Orthogonal vectors, spaces and bases

- Review: Inner product \rightarrow Norm \rightarrow Distance.

Slide 1

- Orthogonal vectors and subspaces.
- Orthogonal projections.
- Orthogonal and orthonormal bases.

An inner product fixes the notions of angles, length and distance
(,), must be positive, symmetric and linear, that is,

1. $(\mathbf{u}, \mathbf{u}) \geq 0$, and $(\mathbf{u}, \mathbf{u})=0 \Leftrightarrow \mathbf{u}=\mathbf{0}$;

Slide 2
2. $(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u})$;
3. $(a \mathbf{u}+b \mathbf{v}, \mathbf{w})=a(\mathbf{u}, \mathbf{w})+b(\mathbf{v}, \mathbf{w})$.

$$
\begin{gathered}
\|\mathbf{u}\|=\sqrt{(\mathbf{u}, \mathbf{u})} \\
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
\end{gathered}
$$

We transfer the notion of perpendicular vectors from $\mathbb{R}^{2}, \mathbb{R}^{3}$ to V

In \mathbb{R}^{2} holds

$$
\begin{aligned}
\mathbf{u} \perp \mathbf{v} & \Leftrightarrow \text { Pythagoras formula holds, } \\
& \Leftrightarrow \quad \text { Diagonals of a parallelogram } \\
& \text { have the same length, }
\end{aligned}
$$

Definition 1 Let V, (,) be an inner product space, then $\mathbf{u}, \mathbf{v} \in V$ are called orthogonal or perpendicular $\Leftrightarrow(\mathbf{u}, \mathbf{v})=0$.

Double-check, orthogonal vectors then form a generalized rectangle

Theorem 1 Let V be a vector space and $\mathbf{u}, \mathbf{v} \in V$.
Then,

$$
\|\mathbf{u}+\mathbf{v}\|=\|\mathbf{u}-\mathbf{v}\| \quad \Leftrightarrow \quad(\mathbf{u}, \mathbf{v})=0
$$

Slide 4
Proof:

$$
\begin{aligned}
& \|\mathbf{u}+\mathbf{v}\|^{2}=(\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v})=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2(\mathbf{u}, \mathbf{v}) \\
& \|\mathbf{u}-\mathbf{v}\|^{2}=(\mathbf{u}-\mathbf{v}, \mathbf{u}-\mathbf{v})=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2(\mathbf{u}, \mathbf{v})
\end{aligned}
$$

then,

$$
\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}-\mathbf{v}\|^{2}=4(\mathbf{u}, \mathbf{v})
$$

The vectors $\cos (x), \sin (x)$ which belong to $C([0,2 \pi])$ are orthogonal

$$
\begin{aligned}
(\cos (x), \sin (x)) & =\int_{0}^{2 \pi} \sin (x) \cos (x) d x \\
& =\frac{1}{2} \int_{0}^{2 \pi} \sin (2 x) d x \\
& =-\frac{1}{4}\left(\left.\cos (2 x)\right|_{0} ^{2 \pi}\right) \\
& =0
\end{aligned}
$$

Even subspaces can be orthogonal!
Definition 2 Let V, (,) an inner product space and
Slide 6 $W \subset V$ a subspace. Then W^{\perp} is the orthogonal subspace, given by

$$
W^{\perp}=\{\mathbf{v} \in V:(\mathbf{v}, \mathbf{u})=0, \quad \text { for all } \mathbf{u} \in W\}
$$

Orthogonal projection of a vector along any other vector is always possible

Fix $V,($,$) , and \mathbf{u} \in V$, with $\mathbf{u} \neq \mathbf{0}$.
Slide $7 \quad$ Can any vector $\mathbf{x} \in V$ be decomposed in orthogonal parts with respect to \mathbf{u} ?
That is, $\mathbf{x}=a \mathbf{u}+\mathbf{x}^{\prime}$ with $\left(\mathbf{u}, \mathbf{x}^{\prime}\right)=0$?
Is this decomposition unique?
Answer: Yes.

