On determinants and eigenvalues

- Review: eigenvalues and eigenvectors.

Slide 1

- Eigenspaces.
- Characteristic equation.
- Multiplicity of eigenvalues.

The eigenvectors of a matrix determine directions where the action of the matrix is simple

Slide 2
A is an $n \times n$ matrix. Then λ is an eigenvalue of A with eigenvector $\mathbf{x} \neq 0 \Leftrightarrow A \mathbf{x}=\lambda \mathbf{x}$.

Simple means $A \mathbf{x}$ is proportional to \mathbf{x}.
A matrix may or may not have eigenvalues and eigenvectors.
A is invertible $\Leftrightarrow \lambda=0$ is not an eigenvalue of A.

Examples of eigenvalues and eigenvectors

- The matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ has eigenvectors and eigenvalues

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \lambda_{1}=4, \quad \mathbf{u}_{1}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \lambda_{2}=-2 .
$$

- The matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$ has eigenvectors and eigenvalues

$$
\mathbf{u}_{1}=\left[\begin{array}{r}
-2 \\
1
\end{array}\right], \lambda_{1}=0, \quad \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \lambda_{2}=7 .
$$

Eigenspaces are the subspaces spanned by the eigenvectors

Definition 1 Let λ be an eigenvalue of A. The eigenspace $E_{A}(\lambda)$ is the set of all vectors \mathbf{x} solutions of
Slide 4 $A \mathrm{x}=\lambda \mathrm{x}$.

Theorem 1 If λ is an eigenvector of an $n \times n$ matrix A, then the set $E_{A}(\lambda) \subset \mathbb{R}^{n}$ is a subspace.

Eigenspaces are lines, planes, or hyperplanes through the origin

Here are the eigenspaces of the previous examples

The matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ has eigenvectors $\lambda_{1}=4$ and
Slide $5 \quad \lambda_{2}=-2$. The corresponding eigenspaces are

$$
\begin{aligned}
E(4) & =\left\{\mathbf{x}=t\left[\begin{array}{l}
1 \\
1
\end{array}\right], t \in \mathbb{R}\right\}, \\
E(-2) & =\left\{\mathbf{x}=t\left[\begin{array}{r}
1 \\
-1
\end{array}\right], t \in \mathbb{R}\right\} .
\end{aligned}
$$

Here are the eigenspaces of the previous examples

The matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$ has eigenvectors $\lambda_{1}=0$ and
Slide $6 \quad \lambda_{2}=7$. The corresponding eigenspaces are

$$
\begin{aligned}
& E(0)=\left\{\mathbf{x}=t\left[\begin{array}{r}
-2 \\
1
\end{array}\right], t \in \mathbb{R}\right\}, \\
& E(7)=\left\{\mathbf{x}=t\left[\begin{array}{l}
1 \\
3
\end{array}\right], t \in \mathbb{R}\right\} .
\end{aligned}
$$

Solving the characteristic equation one finds first the λ 's

Theorem 2λ is an eigenvalue of $A \Leftrightarrow \operatorname{det}(A-\lambda I)=0$.
Slide 7
Definition 2 Given an $n \times n$ matrix A, the function $f(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic function of A.

The characteristic function of $A, n \times n$ is a polynomial in λ of degree n.

The multiplicity of eigenvalues is a way to count for repeated eigenvalues

Slide 8 Definition 3 Let $f(\lambda)$ be the characteristic polynomial of an $n \times n$ matrix. The eigenvalue λ_{0} has algebraic multiplicity $r>0 \Leftrightarrow$

$$
f(\lambda)=\left(\lambda-\lambda_{0}\right)^{r} g(\lambda), \quad \text { with } \quad g\left(\lambda_{0}\right) \neq 0
$$

Eigenvalue with multiplicity 2
The eigenvalues of $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$. are given by
Slide 9

$$
\left|\begin{array}{cc}
2-\lambda & 3 \\
0 & 2-\lambda
\end{array}\right|=(2-\lambda)^{2}=0,
$$

that is, $\lambda=2$, which has multiplicity 2 .

More examples of eigenvalues various multiplicities

Find the eigenvalues and eigenspaces of the following matrices:

$$
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

The both matrices have the same eigenvalues, because,

$$
f_{A}(\lambda)=f_{B}(\lambda)=(\lambda-3)^{2}(1-\lambda)
$$

so the eigenvalues are:
$\lambda=3$ with multiplicity 2 ; and $\lambda=1$ with multiplicity 1.

Once the eigenvalues are know, the eigenvectors can be easily computed

Slide 11 If the eigenvalues λ are known, then the eigenvector \mathbf{x}_{λ} is solution of the homogeneous equation

$$
(A-\lambda I) \mathbf{x}_{\lambda}=0 .
$$

Here are the eigenvectors of the previous example

The eigenspaces of the matrix $B=\left[\begin{array}{ccc}3 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1\end{array}\right]$. are

$$
E_{B}(3)=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}, \quad E_{B}(1)=\left\{\left[\begin{array}{r}
1 \\
2 \\
-2
\end{array}\right]\right\}
$$

$\operatorname{dim} E_{B}(\lambda)=$ multipl. (λ) for every eigenvalue of B, the set of all eigenvectors of B is a basis of \mathbb{R}^{3}.

Here are the eigenvectors of the previous example

The eigenspaces of the matrix $A=\left[\begin{array}{lll}3 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1\end{array}\right]$ are

$$
E_{A}(3)=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}, \quad E_{A}(1)=\left\{\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

In the case of A, where for $\lambda=3$ holds that $\operatorname{dim} E_{A}(3)<$ multipl.(3), the set of eigenvectors of A is not a basis of \mathbb{R}^{3}.

In general $\operatorname{dim} E(\lambda) \leq$ multipl. (λ)

