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1. Systems of linear equations

Linear Algebra is the branch of mathematics concerned with the study of systems
of linear equations, vectors and vector spaces, and linear transformations. The
equations are called a system when there is more than one equation, and they are
called linear when the unknown appears as a multiplicative factor with power zero or
one. Systems of linear equations is the main subject of this Section, and an example
is given by Eqs. (1.3)-(1.4). An example of a vector is an oriented segment, which
may belong to the real line R, or to the plane R2, or to space R3. These three sets,
together with a preferred point that is called the origin, are examples of vector
spaces (see Fig. 1). Elements in these spaces are oriented segments with origin
at the origin point and head at any point in these spaces. The origin of the word
“space” in the term “vector space” originates precisely in these first examples, which
were associated with the physical space. Two operations are defined on oriented
segments: An oriented segment can be stretched or compressed, and two oriented
segments with the same origin point can be added using the parallelogram law. An
addition of several stretched or compressed vectors is called a linear combination.
Linear transformations are a particular type of functions on vectors that preserve
the operation of linear combination. This is the essential structure called vector
space. These notes are meant to be an elementary introduction into this subject.

1.1. Row picture. A central problem in linear algebra is to find solutions of a
system of linear equations. A 2 × 2 linear system is a system of two linear
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Figure 1. Example of vectors in the line, plane and space, respectively.

equations in two unknowns, that is, given the real numbers a11, a12, a21, a22, b1,
and b2, find the real numbers x and y solutions of

a11x + a12y = b1,(1.1)

a21x + a22y = b2.(1.2)

These equations are called a system because there is more than one equation, and
they are called linear because the unknown appears as a multiplicative factor with
power zero or one. An example of a linear system is the following: Find the numbers
x and y solutions of

2x− y = 0,(1.3)

−x + 2y = 3.(1.4)

The row picture consists of finding the solutions to the system as the intersection
of all solutions to every single equation of the system. The individual equations
are called row equations, or simply row of the system. The solution is found
geometrically in Fig. 2. Analytically, the solution can be found by substitution:

1

2

−3

first row

(1,2)

second row

x

y

y = 2x

2y = x+3

Figure 2. The solution of a 2×2 linear system in the row picture
is the intersection of the two lines, which are the solutions of each
row equation.
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Figure 3. An example of the cases given in (i)-(iii), in Theorem 1.

2x− y = 0 ⇒ y = 2x ⇒ −x + 4x = 3 ⇒
{

x = 1,

y = 2.

A consequence of the row picture in 2× 2 linear systems is the following result.

Theorem 1. Every 2 × 2 linear system satisfies only one of the following state-
ments:

(i) There exists a unique solution;
(ii) There exist infinity many solutions.
(iii) There exists no solution;

Proof of Theorem 1: The solutions of each equation in a 2 × 2 linear system
represents a line in R2. Two lines in R2 can intersect at a point, or can be coinci-
dent, or can be parallel but not coincident. These are the cases given in (i)-(iii),
respectively, and they are represented geometrically in Fig. 3. ¤

An m × n linear system is defined as a system of m linear equations in n
unknowns, that is, given the real numbers aij and bi, with i = 1, · · · ,m and j =
1, · · ·n, find the real numbers xj solutions of

a11x1 + · · ·+ a1nxn = b1

...
am1x1 + · · ·+ amnxn = bm.

An m × n linear system is called consistent iff it has solutions, and it is called
inconsistent iff it has no solutions. Examples of a 2× 3 and 3× 3 linear systems
are given, respectively, as follows,

(1.5)
x1 + 2x2 + x3 = 1

−3x1 + x2 − 1
3

x3 = 6

2x1 + x2 + x3 = 2
−x1 + 2x2 = 1

x1 − x2 + 2x3 = −2.

