CHAPTER 1. REVIEW PROBLEMS

1. Linear systems

1. Let *s* be a real number, and consider the system

$$sx_1 - 2sx_2 = -1,$$

$$3x_1 + 6sx_2 = 3.$$

- (a) Determine the values of the parameter s for which the system above has a unique solution.
- (b) For all the values of s such that the system above has a unique solution, find that solution.
- 2. Find the values of k such that the system below has no solution; has one solution; has infinitely many solutions;

$$kx_1 + x_2 = 1 x_1 + kx_2 = 1.$$

3. Find a condition on the components of vector **b** such that the system Ax = b is consistent, where

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & -6 \\ 3 & 1 & -7 \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

4. Use Cramer's rule to find the solution to the linear system

$$x_1 + 4x_2 - x_3 = 1$$

$$x_1 + x_2 + x_3 = 0$$

$$2x_1 + 3x_3 = 0$$

2. MATRIX ALGEBRA

- **1.** Consider the matrix $A = \begin{bmatrix} 5 & 3 & s \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{bmatrix}$ Find the value(s) of the constant *s* such that the matrix *A* is invertible. For such value(s) of *s* compute det(A^{-1}).
- **2.** Consider the matrix $A = \begin{bmatrix} 5 & 3 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{bmatrix}$. Find the coefficients $(A^{-1})_{12}$ and $(A^{-1})_{31}$ of the matrix A^{-1} , that is, of the inverse matrix of A. Show your work.
- **3.** Which of the following matrices below is equal to $(A + B)^2$ for every square matrices A and B? $(B + A)^2$, $A^2 + 2AB + B^2$, (A + B)(B + A), $A^2 + AB + BA + B^2$, A(A + B) + (A + B)B.
- 4. (a) Find the volume of the parallelepiped formed by the vectors

$$\boldsymbol{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \quad \boldsymbol{v}_3 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$$

(b) The matrix $A = [v_1, v_2, v_3]$ determines the linear transformation $A : \mathbb{R}^3 \to \mathbb{R}^3$. Is this linear transformation one-to-one? Is it onto?

- $\mathbf{2}$
- 5. Find a matrix A solution of the matrix equation

$$AB + 2I = \begin{bmatrix} 5 & 4 \\ -2 & 3 \end{bmatrix}$$
, with $B = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

6. (a) Find the values of the constant k such that det(A) = 0, where,

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & k \\ 1 & k & 3 \end{bmatrix}.$$

(b) Determine the values of k such that the following system of equations below has more than one solution.

$$x_1 + x_2 - x_3 = 0$$

$$2x_1 + 3x_2 + kx_3 = 0$$

$$x_1 + kx_2 + 3x_3 = 0$$

- (c) Fix k = 1 and compute the coefficients $(A^{-1})_{1,2}$ and $(A^{-1})_{2,3}$ of A^{-1} . You do not need to compute the rest of the inverse matrix.
- 7. (a) Find the LU-factorization of the matrix

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 5 & 7 \\ 6 & 9 & 12 \end{bmatrix}.$$

(b) Use the LU-factorization above to find the solutions x_1 and x_2 of the linear systems $Ax = e_1$ and $Ax_2 = e_2$, where

$$\boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

- (c) Use the LU-factorization above to find A^1 .
- 8. Explain in terms of volumes why $det(3A) = 3^n det(A)$ for any $n \times n$ matrix A.

3. Vector spaces

1. Find the dimension and give a basis of the vector space V on \mathbb{R}^3 given by

$$V = \left\{ \begin{bmatrix} -a+b+c-3d\\b+3c-d\\a+2b+8c \end{bmatrix} \quad \text{with} \quad a,b,c,d \in \mathbb{R} \right\}.$$

2. Determine whether the subset $V \subset \mathbb{R}^2$ is a subspace, where

$$V = \left\{ \begin{bmatrix} -a+1\\a-1 \end{bmatrix} \quad \text{with} \quad a \in \mathbb{R} \right\}.$$

If the set is a subspace, find a basis.

