

Matrices are a new type of vectors!

Because we can multiply matrices by a number, and we can add matrices (like column vectors),

Slide 2

$$(cA)\mathbf{x} = c(A\mathbf{x}), \quad (A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{x}.$$

$$cA = [c\mathbf{a}, \cdots, c\mathbf{a}],$$

$$A + B = [\mathbf{a}_1 + \mathbf{b}_1, \cdots, \mathbf{a}_n + \mathbf{b}_n].$$

Matrices can also be multiplied (unlike column vectors)

Slide 3

$$\begin{array}{ccc} A & B & \to & AB \\ m \times n & n \times \ell & m \times \ell \end{array}, \quad (AB)\mathbf{x} = A(B\mathbf{x}). \end{array}$$

$$AB = [A\mathbf{b}_1, \cdots, A\mathbf{b}_\ell].$$

Lecture 6

The Gauss elimination operations can be performed by multiplication with matrices

Slide 6

Theorem 1 Given any $m \times n$ matrix A, denote by B the $m \times n$ matrix in reduced echelon form obtained from A performing k Gauss elimination operations. Then there exist $m \times m$ squared matrices E_1, \dots, E_k , such that

 $B = E_k \cdots E_1 A.$

Some squared matrices have inverse

Slide 7

Definition 2 A squared matrix A is said to be invertible if there exists a squared matrix, denoted as A^{-1} , satisfying

$$(A^{-1})A = I, \quad A(A^{-1}) = I.$$

System of equations wit invertible matrix of coefficients have unique solutions

Slide 8

Theorem 2 The $n \times n$ matrix A is invertible \Rightarrow The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$. Furthermore, the solution is $\mathbf{x} = A^{-1}\mathbf{b}$.

The converse (\Leftarrow) is also true.

Gauss elimination can be used to compute the inverse matrix

Theorem 3 Let A be an invertible matrix. Suppose that the Gauss elimination operations E_1, \dots, E_k transform A into I. Then

$$A^{-1} = E_k \cdots E_1.$$

Procedure to compute the inverse matrix:

$$[A|I] \to [E_1A|E_1] \to \cdots \to [E_k \cdots E_1A|E_k \cdots E_1] = [I|E_k \cdots E_1]$$

then

Slide 9

$$A^{-1} = E_k \cdots E_1.$$