vector \boldsymbol{u}_{1}. Using this decomposition, find an orthogonal basis for the space W.
(b) Find the decomposition of the vector $\boldsymbol{y}=\left[\begin{array}{l}4 \\ 3 \\ 0\end{array}\right]$ in orthogonal components with respect to the subspace W.
(c) Find the vector in W which is the closest vector to \boldsymbol{y}.
3. Find all vectors in \mathbb{R}^{4} perpendicular to both $\boldsymbol{v}_{1}=\left[\begin{array}{l}1 \\ 4 \\ 4 \\ 1\end{array}\right]$ and $\boldsymbol{v}_{2}=\left[\begin{array}{l}2 \\ 9 \\ 8 \\ 2\end{array}\right]$.
4. Consider the matrix $A=\left[\begin{array}{rr}2 & 2 \\ 0 & -1 \\ -2 & 0\end{array}\right]$ and the vector $\boldsymbol{b}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$.
(a) Find the best approximation (least-squares) solution $\widehat{\boldsymbol{x}}$ to the matrix equation $A \boldsymbol{x}=\boldsymbol{b}$.
(b) Find the orthogonal projection of the source vector b onto the subspace $\operatorname{Col}(A)$, the column space of A.
5. Given the matrix $A=\left[\begin{array}{ccc}1 & 2 & 5 \\ 0 & 2 & 0 \\ 1 & 0 & -1\end{array}\right]$, which has linearly independent column vectors, find an orthonormal basis for the space $\operatorname{Col}(A)$, the column space of A, using the Gram-Schmidt process starting with the first column vector.
6. Consider the subspace $W \subset \mathbb{R}^{3}$ given by $W=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right]\right\}$
(a) Find a basis for the space W^{\perp}, that is, find a basis for the orthogonal complement of the space W.
(b) Use the result in part (6a) to find an orthogonal basis for the same space W^{\perp}.
7. Consider the subspace $W \subset \mathbb{R}^{3}$ given by $W=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]\right\}$.
(a) Find a basis for the space W^{\perp}, that is, find a basis for the orthogonal complement of the space W.
(b) Use the result in part (7a) to find an orthogonal basis for the same space W^{\perp}.
8. Given the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1 \\ 2 & 0\end{array}\right]$, find a basis for the space $\operatorname{Col}(A)^{\perp}$, the orthogonal complement of the column space of A.
9. Consider the matrix $A=\left[\begin{array}{cc}1 & 2 \\ 0 & -1 \\ -2 & 0\end{array}\right]$ and the vector $\boldsymbol{b}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$
(a) Find the best approximation (least-squares) solution $\hat{\boldsymbol{x}}$ to the matrix equation $A \boldsymbol{x}=\boldsymbol{b}$.
(b) Verify that the vector $A \hat{\boldsymbol{x}}-\boldsymbol{b}$, where $\hat{\boldsymbol{x}}$ is the least-squares solution found in part (9a), belongs to the space $\operatorname{Col}(A)^{\perp}$, the orthogonal complement of the column space of A.
10. Let V be a vector space with inner product \langle,$\rangle , and associated norm \|\|$. Let $\boldsymbol{x}, \boldsymbol{y} \in V$, where \boldsymbol{x} is an eigenvector of a matrix A with eigenvalue 2 , and \boldsymbol{y} is another eigenvector with eigenvalue -3 . Assume that $\|\boldsymbol{x}\|=1 / 3,\|\boldsymbol{y}\|=1$ and $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0$.
(a) Compute $\|\boldsymbol{v}\|$ for $\boldsymbol{v}=3 \boldsymbol{x}-\boldsymbol{y}$.
(b) Compute $\|A \boldsymbol{v}\|$ for the \boldsymbol{v} given above.
11. (a) Find a basis for both the null space and the column space of A, where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-2 & 1 & -4 \\
0 & 1 & 2
\end{array}\right]
$$

(b) Find $\operatorname{Col}(A)^{\perp}$.
(c) Find an orthogonal basis for the column space of A.
12. Find an orthonormal basis for the subspace of \mathbb{R}^{3} spanned by the vectors

$$
\left\{\boldsymbol{u}_{1}=\left[\begin{array}{c}
-2 \\
2 \\
-1
\end{array}\right], \boldsymbol{u}_{2}=\left[\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right]\right\}
$$

using the Gram-Schmidt process starting with the vector \boldsymbol{u}_{1}.
13. Consider the subspace $W \subset \mathbb{R}^{3}$ given by

$$
W=\operatorname{Span}\left\{\boldsymbol{u}_{1}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right], \boldsymbol{u}_{2}=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]\right\} .
$$

