

- Slide 1
- Bijections and the inverse.
- Nullity + Rank Theorem.
- Components in a basis: Matrices.

Definition 1 Let V, W be vector spaces. A function $T: V \to W$ is said to be a linear transformation if

Slide 2

 $T(a\mathbf{u} + b\mathbf{v}) = a T(\mathbf{u}) + b T(\mathbf{v})$

for all $\mathbf{u}, \mathbf{v} \in V$ and all $a, b \in \mathbb{R}$.

Linear transformations are also called linear functions, linear mappings, or linear operators.

Slide 4 The derivative is a linear transformation between infinite dimensional vector spaces! Let V be the space of differentiable functions on (0, 1). Let W be the space of continuous functions on (0, 1). Then, $T: V \to W$ given by T(f) = f' is a linear transformation. Slide 5 The indefinite integral is a linear transformation between infinite dimensional vector spaces Let V be the space of differentiable functions on (0, 1). Let W be the space of continuous functions on (0, 1). Then, $T: W \to V$ given by $T(f) = \int f(x) dx$ is a linear transformation.

Slide 7

The range of T is the set generated by T

Definition 3 The range of T is denoted as $\mathcal{R}(T)$ and given by

 $\mathcal{R}(T) = \{ \mathbf{w} \in W \mid \mathbf{w} = T(\mathbf{v}) \text{ for some } \mathbf{v} \in V \} \subset W.$

In general $\mathcal{R}(T)$ is not equal to W.

Slide 8 The null set of T is the set of zeros of T $\mathcal{N}(T) = \{\mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}.\} \subset V.$ Injective, surjective, and bijective transformations Definition 5 Let $T: V \to W$ be a linear transformation. It is said to be

Slide 9

• injective (or one-to-one) if for all $\mathbf{v}_1, \mathbf{v}_2 \in V$ holds

 $\mathbf{v}_1 \neq \mathbf{v}_2 \quad \Rightarrow \quad T(\mathbf{v}_1) \neq T(\mathbf{v}_2);$

- surjective (or onto) if $\mathcal{R}(T) = W$;
- bijective if it is both injective and surjective.

Rank and nullity are the dimensions of $\mathcal{N}(T)$ and $\mathcal{R}(T)$

Slide 11

Definition 6 Let $T: V \to W$ be a linear transformation. The dimensions of $\mathcal{N}(T)$ and $\mathcal{R}(T)$ are said to be the nullity and rank of T, respectively, that is,

 $\operatorname{rank}(T) = \dim \mathcal{R}(T), \quad \operatorname{null}(T) = \dim \mathcal{N}(T).$

The fundamental theorem of Linear Algebra relates the dimensions of $\mathcal{N}(T)$, $\mathcal{R}(T)$ and V

Slide 12

Theorem 3 Let $T: V \to W$ be a linear transformation. If V is finite dimensional, then $\mathcal{R}(T)$ is also finite dimensional and the following relation holds,

 $\dim \mathcal{N}(T) + \dim \mathcal{R}(T) = \dim V.$

Math 20F Linear Algebra

Lecture 15

Proof of Theorem 3: Let $n = \dim V$ and let $S = \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ be a basis for N(T), so we say that the nullity is some number $k \ge 0$. Because N(T) is contained in V one knows that $k \le n$. Let us add l.i. vectors to S to complete a basis of V, say, $\{\mathbf{e}_1, \dots, \mathbf{e}_k, \mathbf{e}_{k+1}, \dots, \mathbf{e}_{k+r}\}$ for some number $r \ge 0$ such that k + r = n. We shall prove that $\{T(\mathbf{e}_{k+1}), \dots, T(\mathbf{e}_{k+r})\}$ is a basis for T(V), and then $r = \dim T(V)$. This relation proves Theorem 3.

The elements $\{T(\mathbf{e}_{k+1}), \dots, T(\mathbf{e}_{k+r})\}$ are a basis of T(V) because they span T(V) and they are l.i.. They span T(V) because for every $\mathbf{w} \in T(V)$ we know that there exists $\mathbf{v} \in V$ such that $\mathbf{w} = T(\mathbf{v})$. If we write $\mathbf{v} = \sum_{i=1}^{n} v_i \mathbf{e}_i$, then we have

$$\mathbf{w} = T\left(\sum_{i=0}^{n} \mathbf{e}_{i}\right) = \sum_{i=0}^{n} a_{i}T(\mathbf{e}_{i}) = \sum_{i=k+1}^{k+r} a_{i}T(\mathbf{e}_{i}),$$

then the $\{T(\mathbf{e}_{k+1}), \cdots, T(\mathbf{e}_{k+r})\}$ span T(V).

These vectors are also l.i., by the following argument. Suppose there are scalars c_{k+1}, \dots, c_{k+r} such that

$$\sum_{i=k+1}^{k+r} c_i T(\mathbf{e}_i) = 0.$$

Then, this implies

$$T\left(\sum_{i=k+1}^{k+r} c_i \mathbf{e}_i\right) = 0,$$

so the vector $\mathbf{u} = \sum_{i=k+1}^{k+r} c_i T(\mathbf{e}_i)$ belongs to N(T). But if \mathbf{u} belongs to N(T), then it must be written also as a linear combination of the elements of the base of N(T), namely, the vectors $\mathbf{e}_1, \dots, \mathbf{e}_k$, so there exists constants c_1, \dots, c_k such that

$$\mathbf{u} = \sum_{i=1}^{k} c_i \mathbf{e}_i$$

Then, we can construct the linear combination

$$\mathbf{0} = \mathbf{u} - \mathbf{u} = \sum_{i=1}^{k} c_i \mathbf{e}_i - \sum_{i=k+1}^{k+r} c_i \mathbf{e}_i.$$

Because the set $\{\mathbf{e}_1 \cdots, \mathbf{e}_{k+r}\}$ is a basis o V we have that all the c_i with $1 \leq i \leq k+r$ must vanish. Then, the vectors $\{T(\mathbf{e}_{k+1}), \cdots, T(\mathbf{e}_{k+r})\}$ are l.i.. Therefore they are a basis of T(V), and then the dimension of dim T(V) = r. This proves the Theorem.

Matrices are the components of a linear transformation in a basis

Definition 7 Let $T: V \to W$ be a linear transformation, where dim V = n and dim W = m. Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis of V. Then, T has an associated $m \times n$ matrix Agiven by

$$A = [T(\mathbf{v}_1), \cdots, T(\mathbf{v}_n)].$$

If A is the matrix associated to a linear transformation T, then $T(\mathbf{x}) = A\mathbf{x}$.

It also holds that $\mathcal{N}(T) = \mathcal{N}(A)$ and $\mathcal{R}(T) = \operatorname{Col}(A)$.

Here is how to compute the matrix of a linear transformation

Find the matrix associated to $T : \mathbb{R}^2 \to \mathbb{R}^3$, and to the standard bases in \mathbb{R}^2 and in \mathbb{R}^3 , where

Slide 14

$$T\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} x_1 + 3x_2\\ -x_1 + x_2\\ x_2 \end{array}\right),$$

Slide 13

Slide 15

Slide 16

The Nullity+Rank theorem can be written in terms of the null and column spaces of a matrix Theorem 4 Let A be an $m \times n$ matrix. Then, the following relation holds, $\dim N(A) + \dim \operatorname{Col}(A) = n.$