Here is how to compute a and x^{\prime}
Theorem $2 V,($,$) , an inner product vector space, and$ $\mathbf{u} \in V$, with $\mathbf{u} \neq \mathbf{0}$. Then, any vector $\mathbf{x} \in V$ can be uniquely decomposed as
Slide 8

$$
\mathbf{x}=a \mathbf{u}+\mathbf{x}^{\prime}, \quad \text { where } \quad a=\frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^{2}}
$$

Therefore,

$$
\mathbf{x}^{\prime}=\mathbf{x}-\frac{(\mathrm{x}, \mathbf{u})}{\|\mathbf{u}\|^{2}} \mathbf{u}, \quad \Rightarrow\left(\mathbf{u}, \mathbf{x}^{\prime}\right)=0
$$

Orthogonal projection along a vector

Proof: Introduce \mathbf{x}^{\prime} by the equation $\mathbf{x}=a \mathbf{u}+\mathbf{x}^{\prime}$. The condition ($\left.\mathbf{u}, \mathbf{x}^{\prime}\right)=0$ implies that

$$
(\mathbf{x}, \mathbf{u})=a(\mathbf{u}, \mathbf{u}), \quad \Rightarrow \quad a=\frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^{2}}
$$

then

$$
\mathbf{x}=\frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^{2}} \mathbf{u}+\mathbf{x}^{\prime}, \quad \Rightarrow \quad \mathbf{x}^{\prime}=\frac{(\mathbf{x}, \mathbf{u})}{\|\mathbf{u}\|^{2}} \mathbf{u}-\hat{\mathbf{x}}
$$

This decomposition is unique, because, given a second decomposition $\mathbf{x}=b \mathbf{u}+\mathbf{y}^{\prime}$ with $\left(\mathbf{u}, \mathbf{y}^{\prime}\right)=0$, then

$$
a \mathbf{u}+\mathbf{x}^{\prime}=b \mathbf{u}+\mathbf{y}^{\prime} \quad \Rightarrow \quad a=b
$$

from a multiplication by \mathbf{u}, and then,

$$
\mathrm{x}^{\prime}=\mathrm{y}^{\prime}
$$

Bases can be chose to be composed by mutually orthogonal vectors

Definition 3 Let V, (,) be an n dimensional inner

Slide 9

 product space, and $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ be a basis of V.The basis is orthogonal $\Leftrightarrow\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)=0$, for all $i \neq j$.
The basis is orthonormal \Leftrightarrow it is orthogonal, and $\left\|\mathbf{u}_{i}\right\|=1$, for all i,
where $i, j=1, \cdots, n$.

To write x in an orthogonal basis is to decompose x along each basis vector direction

Theorem 3 Let V, (,) be an n dimensional inner product vector space, and $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ be an orthogonal
Slide 10 basis. Then, any $\mathbf{x} \in V$ can be written as

$$
\mathbf{x}=c_{1} \mathbf{u}_{1}+\cdots+c_{n} \mathbf{u}_{n}
$$

with the coefficients have the form

$$
c_{i}=\frac{\left(\mathbf{x}, \mathbf{u}_{i}\right)}{\left\|\mathbf{u}_{i}\right\|^{2}}, \quad i=1, \cdots, n
$$

Proof: The set $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ is a basis, so there exist coefficients c_{i} such that $\mathbf{x}=$ $c_{1} \mathbf{u}_{1}+\cdots+c_{n} \mathbf{u}_{n}$. The basis is orthogonal, so multiplying the expression of \mathbf{x} by \mathbf{u}_{i}, and recalling $\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)=0$ for all $i \neq j$, one gets,

$$
\left(\mathbf{x}, \mathbf{u}_{i}\right)=c_{i}\left(\mathbf{u}_{i}, \mathbf{u}_{i}\right) .
$$

The \mathbf{u}_{i} are nonzero, so $\left(\mathbf{u}_{i}, \mathbf{u}_{i}\right)=\left\|\mathbf{u}_{i}\right\|^{2} \neq 0$, so $c_{i}=\left(\mathbf{x}, \mathbf{u}_{i}\right) /\left\|\mathbf{u}_{i}\right\|^{2}$.