The row picture is appropriate to solve small systems of linear equations. However
it becomes difficult to carry out in 3 × 3 and bigger systems. For example, find
the numbers x1, x2, x3 solutions of the 3 × 3 linear system above. Substitute the
second equation into the first,

x1 = −1 + 2x2 ⇒ x3 = 2− 2x1 − x2 = 2 + 2− 4x2 − x2 ⇒ x3 = 4− 5x2;

then, substitute the second equation and x3 = 4− 5x2 into the third equation,

(−1 + 2x2)− x2 + 2(4− 5x2) = −2 ⇒ x2 = 1,
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and then, substituting backwards, x1 = 1 and x3 = −1, so the solution is a single
point in space (1, 1,−1).

Graphically, the solution of each separate equation represents a plane in R3. A
solution to the system is a point that below to the three planes. In the example
above there is a unique solution, the point (1, 1,−1), which means that the three
planes intersect at a single point. In the general case, a 3 × 3 system can have a
unique solution, infinitely many solutions or no solutions at all, depending on how
the three planes in space intersect among them. The case with unique solution was
represented in Fig. 4, while two possible situations corresponding to no solution
are given in Fig. 5. Finally, two cases of 3× 3 linear system having infinitely many
solutions are pictured in Fig 6, where in the first case the solutions form a line, and
in the second case the solution form a plane because the three planes coincide.

Figure 4. Planes representing the solutions of each row equation
in a 3× 3 linear system having a unique solution.

Figure 5. Two cases of planes representing the solutions of each
row equation in 3× 3 linear systems having no solutions.

The solutions to bigger than a 3× 3 linear system can not be represented graph-
ically, and the substitution method becomes more involved to solve, hence alter-
native ideas are needed to solve such systems. In the next section we introduce
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Figure 6. Two cases of planes representing the solutions of each
row equation in 3×3 linear systems having infinity many solutions.

the column picture, which together with Gauss elimination operations prove to be
appropriate to solve efficiently large systems of linear equations.

1.2. Column picture. Consider again the linear system in Eqs. (1.3)-(1.4) and
introduce a change in the names of the unknowns, calling them x1 and x2 instead
of x and y. The problem is to find the numbers x1, and x2 solutions of

2x1 − x2 = 0,(1.6)

−x1 + 2x2 = 3.(1.7)

We know that the answer is x1 = 1, x2 = 2. The row picture consisted in solving
each row separately. The main idea in the column picture is to interpret the 2× 2
linear system as an addition of new objects, in the following way,

(1.8)
[

2
−1

]
x1 +

[−1
2

]
x2 =

[
0
3

]
.

We call these new objects column vectors, and we use boldface letters to denote
them, that is,

a1 =
[

2
−1

]
, a2 =

[−1
2

]
, b =

[
0
3

]
.

We can represent these vectors in the plane, as it is shown in Fig. 7. This column

2
−1

−1

2

3

a

a

2

1

b

x

x

2

1

Figure 7. Graphical representation of column vectors in the plane.
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vector interpretation of a 2×2 linear system determines the addition law of vectors
and the multiplication law of a vector by a number. In the example above, we know
that the solution is given by x1 = 1 and x2 = 2, therefore in the column picture
interpretation the following equation must hold

[
2
−1

]
+

[−1
2

]
2 =

[
0
3

]
.

This example and the study of other examples determines the multiplication law of
a vector by numbers and the addition law of two vectors, according the following
equations, [−1

2

]
2 =

[
(−1)2
(2)2

]
,

[
2
−1

]
+

[−2
4

]
=

[
2− 2
−1 + 4

]
.

The study of several examples of 2× 2 linear systems in the column picture deter-
mines the following rule. Given any 2-vectors u =

[
u1
u2

]
and v =

[
v1
v2

]
, and real

numbers a and b, introduce the linear combination of u and v as follows,

a

[
u1

u2

]
+ b

[
v1

v2

]
=

[
au1 + bv1

au2 + bv2

]
.

A linear combination includes the particular cases of addition (a = b = 1), and
multiplication of a vector by a number (b = 0), respectively given by,

[
u1

u2

]
+

[
v1

v2

]
=

[
u1 + v1

u2 + v2

]
, a

[
u1

u2

]
=

[
au1

au2

]
.

