A primer on Linear Algebra
Remarks on the course.
Overview of Linear Algebra.
Systems of linear equations. (Row approach) (Sec. 1.1).

To solve systems of linear equations motivated the creation of Linear Algebra

Plan of the course:

Slide 3

- Solve linear equations.
- Introduce the concept of vectors, matrix, linear transformation.
- Introduce the concept of Vector Space.

The simplest system of linear equations is a 2×2 system

Example: Find the numbers (x, y) solutions of

Slide 4

$$\begin{array}{rcl} 2x - y &=& 0,\\ -x + 2y &=& 3. \end{array}$$

Row picture: Solve each row separately.

(a) Graphically (lines), (b) By substitution.

The row picture is appropriate to solve small systems of linear equations

The most general 2×2 system of linear equations is the following: Find (x, y) solution of

 $a_{11}x + a_{12}y = b_1,$ $a_{21}x + a_{22}y = b_2,$

where a_{ij} and b_i are given numbers, with i = 1, 2, j = 1, 2.

Matrix of coeff.
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$$
, source $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$.

The row picture is appropriate to solve small systems of linear equations

Does a 2×2 system of linear equations have a solution? Is the solution unique?

Graphically one can check that the answer is:

- There exists a unique solution. (Lines intersect at a point.)
- There exists infinitely many solutions. (Coincident lines.)
- There is no solution. (Parallel, non-coincident lines.)

The row picture is not appropriate to solve big systems of linear equations

Example: Find the numbers (x, y, z) solutions of

$$2x + y + z = 2, -x + 2y = 1, x - y + 2z = -2.$$

Slide 7

Row picture: Solve each row separately.
(a) Graphically (planes), (b) By substitution.
Check: The solution is (1, 1, -1).
Too complicated.

Here is the definition of an $m \times n$ system of linear equations

Definition 1 Fix a set of numbers a_{ij} , b_i , where $i = 1, \dots, m$ and $j = 1, \dots, n$. A system of m linear equations in n unknowns x_j , is given by

Slide 8

```
a_{11}x_1 + \cdots + a_{1n}x_n = b_1,

\vdots \qquad \vdots \qquad \vdots

a_{m1}x_1 + \cdots + a_{mn}x_n = b_m.
```

Consistent: It has solutions (one or infinitely many). Inconsistent: It has no solutions.

Here is the definition of an $m \times n$ system of linear equations

Definition 2 Fix a set of numbers a_{ij} , b_i , where $i = 1, \dots, m$ and $j = 1, \dots, n$. An $m \times n$ system of m linear equations on n unknowns x_j , is given by

Slide 11

 $a_{11}x_1 + \cdots + a_{1n}x_n = b_1,$ $\vdots \qquad \vdots \qquad \vdots$ $a_{m1}x_1 + \cdots + a_{mn}x_n = b_m.$

Consistent: It has solutions (one or infinitely many). Inconsistent: It has no solutions.

The augmented matrix is important is Gauss elimination The augmented matrix of the former $m \times n$ system is: $\begin{bmatrix} a_{11} & \cdots & a_{1n} & \mid & b_1 \\ \vdots & & \vdots & \mid & \vdots \\ a_{m1} & \cdots & a_{mn} & \mid & b_m \end{bmatrix}$ Notation: $(A)_{ij} = a_{ij}$, $(\mathbf{b})_i = b_i$ denote the particular coefficients i, j.

Slide 14

Gauss elimination refers to three operations on the augmented matrix

• Add to one row a multiple of the other.

Slide 15

- Interchange two rows.
- Multiply a row by a nonzero constant.

Gauss elimination changes the coefficients of a system but does not change its solution

Slide 17

Gauss elimination makes the following result easy to prove

Theorem 1 (Existence and uniqueness) A system of linear equations is inconsistent \Leftrightarrow the echelon form of the augmented matrix has a row of the form

 $[0,\cdots,0|b\neq 0].$

A consistent system of linear equations contains either

- a unique solution, (no free variables);
- or infinitely many solutions, (at least one free variable).

Recall the 2×2 system in row picture

Find the numbers (x_1, x_2) solutions of

Slide 19

$$2x_1 - x_2 = 0, -x_1 + 2x_2 = 3.$$

Row picture: Solve each row separately.

The solution is $x_1 = 1$, and $x_2 = 2$.

Interpret the 2×2 linear system as an addition of new objects: vectors

$$\begin{bmatrix} 2\\ -1 \end{bmatrix} x_1 + \begin{bmatrix} -1\\ 2 \end{bmatrix} x_2 = \begin{bmatrix} 0\\ 3 \end{bmatrix}$$

Recall that the solution is $x_1 = 1$ and $x_2 = 2$, that is,

$$\begin{bmatrix} 2\\-1 \end{bmatrix} + \begin{bmatrix} -1\\2 \end{bmatrix} 2 = \begin{bmatrix} 0\\3 \end{bmatrix}$$

Slide 21

The column picture suggests how to multiply vectors by numbers

Slide 22

$$c\mathbf{v} = c \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} cv_1 \\ cv_2 \end{bmatrix}$$

The multiplication of a vector by a number stretches or compresses the vector.

The column picture suggests how to add two vectors

Slide 23
$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}.$$

The addition of two vectors is represented graphically by the parallelogram law.

Example 2×2 revised

$$\mathbf{a}_1 = \begin{bmatrix} 2\\ -1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} -1\\ 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0\\ 3 \end{bmatrix}.$$

Slide 24

Find the coefficients x_1, x_2 such that

 $\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 = \mathbf{b},$

that is, x_1 and x_2 change the length of \mathbf{a}_1 and \mathbf{a}_2 such that they add up to \mathbf{b} .

The same idea can be generalized to \mathbb{R}^n Vectors \mathbf{u} , \mathbf{v} in \mathbb{R}^n have the form

Slide 25

Vectors
$$\mathbf{u}, \mathbf{v}$$
 in \mathbb{R}^n have the form

$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}, \quad \mathbf{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}.$$

The same idea can be generalized to \mathbb{R}^n Addition: $\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix}$. Multiplication by a number $c \in \mathbb{R}$, $c\mathbf{u} = c \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} cu_1 \\ \vdots \\ cu_n \end{bmatrix}$.

A linear combination is to add several stretched-compressed vectors

Definition 4 A vector $\mathbf{w} \in \mathbb{R}^n$ is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ in \mathbb{R}^n if there exist p numbers $c_1, \dots, c_p \in \mathbb{R}$ such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p.$$

Definition 5 Let $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$. The Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the set in \mathbb{R}^n formed by of all possible linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$.

Summary of the column picture for linear systems

Does the $m \times n$ linear system below have a solution?

$$a_{11}x_1 + \cdots + a_{1n}x_n = b_1,$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + \cdots + a_{mn}x_n = b_m.$$

Slide 28

Slide 27

Does the vector **b** belong to the $\text{Span}\{\mathbf{a}_1, \cdots, \mathbf{a}_n\}$?

$$\mathbf{a}_{1} = \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}, \cdots, \mathbf{a}_{n} = \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_{1} \\ \vdots \\ b_{m} \end{bmatrix}.$$