3. Determine whether the subset $V \subset \mathbb{R}^2$ is a subspace, where

$$V = \left\{ \begin{bmatrix} -a+1\\a-2 \end{bmatrix} \quad \text{with} \quad a \in \mathbb{R} \right\}.$$

If the set is a subspace, find a basis.

- 4. Determine which of the following subsets of $M_{3,3}$ are subspaces. In the case that the set is a subspace, find a basis.
 - (a) The set of all symmetric matrices.
 - (b) The set of all skew-symmetric matrices.
 - (c) The set of al matrices A such that $A^2 = A$.
 - (d) The set of al matrices A such that tr(A) = 0.
 - (e) The set of al matrices A such that det(A) = 0.
- 5. (a) Find the dimension of both the null space and the column space of the matrix

	[1	1	1	5	2	
A =	2	1	4	7	3	
	0	-1	2	-3	-1	

- (b) Is the linear transformation given by the matrix A one-to-one? Is it onto? Justify your answers and show your work.
- 6. (a) Find the dimension of both the null space and the column space of the matrix

	[1	1	5	1	2	
A =	2	1	7	4	3	
	0	-1	-3	2	-1	

- (b) Is the linear transformation given by the matrix A one-to-one? Is it onto? Justify your answers and show your work.
- 7. Let $b = \{b_1, b_2\}$ and $e = \{e_1, e_2\}$ be two bases of the vector space \mathbb{R}^2 , where e is the standard basis. Let $P = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ be the matrix that transforms the components of a vector $\boldsymbol{x} \in \mathbb{R}^2$ from the basis e into the basis b, that is, $[\boldsymbol{x}]_b = P[\boldsymbol{x}]_e$. Find the components of the basis vectors $\boldsymbol{b}_1, \boldsymbol{b}_2$ in the standard basis, that is, find $[\boldsymbol{b}_1]_e$ and $[\boldsymbol{b}_2]_e$.
- 8. Let $b = \{b_1, b_2\}$ and $e = \{e_1, e_2\}$ be two bases of the vector space \mathbb{R}^2 , where e is the standard basis. Let $P = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$ be the matrix that transforms the components of a vector $\boldsymbol{x} \in \mathbb{R}^2$ from the basis e into the basis b, that is, $[\boldsymbol{x}]_b = P[\boldsymbol{x}]_e$. Find the components of the basis vectors \boldsymbol{b}_1 , \boldsymbol{b}_2 in the standard basis, that is, find $[\boldsymbol{b}_1]_e$ and $[\boldsymbol{b}_2]_e$.
- **9.** Consider the matrix $A = \begin{bmatrix} 1 & 1 & 3 & 4 \\ 2 & 2 & 2 & 0 \end{bmatrix}$. (a) Verify that the vector $\boldsymbol{v} = \begin{bmatrix} 4 \\ 2 \\ -6 \\ 3 \end{bmatrix}$ belongs to the null space of A.
 - (b) Extend the set $\{v\}$ into a basis of the null space of A.
- **10.** Consider the matrix

$$A = \begin{bmatrix} 1 & -1 & 5\\ 0 & 1 & -2\\ 1 & 3 & -3 \end{bmatrix}$$

- (a) Find a basis for the subspace of all vectors \boldsymbol{b} such that the linear system $A\boldsymbol{x} = \boldsymbol{b}$ has solutions. Show your work.
- (b) Find a basis for the null space of A. Show you work.

(c) Find a solution to the linear system $A\mathbf{x} = \mathbf{b}$ with $\mathbf{b} = \begin{bmatrix} 1\\ 1\\ 5 \end{bmatrix}$. Is this solution unique? If we get $\mathbf{b} = \begin{bmatrix} 1\\ 1\\ 5 \end{bmatrix}$.

Is this solution unique? If yes, say why. If no, find a second solution x with the same b.