The addition law in terms of components is represented graphically by the par-
allelogram law, as it can be seen in Fig. 8. The multiplication of a vector by a
number a affects the length and direction of the vector. The product au stretches
the vector u when a > 1 and it compresses u when 0 < a < 1. If a < 0 then
it reverses the direction of u and it stretches when a < −1 and compresses when
−1 < a < 0. Fig. 8 represents some of these possibilities. Notice that the difference
of two vectors is a particular case of the parallelogram law, as it can be seen in
Fig. 9.

V

W

V+W

v

wv

w

(v+w)

(v+w)

x

x2

1

2

2

1 1

2

1

− V

a = −1a V

0 < a < 1

a>1

a V

V

Figure 8. The addition of vectors can be computed with the
parallelogram law. The multiplication of a vector by a number
stretches or compresses the vector, and changes it direction in the
case that the number is negative.
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V
V − W V + W

W −W

V+(−W) V

W

Figure 9. The difference of two vectors is a particular case of the
parallelogram law of addition of vectors.

The column picture interpretation of a general 2 × 2 linear system given in
Eqs. (1.1)-(1.2) is the following: Introduce the coefficient and source column vectors

(1.9) a1 =
[
a11

a21

]
, a2 =

[
a12

a22

]
, b =

[
b1

b2

]
,

and then find the coefficients x1 and x2 that change the length of the coefficient
column vectors a1 and a2 such that they add up to the source column vector b,
that is,

a1 x1 + a2 x2 = b.

For example, the column picture of the linear system in Eqs. (1.6)-(1.7) is given in
Eq. (1.8). The solution of this system are the numbers x1 = 1 and x2 = 2, and this
solution is represented in Fig. 10.

−1
−2 2

42a

a

b

2

1

x1

x
2

−1−2

2

4

a

2a2

2

x1

x2

Figure 10. Representation of the solution of a 2×2 linear system
in the column picture.

The existence and uniqueness of solutions in the case of 2 × 2 systems can be
studied geometrically in the column picture as it was done in the row picture. In
this latter case we have seen that all possible 2 × 2 systems fall into one of these
three cases, unique solution, infinitely many solutions and no solutions at all. In
Fig. 11 we present these three cases in both row and column pictures.
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y y

x

a

a

b

2

1

b aa 2 1

b

a

a

1

2

xx

x

x

x x

2

1

2

1

2

1

Figure 11. Examples of a solutions of general 2×2 linear systems
having a unique, infinite many, and no solution, represented in the
row picture and in the column picture.

The ideas in the column picture can be generalized to m × n linear equations,
which gives rise to the generalization to m-vectors of the definitions of linear com-
bination presented above. Given m-vectors

u =




u1

...
um


 v =




v1

...
vm


 ,

and real numbers a and b, introduce the linear combination of the vectors u and v
as follows

a




u1

...
um


 + b




v1

...
vm


 =




au1 + bv1

...
aum + bvm


 .

This definition can be generalized to an arbitrary number of vectors. The m-vector
b is a linear combination of the m-vectors a1, · · · ,an iff there exist real numbers
x1, · · · , xn such that the following equation holds,

a1x1 + · · ·+ anxn = b.

For example, recall the 3× 3 system given as the second system in Eqs.(1.5). This
system in the column picture is the following: Find numbers x1, x2 and x3 such
that

(1.10)




2
−1
1


 x1 +




1
2
−1


 x2 +




1
0
2


 x3 =




2
1
−2


 .

These are the main ideas in the column picture. We will see later that linear
algebra emerges from the column picture. The next section we give a method, due
to Gauss, to solve in an efficient way m× n linear systems for large m and n.
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1.3. Gauss elimination method. The Gauss elimination operations (GEO) is
a method to find solutions to m × n linear systems in an efficient way. Efficient
means performing as few as possible algebraic steps to find the solution or to show
that the solutions does not exist. Before introducing this method, we need several
definitions. Consider an m× n linear system

a11x1 + · · ·+ a1nxn = b1

...
am1x1 + · · ·+ amnxn = bm.

