Matrix operations

- Review:

Slide 1

- Linear combinations of matrices.
- Multiplication of matrices.
- Gauss elimination using matrix multiplication.
- Inverse matrix.

Matrices are a new type of vectors!
Because we can multiply matrices by a number, and we can add matrices (like column vectors),
Slide 2

$$
\begin{aligned}
&(c A) \mathbf{x}=c(A \mathbf{x}), \quad(A+B) \mathbf{x}=A \mathbf{x}+B \mathbf{x} \\
& c A=[c \mathbf{a}, \cdots, c \mathbf{a}] \\
& A+B=\left[\mathbf{a}_{1}+\mathbf{b}_{1}, \cdots, \mathbf{a}_{n}+\mathbf{b}_{n}\right]
\end{aligned}
$$

Matrices can also be multiplied (unlike column vectors)

Slide 3

$$
\begin{array}{cccc}
A & B & \rightarrow & A B \\
m \times n & n \times \ell & & m \times \ell
\end{array}, \quad(A B) \mathbf{x}=A(B \mathbf{x}) .
$$

Matrix multiplication is very different from number multiplication

- If $A B$ is defined, it does not mean that $B A$ is defined.

Slide 4

- If both $A B$ and $B A$ are defined, it does not mean that $A B$ has the same size that $B A$.
- If both $A B$ and $B A$ are defined and have the same size, it does not mean that $A B=B A$.

Definition 1 An $n \times n$ matrix is called a squared matrix.

Main properties of the operation with matrices

- $A(B C)=(A B) C$,
- $A(B+C)=A B+A C$,

Slide 5

- $(B+C) A=B A+B C$,
- $a(A B)=(a A) B=A(a B)$,
- $I A=A=A I$.

Notice: For $n \times n$ matrices A, B, one has in general that $A B \neq B A$, that is, the product is not commutative.

The Gauss elimination operations can be performed by multiplication with matrices

Theorem 1 Given any $m \times n$ matrix A, denote by B the
Slide 6 $m \times n$ matrix in reduced echelon form obtained from A performing k Gauss elimination operations. Then there exist $m \times m$ squared matrices E_{1}, \cdots, E_{k}, such that

$$
B=E_{k} \cdots E_{1} A .
$$

Some squared matrices have inverse

Slide 7
Definition $2 A$ squared matrix A is said to be invertible if there exists a squared matrix, denoted as A^{-1}, satisfying

$$
\left(A^{-1}\right) A=I, \quad A\left(A^{-1}\right)=I .
$$

System of equations wit invertible matrix of coefficients have unique solutions

Theorem 2 The $n \times n$ matrix A is invertible \Rightarrow The
Slide 8 system $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^{n}$. Furthermore, the solution is $\mathbf{x}=A^{-1} \mathbf{b}$.

The converse (\Leftarrow) is also true.

Gauss elimination can be used to compute the inverse matrix

Theorem 3 Let A be an invertible matrix. Suppose that the Gauss elimination operations E_{1}, \cdots, E_{k} transform A into I. Then
Slide 9

$$
A^{-1}=E_{k} \cdots E_{1} .
$$

Procedure to compute the inverse matrix:

$$
[A \mid I] \rightarrow\left[E_{1} A \mid E_{1}\right] \rightarrow \cdots \rightarrow\left[E_{k} \cdots E_{1} A \mid E_{k} \cdots E_{1}\right]=\left[I \mid E_{k} \cdots E_{1}\right]
$$

then

$$
A^{-1}=E_{k} \cdots E_{1}
$$