- 4. LINEAR TRANSFORMATIONS
- **1.** Consider the matrix $A = \begin{bmatrix} 1 & 2 & 6 & -7 \\ -2 & 3 & 2 & 0 \\ 0 & -1 & -2 & 2 \end{bmatrix}$.
 - (a) Find a basis for $\operatorname{Col}(\overline{A})$, the column space of A.
 - (b) Find a basis for N(A), the null space of A.
 - (c) Is the linear transformation determined by A one-to-one? Is it onto? Give reasons for your answers.

2. The matrices
$$A = \begin{bmatrix} 3 & 1 & 6 & -2 \\ 2 & 1 & 5 & 0 \\ 0 & -1 & -3 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ are row equivalent

- (a) Find a basis for Col(A), the column space of A.
- (b) Find a basis for N(A), the null space of A.
- (c) Is the linear transformation determined by A one-to-one? Is it onto? Give reasons for your answers.
- **3.** (a) Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by

$$T(\mathbf{x}) = \begin{bmatrix} 2x_1 + 6x_2 - 2x_3 \\ 3x_1 + 8x_2 + 2x_3 \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Find all solutions of the linear system $T(\mathbf{x}) = \mathbf{b}$, where $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, and write these solutions in parametric form.

- (b) Is the set of all solutions found in part (a) a subspace of \mathbb{R}^3 ? Give reasons for your answer.
- **4.** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}_{S_2}\right) = \begin{bmatrix} x_1 - 2x_2\\ 3x_1 + x_2\\ x_2 \end{bmatrix}_{S_3}.$$

- (a) Find the matrix $[T]_{S_2S_3}$ associated to the linear transformation T using the standard bases S_2 and \mathcal{S}_3 of \mathbb{R}^2 and \mathbb{R}^3 , respectively.
- (b) Is T one-to-one? Justify your answer.
- (c) Is T onto? Justify your answer.

- -

5. Let
$$\boldsymbol{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\boldsymbol{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, and $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by
$$T(\boldsymbol{u}) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad T(\boldsymbol{v}) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

- (a) Find the matrix $A = [T(e_1), T(e_2)]$ of the linear transformation, where $e_1 = \frac{1}{2}(u+v)$ and $e_2 = \frac{1}{2}(u - v)$. Show your work.
- (b) Compute the area of the parallelogram formed by u and v. Compute also the area of the parallelogram formed by $T(\boldsymbol{u})$ and $T(\boldsymbol{v})$. Show your work.

6. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_{\mathcal{S}_3} \right) = \begin{bmatrix} x_1 - 2x_2 + 3x_3 \\ -3x_1 + x_2 \end{bmatrix}_{\mathcal{S}_2}.$$

- (a) Find the matrix A associated to the linear transformation T using the standard bases in \mathbb{R}^3 and \mathbb{R}^2 . Show your work.
- (b) Find a basis for the column space of A. Show your work.
- (c) Is T one-to-one? Is T onto? Justify your answer.
- 7. Consider the linear transformations $T: \mathbb{R}^3 \to \mathbb{R}^3$ and $S: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}_{\mathcal{S}}\right) = \begin{bmatrix}2x_1 - x_2 + 3x_3\\-x_1 + 2x_2 - 4x_3\\x_2 + 3x_3\end{bmatrix}_{\mathcal{S}}, \qquad S\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}_{\mathcal{S}}\right) = \begin{bmatrix}-x_1\\2x_2\\3x_3\end{bmatrix}_{\mathcal{S}},$$

where S is a standard basis of \mathbb{R}^3 .

- (a) Find a matrix $[T]_{SS}$ and the matrix $[S]_{SS}$. Show your work.
- (b) Is T one-to-one? Is T onto? Justify your answer.
- (c) Find the matrix of the composition $T \circ S : \mathbb{R}^3 \to \mathbb{R}^3$ in the standard basis, that is, find $[T \circ S]_{SS}$. Justify your answer.

