Change of basis

Slide 1

- Review: Components of a vector in a basis.
- Change of basis.
- Review: Midterm 1.

Any vector can be decomposed in an unique way in terms of a basis vectors

Theorem 1 Let V be an n-dimensional vector space, and $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ be a basis of V. Then, each vector

Slide 2 $\mathbf{v} \in V$ has a unique decomposition

$$
\begin{aligned}
\mathbf{v} & =c_{1} \mathbf{u}_{1}+\cdots+c_{n} \mathbf{u}_{n} \\
& =\sum_{i=1}^{n} c_{i} \mathbf{u}_{i}
\end{aligned}
$$

The n scalars c_{i} are called components or coordinates of \mathbf{v} with respect to this basis.

Proof: The set $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ is basis of V, so its span is V. Therefore, there exist numbers c_{1}, \cdots, c_{n} such that

$$
\mathbf{v}=c_{1} \mathbf{u}_{1}+\cdots+c_{n} \mathbf{u}_{n}
$$

Is this decomposition unique? Suppose that it is not unique, then there exist another numbers d_{1}, \cdots, d_{n} satisfying

$$
\mathbf{v}=d_{1} \mathbf{u}_{1}+\cdots+d_{n} \mathbf{u}_{n}
$$

Subtract both equations, so one obtains

$$
\mathbf{0}=\left(c_{1}-d_{1}\right) \mathbf{u}_{1}+\cdots+\left(c_{n}-d_{n}\right) \mathbf{u}_{n}
$$

Recalling that $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ is a basis, and so these vectors are l.i., then each coefficient in equation above must vanish. That is, $c_{1}=d_{1}, \cdots, c_{n}=d_{n}$. Therefore, one concludes that the decomposition of \mathbf{v} is unique indeed.

Gauss elimination is the tool to compute components of a vector in a basis

- Find the components of $\mathbf{x}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ in the basis $\left\{\mathbf{u}_{1}=\left[\begin{array}{r}1 \\ -2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
- Find the components of $\mathbf{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ in the basis $\left\{\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]\right\}$.

The example above is a change of basis problem
Consider the basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ given by

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Consider a second basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ given by

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
$$

Find the components of $\mathbf{x}=\mathbf{e}_{1}+2 \mathbf{e}_{2}$ in the basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.

$$
\mathbf{x}=\mathbf{e}_{1}+2 \mathbf{e}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]_{e}, \quad[\mathbf{x}]_{e}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]_{e} .
$$

The vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ form a basis so there exists constants c_{1}, c_{2} such that

$$
\mathbf{x}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}=\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]_{u}, \quad[\mathbf{x}]_{u}=\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]_{e}
$$

Therefore,

$$
[\mathbf{x}]_{e}=c_{1}\left[\mathbf{u}_{1}\right]_{e}+c_{2}\left[\mathbf{u}_{2}\right]_{e}
$$

That is,

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]_{e}=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]_{u}
$$

Then one has to solve the augmented matrix

$$
\left[\begin{array}{rr|r}
1 & 1 & 1 \\
1 & -1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & 0 & \frac{3}{2} \\
0 & 1 & -\frac{1}{2}
\end{array}\right]
$$

so $c_{1}=3 / 2$ and $c_{2}=-1 / 2$, and then

$$
[\mathbf{x}]_{e}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]_{e}, \quad[\mathbf{x}]_{u}=\left[\begin{array}{r}
\frac{3}{2} \\
-\frac{1}{2}
\end{array}\right]_{u} .
$$

The components of a vector change when the basis changes

Theorem 2 (Change of basis) Let $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ and $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ be basis of V. Then, there exists a unique $n \times n$ invertible matrix $P_{v \leftarrow u}$ such that

Slide 5

$$
[\mathbf{x}]_{v}=P_{v \leftarrow u}[\mathbf{x}]_{u},
$$

for all $\mathbf{x} \in V$. Furthermore, the matrix $P_{v \leftarrow u}$ has the form

$$
P_{v \leftarrow u}=\left[\left[\mathbf{u}_{1}\right]_{v}, \cdots,\left[\mathbf{u}_{n}\right]_{v}\right],
$$

and its inverse is given by

$$
\left[P_{v \leftarrow u}\right]^{-1}=P_{u \leftarrow v} .
$$

Proof of Theorem 2: Both sets $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right\}$ and $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ are basis of V, then there exist a unique set of numbers $\left\{u_{1}, \cdots, u_{n}\right\}$ and $\left\{v_{1}, \cdots, v_{n}\right\}$ such that

$$
\mathbf{x}=u_{1} \mathbf{u}_{1}+\cdots+u_{n} \mathbf{u}_{n}=\left[\begin{array}{r}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]_{u}, \quad \mathbf{x}=v_{1} \mathbf{v}_{1}+\cdots+v_{n} \mathbf{v}_{n}=\left[\begin{array}{r}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]_{v} .
$$

Therefore,

$$
\left[\begin{array}{r}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]_{v}=\left[\left[\mathbf{u}_{1}\right]_{v}, \cdots,\left[\mathbf{u}_{n}\right]_{v}\right]\left[\begin{array}{r}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]_{u} .
$$

This system of equations for $\left(u_{1}, \cdots u_{n}\right)$ has a unique solution solutions for all $\left(v_{1}, \cdots v_{n}\right)$, because the \mathbf{u} 's and \mathbf{v} 's are basis. That is, $P_{v \leftarrow u}=\left[\left[\mathbf{u}_{1}\right]_{v}, \cdots,\left[\mathbf{u}_{n}\right]_{v}\right]$ is invertible.

The important thing in a change of basis problem is to write down the matrix $P_{v \leftarrow u}$
(2, Sec. 4.7) Let $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\},\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be basis of \mathbb{R}^{2}. Let $\mathbf{b}_{1}=-\mathbf{c}_{1}+4 \mathbf{c}_{2}$ and $\mathbf{b}_{2}=5 \mathbf{c}_{1}-3 \mathbf{c}_{2}$.
Slide 6

- Find $[\mathbf{x}]_{c}$ for $[\mathbf{x}]_{b}=\left[\begin{array}{l}5 \\ 3\end{array}\right]_{b}$.
- Find $[\mathbf{x}]_{b}$ for $[\mathbf{x}]_{c}=\left[\begin{array}{l}1 \\ 1\end{array}\right]_{c}$.

Polynomials of degree n can be translated into column vectors in \mathbb{R}^{n}

Consider the vector space P_{2}.
Slide 7

- Find the change of coordinate matrix from the basis

$$
b=\left\{1-2 t+t^{2}, 3-5 t+4 t^{2}, 2 t+t^{2}\right\}
$$

to the standard basis $\left\{1, t, t^{2}\right\}$.

- Find the b-coordinates of $\mathbf{x}=1-2 t$.