Introduce the matrix of coefficients and the augmented matrix of a linear system,
given respectively by the following expressions,

A :=

n columns︷ ︸︸ ︷


a11 · · · a1n

...
...

am1 · · · amn


 m rows,

[
A|b]

:=




a11 · · · a1n | b1

...
... | ...

am1 · · · amn | bm




We call A an m×n matrix, and so the augmented matrix of an m×n linear system
is given by the coefficients and the source vector together, so it is an m × (n + 1)
matrix. The symbol “:=” denote “definition”. For example, in the linear system

2x1 − x2 = 0,

−x1 + 2x2 = 3,

the matrix of coefficients is 2×2 and the augmented matrix is 2×3, given respectively
by [

2 −1
−1 2

]
,

[
2 −1 | 0
−1 2 | 3

]
.

We also use the alternative notation A = [aij ], b = [bi]. Given a matrix A = [aij ],
the elements aii are called diagonal elements. Examples of diagonal elements in
3× 3, 2× 3 and 3× 2 matrices are given by the following matrices, where ∗ means
a non-diagonal element,




a11 ∗ ∗
∗ a22 ∗
∗ ∗ a33


 ,

[
a11 ∗ ∗
∗ a22 ∗

]
,




a11 ∗
∗ a22

∗ ∗


 .

The Gauss elimination operations refers to the following three operations per-
formed on the augmented matrix:

(i) Adding to one row a multiple of the another;
(ii) Interchanging two rows;
(iii) Multiplying a row by a non-zero number.

These operations are respectively represented by the symbols given in Fig. 12.

a
a

Figure 12. A representation of the Gauss elimination operations.



10 GABRIEL NAGY

The Gauss elimination operations change the coefficients of the augmented ma-
trix of a system but do not change its solution. Two systems of linear equations
having the same solutions are called equivalent. It can be shown that there is
an algorithm using these operations such that given any m× n linear system there
exists an equivalent system whose augmented matrix is simple in the sense that
the solution can be found by inspection. For example, consider the 2 × 2 linear
system in Eq. (1.8), construct its augmented matrix, and perform the following
Gauss elimination operations,

[
2 −1 | 0
−1 2 | 3

]
→

[
2 −1 | 0
−2 4 | 6

]
→

[
2 −1 | 0
0 3 | 6

]
→

[
2 −1 | 0
0 1 | 2

]
→

[
2 0 | 2
0 1 | 2

]
→

[
1 0 | 1
0 1 | 2

]
,

and in the last augmented matrix the solution, x1 = 1, x2 = 2 is easy to read.
A precise way to define the notion of easy to read is captured in the notion is in
echelon form. An m × n matrix is in echelon form iff every element below the
diagonal vanishes. Matrices with this property are also called upper triangular. A
matrix is in reduced echelon form iff it is in echelon form and the first nonzero
element in every row satisfies both that it is equal to 1 and it is the only nonzero
element in that column. As an example, the following matrices are in echelon form,

[
1 3
0 1

]
,

[
2 3 2
0 4 −2

]
,




2 1 1
0 3 4
0 0 0


 .

And the following matrices are not only in echelon form but also in reduced echelon
form,

[
1 0
0 1

]
,

[
1 0 4
0 1 5

]
,




1 0 0
0 1 0
0 0 0


 .

Summarizing, the Gauss elimination operations can transform any matrix into
a reduce echelon form. Once the augmented matrix of a linear system is written in
reduced echelon form, it is not difficult to decide whether the system has solutions
or not. For example, suppose that the augmented matrix of a 3 × 3 linear system
has the following reduced echelon form,




1 0 2 | 1
0 1 3 | 2
0 0 0 | 0


 ⇒





x1 = 1− 2x3,

x2 = 2− 3x3,

x3 : free variable.

A variable of an m × n linear system is called a free variable iff for every value
of that variable there exists a solution to the linear system. The following result
characterizes n× n linear systems having free variables.