5. Change of basis

1. Consider the vector space \mathbb{R}^2 and with bases

$$\mathcal{S} = \Big\{ [\boldsymbol{e}_1]_{\mathcal{S}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{\mathcal{S}}, [\boldsymbol{e}_2]_{\mathcal{S}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{\mathcal{S}} \Big\}, \quad \mathcal{U} = \Big\{ [\boldsymbol{u}_1]_{\mathcal{S}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\mathcal{S}}, [\boldsymbol{u}_2]_{\mathcal{S}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}_{\mathcal{S}} \Big\}.$$

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by

$$[T(\boldsymbol{u}_1)]_{\mathcal{S}} = \begin{bmatrix} 1\\ 3 \end{bmatrix}_{\mathcal{S}}, \quad [T(\boldsymbol{u}_2)]_{\mathcal{S}} = \begin{bmatrix} 3\\ 1 \end{bmatrix}_{\mathcal{S}}.$$

Find the matrix $[T]_{\mathcal{US}}$, then the matrix $[T]_{\mathcal{SS}}$, and finally the matrix $[T]_{\mathcal{UU}}$, all matrices associated to the linear transformation above.

2. Let $\mathcal{U} = \{u_1, u_2\}$ be a basis of \mathbb{R}^2 given by

$$u_1 = 2e_1 - 9e_2, \quad u_2 = e_1 + 8e_2,$$

where $S = {\mathbf{e}_1, \mathbf{e}_2}$ is the standard basis of \mathbb{R}^2 .

- (a) Find both change of bases matrices $[I]_{\mathcal{US}}$ and $[I]_{\mathcal{SU}}$.
- (b) Consider the vector $\mathbf{x} = 2\mathbf{u}_1 + \mathbf{u}_2$. Find both $[\mathbf{x}]_S$ and $[\mathbf{x}]_U$, that is, the components of \mathbf{x} in the standard basis and in the \mathcal{U} basis, respectively.
- **3.** Let $\mathcal{B} = \{ \boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3 \}$ and $\mathcal{C} = \{ \boldsymbol{c}_1, \boldsymbol{c}_2, \boldsymbol{c}_3 \}$ be two bases of \mathbb{R}^3 , and suppose that

$$c_1 = b_1 - 2b_2 + b_3$$
, $c_2 = -b_2 + 3b_3$, $c_3 = -2b_1 + b_3$

- (a) Find the change of basis matrices $[I]_{\mathcal{BC}}$ and $[I]_{\mathcal{CB}}$.
- (b) Consider the vector $\mathbf{x} = \mathbf{c}_1 2\mathbf{c}_2 + 2\mathbf{c}_3$. Find both $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$, that is, the components of \mathbf{x} in the bases \mathcal{B} and \mathcal{C} , respectively.
- **4.** Consider the bases \mathcal{U} and \mathcal{S} of \mathbb{R}^2 given by

$$\left\{ [\boldsymbol{u}_1]_{\mathcal{S}} = \begin{bmatrix} 1\\2 \end{bmatrix}_{\mathcal{S}}, [\boldsymbol{u}_2]_{\mathcal{S}} = \begin{bmatrix} 2\\1 \end{bmatrix}_{\mathcal{S}} \right\}, \quad \mathcal{S} = \left\{ [\boldsymbol{e}_1]_{\mathcal{S}} = \begin{bmatrix} 1\\0 \end{bmatrix}_{\mathcal{S}}, [\boldsymbol{e}_2]_{\mathcal{S}} = \begin{bmatrix} 0\\1 \end{bmatrix}_{\mathcal{S}} \right\}.$$