(a) Find an orthonormal basis of W using the Gram-Schmidt process starting with the vector \boldsymbol{u}_{1}. Show your work.
(b) Decompose the vector $\boldsymbol{x}=\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$ as follows, $\boldsymbol{x}=\hat{\boldsymbol{x}}+\boldsymbol{x}^{\prime}$, with $\hat{\boldsymbol{x}} \in W$ and \boldsymbol{x}^{\prime} perpendicular to any vector in W. Show your work.
14. Find the third column in matrix Q below such that $Q^{T}=Q^{-1}$, where

$$
Q=\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{14} & Q_{13} \\
1 / \sqrt{3} & 2 / \sqrt{14} & Q_{23} \\
1 / \sqrt{3} & -3 / \sqrt{14} & Q_{33}
\end{array}\right]
$$

15. (a) If Q_{1} and Q_{2} are orthogonal matrices, that is, each matrix satisfies $Q^{T}=Q^{-1}$, then show that $Q_{1} Q_{2}$ is also orthogonal.
(b) If Q_{1} is a counterclockwise rotation of an angle θ and Q_{2} is a counterclockwise rotation by an angle ϕ, what is $Q_{1} Q_{2}$?
16. If the vectors $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathbb{R}^{n}$ form an orthonormal set, what combination of them is the closest to a vector $\boldsymbol{b} \in \mathbb{R}^{n}$? Verify that the error is orthogonal to \boldsymbol{q}_{1} and \boldsymbol{q}_{2}.
17. Find the $Q R$ factorization of matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

18. Use Gram-Schmidt method on the columns of matrix A to find its $Q R$ factorization, where

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 3 \\
2 & 1
\end{array}\right]
$$

7. Eigenvalues and Eigenvectors

1. (a) Find all the eigenvalues and eigenvectors of the matrix, $A=\left[\begin{array}{ll}5 & -6 \\ 2 & -2\end{array}\right]$.
(b) Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
2. (a) Find all the eigenvalues and their corresponding algebraic multiplicities of the matrix

$$
A=\left[\begin{array}{ccc}
2 & -1 & 3 \\
0 & 1 & h \\
0 & 0 & 2
\end{array}\right]
$$

(b) Find the value(s) of the real number h such that the matrix A above has a two-dimensional eigenspace, and find a basis for this eigenspace.
(c) Set $h=1$, and find a basis for all the eigenspaces of matrix A above.
3. Let A be a 4×4 matrix that can be decomposed as $A=P D P^{-1}$, with P an invertible matrix and the matrix $D=\operatorname{diag}\left(2, \frac{1}{4}, 2,3\right)$. Knowing only this information about the matrix A, is it possible to compute the $\operatorname{det}(A)$? If your answer is no, explain why not; if your answer is yes, compute $\operatorname{det}(A)$ and show your work.
4. Let A be a 4×4 matrix that can be decomposed as $A=P D P^{-1}$, with P an invertible matrix and the matrix $D=\operatorname{diag}(2,0,2,5)$. Knowing only this information about the matrix A, is it possible to whether A invertible? Is it possible to know $\operatorname{tr}(A)$? If your answer is no, explain why not; if your answer is yes, compute $\operatorname{det}(A)$ and show your work.
5. Comparing the characteristic polynomials for A and A^{T}, show that these two matrices have the same eigenvalues.
6. Which of the following matrices cannot be diagonalized?

$$
A_{1}=\left[\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
2 & 0 \\
2 & -2
\end{array}\right], \quad A_{3}=\left[\begin{array}{ll}
2 & 0 \\
2 & 2
\end{array}\right] .
$$

7. (a) Find all the eigenvalues with their corresponding algebraic multiplicities, and find all the associated eigenspaces of the matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1\end{array}\right]$.
(b) Is matrix A diagonalizable? If your answer is $\boldsymbol{y e s}$, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. If your answer is no, explain why.
8. Let A be a 3×3 matrix with eigenvalues $2,-1$ and 3 .
(a) Find the eigenvalues of A^{-1}.
(b) Find the determinant of A.
(c) Find the determinant of A^{-1}.
(d) Find the eigenvalues of $A^{2}-A$.
9. Let k be any number, and consider the matrix A given by

$$
A=\left[\begin{array}{cccc}
2 & -2 & 4 & -1 \\
0 & 3 & k & 0 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find the eigenvalues of A, and their corresponding multiplicity. Show your work.
(b) Find the number k such that there exists an eigenspace $E_{A}(\lambda)$ that is two dimensional, and find a basis for this $E_{A}(\lambda)$. The notation $E_{A}(\lambda)$ means the eigenspace corresponding to the eigenvalue λ of matrix A. Show your work.
10. (a) Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. Show your work.
(b) Find matrices P and D such that $A=P D P^{-1}$, where P is invertible an D diagonal. Show your work.
(c) Compute A^{5}.
11. If A is diagonalizable, show that $\operatorname{det}(A)$ is the product of its eigenvalues.
12. Suppose that a 3×3 matrix A has eigenvalues $1,2,4$. What is the trace of A ? What is the trace of A^{2} ? What is $\operatorname{det}\left[\left(A^{-1}\right)^{T}\right]$?

