Linear Transformations

- Domain, range, and null spaces.

Slide 1

- Injective and surjective transformations.
- Bijections and the inverse.
- Nullity + Rank Theorem.
- Components in a basis: Matrices.

Linear transformations are linear functions
Definition 1 Let V, W be vector spaces. A function $T: V \rightarrow W$ is said to be a linear transformation if

Slide 2

$$
T(a \mathbf{u}+b \mathbf{v})=a T(\mathbf{u})+b T(\mathbf{v})
$$

for all $\mathbf{u}, \mathbf{v} \in V$ and all $a, b \in \mathbb{R}$.

Linear transformations are also called linear functions, linear mappings, or linear operators.

Examples of linear transformations

- The identity transformation, that is $T: V \rightarrow V$, given

Slide 3 by $T(\mathbf{v})=\mathbf{v}$.

- A stretching by $a \in \mathbb{R}$, that is, $T: V \rightarrow V$, given by $T(\mathbf{v})=a \mathbf{v}$.
- A projection, that is $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}$.

The derivative is a linear transformation between infinite dimensional vector spaces!

Slide 4
Let V be the space of differentiable functions on $(0,1)$.
Let W be the space of continuous functions on $(0,1)$.
Then, $T: V \rightarrow W$ given by $T(f)=f^{\prime}$ is a linear transformation.

The indefinite integral is a linear transformation between infinite dimensional vector spaces

Slide 5
Let V be the space of differentiable functions on $(0,1)$.
Let W be the space of continuous functions on $(0,1)$.
Then, $T: W \rightarrow V$ given by $T(f)=\int f(x) d x$ is a linear transformation.

The domain of T is the set where the function is defined

Slide 6
Definition 2 The domain of T is denoted as $\mathcal{D}(T)$ and given by

$$
\mathcal{D}(T)=\{\mathbf{v} \in V \mid T(\mathbf{v}) \text { is well defined. }\} \subset V .
$$

We will study transformations such that $\mathcal{D}(T)=V$.

The range of T is the set generated by T

Definition 3 The range of T is denoted as $\mathcal{R}(T)$ and
Slide 7 given by

$$
\mathcal{R}(T)=\{\mathbf{w} \in W \mid \mathbf{w}=T(\mathbf{v}) \text { for some } \mathbf{v} \in V\} \subset W
$$

In general $\mathcal{R}(T)$ is not equal to W.

The null set of T is the set of zeros of T

Slide $8 \quad$ Definition 4 The null set of T is denoted as $\mathcal{N}(T)$ and given by

$$
\mathcal{N}(T)=\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0} .\} \subset V
$$

Injective, surjective, and bijective transformations

Definition 5 Let $T: V \rightarrow W$ be a linear transformation. It is said to be
Slide 9

- injective (or one-to-one) if for all $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$ holds

$$
\mathbf{v}_{1} \neq \mathbf{v}_{2} \quad \Rightarrow \quad T\left(\mathbf{v}_{1}\right) \neq T\left(\mathbf{v}_{2}\right) ;
$$

- surjective (or onto) if $\mathcal{R}(T)=W$;
- bijective if it is both injective and surjective.

The null and range sets of a linear transformation are indeed subspaces

Theorem 1 If $T: V \rightarrow W$ is a linear transformation,
Slide 10 then $\mathcal{N}(T)$ and $\mathcal{R}(T)$ are subspaces of V and W, respectively.

Theorem 2 Let $T: V \rightarrow W$ be a linear transformation. T is injective $\Leftrightarrow \mathcal{N}(T)=\{\mathbf{0}\}$.

Rank and nullity are the dimensions of $\mathcal{N}(T)$ and $\mathcal{R}(T)$

Slide 11
Definition 6 Let $T: V \rightarrow W$ be a linear transformation. The dimensions of $\mathcal{N}(T)$ and $\mathcal{R}(T)$ are said to be the nullity and rank of T, respectively, that is,

$$
\operatorname{rank}(T)=\operatorname{dim} \mathcal{R}(T), \quad \operatorname{null}(T)=\operatorname{dim} \mathcal{N}(T)
$$

The fundamental theorem of Linear Algebra relates the dimensions of $\mathcal{N}(T), \mathcal{R}(T)$ and V

Slide 12
Theorem 3 Let $T: V \rightarrow W$ be a linear transformation. If V is finite dimensional, then $\mathcal{R}(T)$ is also finite dimensional and the following relation holds,

$$
\operatorname{dim} \mathcal{N}(T)+\operatorname{dim} \mathcal{R}(T)=\operatorname{dim} V
$$

Proof of Theorem 3: Let $n=\operatorname{dim} V$ and let $S=\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{k}\right\}$ be a basis for $N(T)$, so we say that the nullity is some number $k \geq 0$. Because $N(T)$ is contained in V one knows that $k \leq n$. Let us add l.i. vectors to S to complete a basis of V, say, $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{k}, \mathbf{e}_{k+1}, \cdots, \mathbf{e}_{k+r}\right\}$ for some number $r \geq 0$ such that $k+r=n$. We shall prove that $\left\{T\left(\mathbf{e}_{k+1}\right), \cdots, T\left(\mathbf{e}_{k+r}\right)\right\}$ is a basis for $T(V)$, and then $r=\operatorname{dim} T(V)$. This relation proves Theorem 3 .