- (a) Given $[\boldsymbol{x}]_{\mathcal{U}} = \begin{bmatrix} 3\\ 2 \end{bmatrix}_{\mathcal{U}}$ find $[\boldsymbol{x}]_{\mathcal{S}}$, that is, the components of the vector \boldsymbol{x} in the standard basis of \mathbb{R}^2
- (b) Find the components of the standard basis in terms of the \mathcal{U} basis, that is, find $[e_1]_{\mathcal{U}}$ and $[e_2]_{\mathcal{U}}$.
- 5. Let $\mathcal{B} = \{\boldsymbol{b}_1, \boldsymbol{b}_2\}$ and $\mathcal{S} = \{\boldsymbol{e}_1, \boldsymbol{e}_2\}$ be two bases of the vector space \mathbb{R}^2 , where \mathcal{S} is the standard basis. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ be the matrix that transforms the components of a vector $\boldsymbol{x} \in \mathbb{R}^2$ from the basis \mathcal{S} into the basis \mathcal{B} , that is, $[\boldsymbol{x}]_{\mathcal{B}} = A[\boldsymbol{x}]_{\mathcal{S}}$. Find the components of the basis vectors $\boldsymbol{b}_1, \boldsymbol{b}_2$ in the standard basis, that is, find $[\boldsymbol{b}_1]_{\mathcal{S}}$ and $[\boldsymbol{b}_2]_{\mathcal{S}}$.
- 6. Let S_3 and S_2 be standard bases of \mathbb{R}^3 and \mathbb{R}^2 , respectively, and consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}_{\mathcal{S}_3}\right) = \begin{bmatrix} x_1 - x_2 + x_3\\x_2 - x_3\end{bmatrix}_{\mathcal{S}_2},$$

and introduce the bases

$$\mathcal{U} = \left\{ [\boldsymbol{u}_1]_{\mathcal{S}_3} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}_{\mathcal{S}_3}, [\boldsymbol{u}_2]_{\mathcal{S}_3} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}_{\mathcal{S}_3}, [\boldsymbol{u}_3]_{\mathcal{S}_3} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}_{\mathcal{S}_3} \right\} \subset \mathbb{R}^3,$$
$$\mathcal{V} = \left\{ [\boldsymbol{v}_1]_{\mathcal{S}_2} = \begin{bmatrix} 1\\2 \end{bmatrix}_{\mathcal{S}_2}, [\boldsymbol{v}_2]_{\mathcal{S}_2} = \begin{bmatrix} 2\\1 \end{bmatrix}_{\mathcal{S}_2} \right\} \subset \mathbb{R}^2.$$

Find the matrices $[T]_{S_3S_2}$ and $[T]_{UV}$.

6. INNER PRODUCT

- **1.** Let V be an inner product space, with inner product \langle , \rangle , and let $x, y \in V$. Show that x y is orthogonal to x + y iff ||x|| = ||y||.
- **2.** Consider the subspace $W = \text{Span}\left\{u_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}, u_2 = \begin{bmatrix} 2\\-1\\3 \end{bmatrix}\right\}$ of \mathbb{R}^3 .
 - (a) Find an orthogonal decomposition of the vector u_2 with respect to the vector u_1 . Using this decomposition, find an orthogonal basis for the space W.
 - (b) Find the decomposition of the vector $\boldsymbol{y} = \begin{bmatrix} 4\\ 3\\ 0 \end{bmatrix}$ in orthogonal components with respect to the subspace W.
 - (c) Find the vector in W which is the closest vector to y.

3. Find all vectors in
$$\mathbb{R}^4$$
 perpendicular to both $\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 4 \\ 4 \\ 1 \end{bmatrix}$ and $\boldsymbol{v}_2 = \begin{bmatrix} 2 \\ 9 \\ 8 \\ 2 \end{bmatrix}$.

4. Consider the matrix $A = \begin{bmatrix} 2 & 2 \\ 0 & -1 \\ -2 & 0 \end{bmatrix}$ and the vector $\boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$.

- (a) Find the best approximation (least-squares) solution \hat{x} to the matrix equation Ax = b.
- (b) Find the orthogonal projection of the source vector \boldsymbol{b} onto the subspace $\operatorname{Col}(A)$, the column space of A.

