A primer on Linear Algebra

- Remarks on the course.

Slide 1

- Overview of Linear Algebra.
- Systems of linear equations.
(Row approach) (Sec. 1.1).

Linear Algebra is the study of Vector Spaces
Example of vector spaces: the plane \mathbb{R}^{2}, the space \mathbb{R}^{3}.
Slide 2 Aim of the course:

- To understand the structure of a vector space.
- To use that structure to solve different problems.

To solve systems of linear equations motivated the creation of Linear Algebra

Plan of the course:
Slide 3

- Solve linear equations.
- Introduce the concept of vectors, matrix, linear transformation.
- Introduce the concept of Vector Space.

The simplest system of linear equations is a 2×2 system

Example: Find the numbers (x, y) solutions of
Slide 4

$$
\begin{array}{r}
2 x-y=0 \\
-x+2 y=3
\end{array}
$$

Row picture: Solve each row separately.
(a) Graphically (lines), (b) By substitution.

The row picture is appropriate to solve small systems of linear equations

The most general 2×2 system of linear equations is the following: Find (x, y) solution of

Slide 5

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1}, \\
& a_{21} x+a_{22} y=b_{2},
\end{aligned}
$$

where $a_{i j}$ and b_{i} are given numbers, with $i=1,2, j=1,2$.
Matrix of coeff. $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right], \quad$ source $\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$.

The row picture is appropriate to solve small systems of linear equations

Does a 2×2 system of linear equations have a solution?
Is the solution unique?
Graphically one can check that the answer is:
Slide 6

- There exists a unique solution. (Lines intersect at a point.)
- There exists infinitely many solutions. (Coincident lines.)
- There is no solution.
(Parallel, non-coincident lines.)

The row picture is not appropriate to solve big systems of linear equations

Example: Find the numbers (x, y, z) solutions of

$$
\begin{aligned}
2 x+y+z & =2 \\
-x+2 y & =1 \\
x-y+2 z & =-2
\end{aligned}
$$

Row picture: Solve each row separately.
(a) Graphically (planes), (b) By substitution.

Check: The solution is $(1,1,-1)$.
Too complicated.

Here is the definition of an $m \times n$ system of linear equations

Definition 1 Fix a set of numbers $a_{i j}, b_{i}$, where $i=1, \cdots, m$ and $j=1, \cdots, n$. A system of m linear equations in n unknowns x_{j}, is given by

Slide 8

$$
\begin{array}{ccccc}
a_{11} x_{1}+ & \cdots & +a_{1 n} x_{n} & = & b_{1} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} x_{1}+ & \cdots & +a_{m n} x_{n} & = & b_{m} .
\end{array}
$$

Consistent: It has solutions (one or infinitely many).
Inconsistent: It has no solutions.

The matrix of coefficients and the source will be important in the following lectures

The matrix of coefficients, and the source are given by

Slide 9

Next class: Solving Large systems (3×3 or more) in an efficient way: Gauss elimination.

Gauss elimination

Slide 10

- Review: Systems of linear equations.
- Gauss elimination. (Sec. 1.2)
- Existence and uniqueness of solutions.

Here is the definition of an $m \times n$ system of linear equations

Definition 2 Fix a set of numbers $a_{i j}, b_{i}$, where $i=1, \cdots, m$ and $j=1, \cdots, n$. An $m \times n$ system of m linear equations on n unknowns x_{j}, is given by

$$
\begin{array}{ccccc}
a_{11} x_{1}+ & \cdots & +a_{1 n} x_{n} & = & b_{1}, \\
\vdots & & \vdots & & \vdots \\
a_{m 1} x_{1}+ & \cdots & +a_{m n} x_{n} & = & b_{m}
\end{array}
$$

Consistent: It has solutions (one or infinitely many). Inconsistent: It has no solutions.

The matrix of coefficients and the source will be important in the following lectures

The matrix of coefficients, and the source are given by
Slide 12

$$
\begin{aligned}
& \overbrace{\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]}=A \quad\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]=\mathbf{b} \\
& m \times n \text { matrix, } \quad m \text { column vector. }
\end{aligned}
$$

The augmented matrix is important is Gauss elimination

The augmented matrix of the former $m \times n$ system is:
Slide 13

$$
\left[\begin{array}{ccc:c}
a_{11} & \cdots & a_{1 n} & b_{1} \\
\vdots & & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

Notation: $(A)_{i j}=a_{i j},(\mathbf{b})_{i}=b_{i}$ denote the particular coefficients i, j.

The diagonal elements are also important in Gauss elimination

Definition 3 The elements $(A)_{i i}$ are called the diagonal
Slide 14 elements of A.

$$
\left(\begin{array}{ccc}
a_{11} & * & * \\
* & a_{22} & * \\
* & * & a_{33}
\end{array}\right), \quad\left(\begin{array}{ccc}
a_{11} & * & * \\
* & a_{22} & *
\end{array}\right), \quad\left(\begin{array}{cc}
a_{11} & * \\
* & a_{22} \\
* & *
\end{array}\right)
$$

Gauss elimination refers to three operations on the augmented matrix

- Add to one row a multiple of the other.

Slide 15

- Interchange two rows.
- Multiply a row by a nonzero constant.

