

- Review: Inner product \rightarrow Norm \rightarrow Distance.
- Slide 1
- Orthogonal vectors and subspaces.
- Orthogonal projections.
- Orthogonal and orthonormal bases.

An inner product fixes the notions of angles, length and distance

(,), must be positive, symmetric and linear, that is,

Slide 2

- 2. (u, v) = (v, u);
- 3. $(a\mathbf{u} + b\mathbf{v}, \mathbf{w}) = a(\mathbf{u}, \mathbf{w}) + b(\mathbf{v}, \mathbf{w}).$

1. $(\mathbf{u}, \mathbf{u}) \ge 0$, and $(\mathbf{u}, \mathbf{u}) = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$;

$$\|\mathbf{u}\| = \sqrt{(\mathbf{u}, \mathbf{u})},$$
$$\operatorname{dist}(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

We transfer the notion of perpendicular vectors from \mathbb{R}^2 , \mathbb{R}^3 to V In $I\!\!R^2$ holds $\mathbf{u} \perp \mathbf{v} \iff$ Pythagoras formula holds, Diagonals of a parallelogram \Leftrightarrow have the same length, **Definition 1** Let V, (,) be an inner product space, then $\mathbf{u}, \mathbf{v} \in V$ are called orthogonal or perpendicular $\Leftrightarrow (\mathbf{u}, \mathbf{v}) = 0.$

Slide 3

Double-check, orthogonal vectors then form a generalized rectangle **Theorem 1** Let V be a vector space and $\mathbf{u}, \mathbf{v} \in V$. Then, $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u} - \mathbf{v}\| \quad \Leftrightarrow \quad (\mathbf{u}, \mathbf{v}) = 0.$ Proof: $\|\mathbf{u} + \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v}) = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2(\mathbf{u}, \mathbf{v}).$ $\|\mathbf{u} - \mathbf{v}\|^2 = (\mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v}) = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2(\mathbf{u}, \mathbf{v}).$ then, $\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2 = 4(\mathbf{u}, \mathbf{v}).$

Slide

 $\mathbf{2}$

Lecture 23

The vectors cos(x), sin(x) which belong to $C([0, 2\pi])$ are orthogonal

Slide 5

$$(\cos(x), \sin(x)) = \int_{0}^{2\pi} \sin(x) \cos(x) dx,$$

$$= \frac{1}{2} \int_{0}^{2\pi} \sin(2x) dx,$$

$$= -\frac{1}{4} \left(\cos(2x) |_{0}^{2\pi} \right),$$

$$= 0.$$

Slide 6 $W \subset V \text{ a subspaces can be orthogonal!}$ $W \subset V \text{ a subspace. Then } W^{\perp} \text{ is the orthogonal subspace,}$ given by $W^{\perp} = \{ \mathbf{v} \in V : (\mathbf{v}, \mathbf{u}) = 0, \text{ for all } \mathbf{u} \in W \}.$

	Orthogonal projection of a vector along any other vector is always possible			
	Fix V , $(,)$, and $\mathbf{u} \in V$, with $\mathbf{u} \neq 0$.			
Slide 7	Can any vector $\mathbf{x} \in V$ be decomposed in orthogonal parts with respect to \mathbf{u} ?			
	That is, $\mathbf{x} = a\mathbf{u} + \mathbf{x}'$ with $(\mathbf{u}, \mathbf{x}') = 0$?			
	Is this decomposition unique?			
	Answer: Yes.			

Here is how to compute a and \mathbf{x}'

Theorem 2 V, (,), an inner product vector space, and $\mathbf{u} \in V$, with $\mathbf{u} \neq \mathbf{0}$. Then, any vector $\mathbf{x} \in V$ can be uniquely decomposed as

Slide 8

$$\mathbf{x} = a\mathbf{u} + \mathbf{x}', \quad where \quad a = \frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^2}.$$

Therefore,

$$\mathbf{x}' = \mathbf{x} - \frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^2} \mathbf{u}, \quad \Rightarrow (\mathbf{u}, \mathbf{x}') = 0.$$

Math 20F Linear Algebra

Orthogonal projection along a vector

Proof: Introduce \mathbf{x}' by the equation $\mathbf{x} = a\mathbf{u} + \mathbf{x}'$. The condition $(\mathbf{u}, \mathbf{x}') = 0$ implies that

Lecture 23

$$(\mathbf{x}, \mathbf{u}) = a(\mathbf{u}, \mathbf{u}), \quad \Rightarrow \quad a = \frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^2},$$

then

$$\mathbf{x} = \frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^2} \, \mathbf{u} + \mathbf{x}', \quad \Rightarrow \quad \mathbf{x}' = \frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^2} \, \mathbf{u} - \hat{\mathbf{x}}.$$

This decomposition is unique, because, given a second decomposition $\mathbf{x} = b\mathbf{u} + \mathbf{y}'$ with $(\mathbf{u}, \mathbf{y}') = 0$, then

$$a\mathbf{u} + \mathbf{x}' = b\mathbf{u} + \mathbf{y}' \quad \Rightarrow \quad a = b,$$

from a multiplication by $\mathbf{u},$ and then,

 $\mathbf{x}' = \mathbf{y}'.$

ſ		I	
L		I	
-			

Bases can be chose	o be cor	nposed by	y mutually
orthogonal vectors			

Definition 3 Let V, (,) be an n dimensional inner product space, and $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be a basis of V.

Slide 9

The basis is orthogonal \Leftrightarrow $(\mathbf{u}_i, \mathbf{u}_j) = 0$, for all $i \neq j$. The basis is orthonormal \Leftrightarrow it is orthogonal, and $\|\mathbf{u}_i\| = 1$, for all i, where $i, j = 1, \dots, n$. To write x in an orthogonal basis is to decompose x along each basis vector direction

Theorem 3 Let V, (,) be an n dimensional inner product vector space, and $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be an orthogonal basis. Then, any $\mathbf{x} \in V$ can be written as

 $\mathbf{x} = c_1 \mathbf{u}_1 + \dots + c_n \mathbf{u}_n,$

with the coefficients have the form

$$c_i = \frac{(\mathbf{x}, \mathbf{u}_i)}{\|\mathbf{u}_i\|^2}, \quad i = 1, \cdots, n$$

Proof: The set $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is a basis, so there exist coefficients c_i such that $\mathbf{x} = c_1 \mathbf{u}_1 + \dots + c_n \mathbf{u}_n$. The basis is orthogonal, so multiplying the expression of \mathbf{x} by \mathbf{u}_i , and recalling $(\mathbf{u}_i, \mathbf{u}_j) = 0$ for all $i \neq j$, one gets,

$$(\mathbf{x}, \mathbf{u}_i) = c_i(\mathbf{u}_i, \mathbf{u}_i).$$

The \mathbf{u}_i are nonzero, so $(\mathbf{u}_i, \mathbf{u}_i) = \|\mathbf{u}_i\|^2 \neq 0$, so $c_i = (\mathbf{x}, \mathbf{u}_i) / \|\mathbf{u}_i\|^2$.

Slide 10