- **5.** Given the matrix $A = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 2 & 0 \\ 1 & 0 & -1 \end{bmatrix}$, which has linearly independent column vectors, find an ortho**normal** basis for the space Col(A), the column space of A, using the Gram-Schmidt process starting with the first column vector.
- **6.** Consider the subspace $W \subset \mathbb{R}^3$ given by $W = \text{Span}\left\{ \begin{vmatrix} 1 \\ -1 \\ 2 \end{vmatrix} \right\}$
 - (a) Find a basis for the space W^{\perp} , that is, find a basis for the orthogonal complement of the space W.
 - (b) Use the result in part (6a) to find an orthogonal basis for the same space W^{\perp} .

7. Consider the subspace $W \subset \mathbb{R}^3$ given by $W = \text{Span}\left\{ \begin{bmatrix} 1\\ 1\\ -2 \end{bmatrix} \right\}$.

- (a) Find a basis for the space W^{\perp} , that is, find a basis for the orthogonal complement of the space W.
- (b) Use the result in part (7a) to find an orthogonal basis for the same space W^{\perp} .

8. Given the matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 2 & 0 \end{bmatrix}$, find a basis for the space $\operatorname{Col}(A)^{\perp}$, the orthogonal complement of the column space of A.

- **9.** Consider the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ -2 & 0 \end{bmatrix}$ and the vector $\boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$
 - (a) Find the best approximation (least-squares) solution \hat{x} to the matrix equation Ax = b.
 - (b) Verify that the vector $A\hat{x} b$, where \hat{x} is the least-squares solution found in part (9a), belongs to the space $\operatorname{Col}(A)^{\perp}$, the orthogonal complement of the column space of A.
- **10.** Let V be a vector space with inner product \langle , \rangle , and associated norm || ||. Let $\boldsymbol{x}, \boldsymbol{y} \in V$, where \boldsymbol{x} is an eigenvector of a matrix A with eigenvalue 2, and \boldsymbol{y} is another eigenvector with eigenvalue -3. Assume that $||\boldsymbol{x}|| = 1/3$, $||\boldsymbol{y}|| = 1$ and $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$.
 - (a) Compute $\|\boldsymbol{v}\|$ for $\boldsymbol{v} = 3\boldsymbol{x} \boldsymbol{y}$.
 - (b) Compute ||Av|| for the v given above.
- 11. (a) Find a basis for both the null space and the column space of A, where

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -2 & 1 & -4 \\ 0 & 1 & 2 \end{bmatrix}.$$

- (b) Find $\operatorname{Col}(A)^{\perp}$.
- (c) Find an orthogonal basis for the column space of A.
- 12. Find an orthonormal basis for the subspace of \mathbb{R}^3 spanned by the vectors

$$\left\{ \boldsymbol{u}_1 = \begin{bmatrix} -2\\ 2\\ -1 \end{bmatrix}, \boldsymbol{u}_2 = \begin{bmatrix} 1\\ -3\\ 1 \end{bmatrix} \right\},$$

using the Gram-Schmidt process starting with the vector u_1 .

13. Consider the subspace $W \subset \mathbb{R}^3$ given by

$$W = \operatorname{Span}\left\{ \boldsymbol{u}_1 = \begin{bmatrix} 0\\2\\0 \end{bmatrix}, \, \boldsymbol{u}_2 = \begin{bmatrix} 3\\1\\4 \end{bmatrix}
ight\}.$$

(a) Find an ortho**normal** basis of W using the Gram-Schmidt process starting with the vector u_1 . Show your work.

(b) Decompose the vector $\boldsymbol{x} = \begin{bmatrix} 5\\1\\0 \end{bmatrix}$ as follows, $\boldsymbol{x} = \hat{\boldsymbol{x}} + \boldsymbol{x}'$, with $\hat{\boldsymbol{x}} \in W$ and \boldsymbol{x}' perpendicular to any vector in W. Show your work.