The elements $\left\{T\left(\mathbf{e}_{k+1}\right), \cdots, T\left(\mathbf{e}_{k+r}\right)\right\}$ are a basis of $T(V)$ because they span $T(V)$ and they are l.i.. They span $T(V)$ because for every $\mathbf{w} \in T(V)$ we know that there exists $\mathbf{v} \in V$ such that $\mathbf{w}=T(\mathbf{v})$. If we write $\mathbf{v}=\sum_{i=1}^{n} v_{i} \mathbf{e}_{i}$, then we have

$$
\mathbf{w}=T\left(\sum_{i=0}^{n} \mathbf{e}_{i}\right)=\sum_{i=0}^{n} a_{i} T\left(\mathbf{e}_{i}\right)=\sum_{i=k+1}^{k+r} a_{i} T\left(\mathbf{e}_{i}\right)
$$

then the $\left\{T\left(\mathbf{e}_{k+1}\right), \cdots, T\left(\mathbf{e}_{k+r}\right)\right\}$ span $T(V)$.
These vectors are also l.i., by the following argument. Suppose there are scalars c_{k+1}, \cdots, c_{k+r} such that

$$
\sum_{i=k+1}^{k+r} c_{i} T\left(\mathbf{e}_{i}\right)=0
$$

Then, this implies

$$
T\left(\sum_{i=k+1}^{k+r} c_{i} \mathbf{e}_{i}\right)=0
$$

so the vector $\mathbf{u}=\sum_{i=k+1}^{k+r} c_{i} T\left(\mathbf{e}_{i}\right)$ belongs to $N(T)$. But if \mathbf{u} belongs to $N(T)$, then it must be written also as a linear combination of the elements of the base of $N(T)$, namely, the vectors $\mathbf{e}_{1}, \cdots, \mathbf{e}_{k}$, so there exists constants c_{1}, \cdots, c_{k} such that

$$
\mathbf{u}=\sum_{i=1}^{k} c_{i} \mathbf{e}_{i}
$$

Then, we can construct the linear combination

$$
\mathbf{0}=\mathbf{u}-\mathbf{u}=\sum_{i=1}^{k} c_{i} \mathbf{e}_{i}-\sum_{i=k+1}^{k+r} c_{i} \mathbf{e}_{i}
$$

Because the set $\left\{\mathbf{e}_{1} \cdots, \mathbf{e}_{k+r}\right\}$ is a basis o V we have that all the c_{i} with $1 \leq i \leq k+r$ must vanish. Then, the vectors $\left\{T\left(\mathbf{e}_{k+1}\right), \cdots, T\left(\mathbf{e}_{k+r}\right)\right\}$ are l.i.. Therefore they are a basis of $T(V)$, and then the dimension of $\operatorname{dim} T(V)=r$. This proves the Theorem.

Matrices are the components of a linear

 transformation in a basisDefinition 7 Let $T: V \rightarrow W$ be a linear transformation, where $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$. Let $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ be a basis of V. Then, T has an associated $m \times n$ matrix A

$$
A=\left[T\left(\mathbf{v}_{1}\right), \cdots, T\left(\mathbf{v}_{n}\right)\right] .
$$

If A is the matrix associated to a linear transformation T, then $T(\mathbf{x})=A \mathbf{x}$.

It also holds that $\mathcal{N}(T)=N(A)$ and $\mathcal{R}(T)=\operatorname{Col}(A)$.

Here is how to compute the matrix of a linear transformation

Find the matrix associated to $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, and to the
Slide 14 standard bases in \mathbb{R}^{2} and in \mathbb{R}^{3}, where

$$
T\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
x_{1}+3 x_{2} \\
-x_{1}+x_{2} \\
x_{2}
\end{array}\right)
$$

The standard bases are

$$
\begin{gathered}
\left\{\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} \subset \mathbb{R}^{2} \\
\left\{\mathbf{E}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{E}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{E}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \subset \mathbb{R}^{3}
\end{gathered}
$$

The associated the matrix $A=\left[T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right)\right]$ given by

$$
A=\left[\begin{array}{rr}
1 & 3 \\
-1 & 1 \\
0 & 1
\end{array}\right], \quad T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
3 \\
1 \\
1
\end{array}\right]
$$

The Nullity + Rank theorem can be written in terms of the null and column spaces of a matrix

Slide 16 Theorem 4 Let A be an $m \times n$ matrix. Then, the following relation holds,

$$
\operatorname{dim} N(A)+\operatorname{dim} \operatorname{Col}(A)=n .
$$