Gauss elimination changes the coefficients of a system but does not change its solution

The aim of the Gauss elimination is to produce a system whose solutions are easy to read out

- A matrix is in echelon form if every element below

Slide 16 the diagonal is zero. (Also called upper triangular.)

- A matrix is in reduced echelon form if it is in echelon form and the first nonzero element in every row satisfies both
- it is equal to 1 ,
- it is the only nonzero element in that column.

Gauss elimination makes the following result easy to prove

Theorem 1 (Existence and uniqueness) A system of linear equations is inconsistent \Leftrightarrow the echelon form of the augmented matrix has a row of the form

$$
[0, \cdots, 0 \mid b \neq 0]
$$

A consistent system of linear equations contains either

- a unique solution, (no free variables);
- or infinitely many solutions, (at least one free variable).

The Column Picture: The begin of linear algebra

Slide 18

- Review: The row picture.
- Column picture.
- Vectors, linear combinations, Span.

Recall the 2×2 system in row picture
Find the numbers $\left(x_{1}, x_{2}\right)$ solutions of
Slide 19

$$
\begin{array}{r}
2 x_{1}-x_{2}=0, \\
-x_{1}+2 x_{2}=3 .
\end{array}
$$

Row picture: Solve each row separately.
The solution is $x_{1}=1$, and $x_{2}=2$.

Interpret the 2×2 linear system as an addition of new objects: vectors

$$
\left[\begin{array}{r}
2 \\
-1
\end{array}\right] x_{1}+\left[\begin{array}{r}
-1 \\
2
\end{array}\right] x_{2}=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Recall that the solution is $x_{1}=1$ and $x_{2}=2$, that is,

$$
\left[\begin{array}{r}
2 \\
-1
\end{array}\right]+\left[\begin{array}{r}
-1 \\
2
\end{array}\right] 2=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

The solution suggests how to multiply vectors by numbers and how to add vectors

$$
\begin{gathered}
{\left[\begin{array}{r}
-1 \\
2
\end{array}\right] 2=\left[\begin{array}{r}
-2 \\
4
\end{array}\right],} \\
{\left[\begin{array}{r}
2 \\
-1
\end{array}\right]+\left[\begin{array}{r}
-2 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .}
\end{gathered}
$$

The column picture suggests how to multiply vectors by numbers

Slide 22

$$
c \mathbf{v}=c\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
c v_{1} \\
c v_{2}
\end{array}\right] .
$$

The multiplication of a vector by a number stretches or compresses the vector.

The column picture suggests how to add two vectors

$$
\mathbf{v}+\mathbf{w}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]+\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1}+w_{1} \\
v_{2}+w_{2}
\end{array}\right] .
$$

The addition of two vectors is represented graphically by the parallelogram law.

Example 2×2 revised

$$
\mathbf{a}_{1}=\left[\begin{array}{r}
2 \\
-1
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

Find the coefficients x_{1}, x_{2} such that

$$
\mathbf{a}_{1} x_{1}+\mathbf{a}_{2} x_{2}=\mathbf{b},
$$

that is, x_{1} and x_{2} change the length of \mathbf{a}_{1} and \mathbf{a}_{2} such that they add up to \mathbf{b}.

The same idea can be generalized to \mathbb{R}^{n}
Vectors \mathbf{u}, \mathbf{v} in R^{n} have the form
Slide 25

$$
\mathbf{u}=\left[\begin{array}{r}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right], \quad \mathbf{0}=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] .
$$

The same idea can be generalized to \mathbb{R}^{n}
Addition:

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{r}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]+\left[\begin{array}{r}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{r}
u_{1}+v_{1} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right] .
$$

Multiplication by a number $c \in \mathbb{R}$,

$$
c \mathbf{u}=c\left[\begin{array}{r}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{r}
c u_{1} \\
\vdots \\
c u_{n}
\end{array}\right] .
$$

A linear combination is to add several stretched-compressed vectors

Definition $4 A$ vector $\mathbf{w} \in \mathbb{R}^{n}$ is a linear combination of vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}$ in \mathbb{R}^{n} if there exist p numbers c_{1},

Slide 27 $\cdots, c_{p} \in \mathbb{R}$ such that

$$
\mathbf{w}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p} .
$$

Definition 5 Let $\mathbf{v}_{1}, \cdots, \mathbf{v}_{p} \in \mathbb{R}^{n}$. The $\operatorname{Span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ is the set in \mathbb{R}^{n} formed by of all possible linear combinations of $\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}$.

Summary of the column picture for linear systems

Does the $m \times n$ linear system below have a solution?

$$
\begin{array}{ccccc}
a_{11} x_{1}+ & \cdots & +a_{1 n} x_{n} & = & b_{1} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} x_{1}+ & \cdots & +a_{m n} x_{n} & = & b_{m}
\end{array}
$$

Does the vector \mathbf{b} belong to the $\operatorname{Span}\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\}$?

$$
\mathbf{a}_{1}=\left[\begin{array}{r}
a_{11} \\
\vdots \\
a_{m 1}
\end{array}\right], \cdots, \mathbf{a}_{n}=\left[\begin{array}{r}
a_{1 n} \\
\vdots \\
a_{m n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right] .
$$