14. Find the third column in matrix Q below such that $Q^T = Q^{-1}$, where

$$Q = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{14} & Q_{13} \\ 1/\sqrt{3} & 2/\sqrt{14} & Q_{23} \\ 1/\sqrt{3} & -3/\sqrt{14} & Q_{33} \end{bmatrix}$$

- 15. (a) If Q_1 and Q_2 are orthogonal matrices, that is, each matrix satisfies $Q^T = Q^{-1}$, then show that Q_1Q_2 is also orthogonal.
 - (b) If Q_1 is a counterclockwise rotation of an angle θ and Q_2 is a counterclockwise rotation by an angle ϕ , what is Q_1Q_2 ?
- **16.** If the vectors $q_1, q_2 \in \mathbb{R}^n$ form an orthonormal set, what combination of them is the closest to a vector $b \in \mathbb{R}^n$? Verify that the error is orthogonal to q_1 and q_2 .
- **17.** Find the QR factorization of matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

18. Use Gram-Schmidt method on the columns of matrix A to find its QR factorization, where

$$A = \begin{bmatrix} 1 & 1\\ 2 & 3\\ 2 & 1 \end{bmatrix}.$$

7. Eigenvalues and Eigenvectors

- **1.** (a) Find all the eigenvalues and eigenvectors of the matrix, $A = \begin{bmatrix} 5 & -6 \\ 2 & -2 \end{bmatrix}$. (b) Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.
- 2. (a) Find all the eigenvalues and their corresponding algebraic multiplicities of the matrix

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & h \\ 0 & 0 & 2 \end{bmatrix}.$$

- (b) Find the value(s) of the real number h such that the matrix A above has a two-dimensional eigenspace, and find a basis for this eigenspace.
- (c) Set h = 1, and find a basis for all the eigenspaces of matrix A above.

8

- **3.** Let A be a 4×4 matrix that can be decomposed as $A = PDP^{-1}$, with P an invertible matrix and the matrix $D = \text{diag}(2, \frac{1}{4}, 2, 3)$. Knowing only this information about the matrix A, is it possible to compute the det(A)? If your answer is **no**, explain why not; if your answer is **yes**, compute det(A) and show your work.
- 4. Let A be a 4×4 matrix that can be decomposed as $A = PDP^{-1}$, with P an invertible matrix and the matrix D = diag(2, 0, 2, 5). Knowing only this information about the matrix A, is it possible to whether A invertible? Is it possible to know tr (A)? If your answer is **no**, explain why not; if your answer is **yes**, compute det(A) and show your work.
- 5. Comparing the characteristic polynomials for A and A^T , show that these two matrices have the same eigenvalues.
- **6.** Which of the following matrices cannot be diagonalized?

$$A_1 = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 2 & 0 \\ 2 & -2 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$$

- 7. (a) Find all the eigenvalues with their corresponding algebraic multiplicities, and find all the associated eigenspaces of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$.
 - (b) Is matrix A diagonalizable? If your answer is **yes**, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. If your answer is **no**, explain why.
- **8.** Let A be a 3×3 matrix with eigenvalues 2, -1 and 3.
 - (a) Find the eigenvalues of A^{-1} .
 - (b) Find the determinant of A.
 - (c) Find the determinant of A^{-1} .
 - (d) Find the eigenvalues of $A^2 A$.
- **9.** Let k be any number, and consider the matrix A given by

$$A = \begin{vmatrix} 2 & -2 & 4 & -1 \\ 0 & 3 & k & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 1 \end{vmatrix}.$$

- (a) Find the eigenvalues of A, and their corresponding multiplicity. Show your work.
- (b) Find the number k such that there exists an eigenspace $E_A(\lambda)$ that is two dimensional, and find a basis for this $E_A(\lambda)$. The notation $E_A(\lambda)$ means the eigenspace corresponding to the eigenvalue λ of matrix A. Show your work.

10. (a) Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Show your work.

- (b) Find matrices P and D such that $A = PDP^{-1}$, where P is invertible an D diagonal. Show your work.
- (c) Compute A^5 .
- 11. If A is diagonalizable, show that det(A) is the product of its eigenvalues.
- 12. Suppose that a 3×3 matrix A has eigenvalues 1, 2, 4. What is the trace of A? What is the trace of A^2 ? What is det $[(A^{-1})^T]$?