Lemma 1. An n×n linear system has k free variables iff the reduced echelon form
of its augmented matrix contains k rows of the form [0, · · · , 0|0].

We left the proof as an exercise. We remark that the Lemma above is concerned
only with linear systems with square matrix of coefficients. The Lemma is not true
for m× n linear systems when m 6= n, as the following examples show:
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(i) The 3 × 2 linear system below has one free variable but its associated aug-
mented matrix has no line of the form [0, 0, 0|0];

x1 + 2x2 + 3x3 = 1,

3x1 + x2 + 2x3 = 2.

(ii) The 2 × 3 linear system below has one line of the form [0, 0|0] but it has no
free variables;

x1 + 3x2 = 2,

2x1 + 2x2 = 0,

3x1 + x2 = −2.

As an example of the result presented in Lemma 1, consider the 2×2 linear system

2x1 − x2 = 1(1.11)

−1
2

x1 +
1
4

x1 = −1
4
.(1.12)

It is not difficult to check that Gauss elimination operations can transform the
system augmented matrix as follow,

[
2 −1 | 1
− 1

2
1
4 | − 1

4

]
→

[
2 −1 | 1
0 0 | 0

]
,

so the system above has a free variable, and therefore, infinitely many solutions.
Lemma 1 presented a condition to determine whether a square linear system

has infinity many solutions. We now present a condition on an arbitrary linear
system that determines whether the system has no solutions. We first present an
example. Consider a linear system with the same matrix coefficients as the one in
Eq. (1.11)-(1.12) but with a different source vector:

2x1 − x2 = 0(1.13)

−1
2

x1 +
1
4

x1 = −1
4
.(1.14)

Multiplying the second equation by −4 one obtains the equation

2x1 − x2 = 1,

whose solutions form a parallel line to the line given in Eq. (1.13). Therefore, the
system in Eqs. (1.13)-(1.14) has no solution. Using Gauss elimination operations it
is not difficult to check that the system augmented matrix can be transformed as
follows, [

2 −1 | 0
− 1

2
1
4 | − 1

4

]
→

[
2 −1 | 0
0 0 | 1

]
.

The last row has the form [0, 0|1], which is a contradiction, therefore the system
in Eqs. (1.13)-(1.14) has no solutions. These examples are particular cases of the
following result.

Lemma 2. An m× n linear system is inconsistent iff the reduced echelon form of
its augmented matrix contains a row of the form [0, · · · , 0|1].

Furthermore, a consistent system contains:

(i) A unique solution iff has no free variables;
(ii) Infinitely many solutions iff it contains at least one free variable.
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Proof of Lemma 2: The idea of the proof is to study all possible forms a reduced
echelon form can have, one concludes that there are three main cases, no solutions,
unique solutions, or infinitely many solutions, according to the form of the reduced
echelon for of the system augmented matrix. We only give here the proof in the
case of 3 × 3 linear systems. The reduced echelon form of an inconsistent 3 × 3
linear system can have only one of the following forms


1 0 ∗ | ∗
0 1 ∗ | ∗
0 0 0 | 1


 ,




1 ∗ ∗ | ∗
0 0 0 | 1
0 0 0 | 1


 ;

the reduced echelon form of a 3× 3 linear system having a the unique solution case
has the form 


1 0 0 | ∗
0 1 0 | ∗
0 0 1 | ∗


 ;

while the reduced echelon form of a 3 × 3 linear system having infinitely many
solutions can have only one of the following the form


1 0 ∗ | ∗
0 1 ∗ | ∗
0 0 0 | 0


 ,




1 ∗ ∗ | ∗
0 0 0 | 0
0 0 0 | 0


 ,

which correspond to one free variable and two free variables, respectively. ¤
Exercise: Find all numbers h and k such that the system below has only one,
many, or no solutions,

x1 + hx2 = 1
x1 + 2x2 = k.

Solution: Start finding the associated augmented matrix and reducing it into
echelon form, [

1 h | 1
1 2 | k

]
→

[
1 h | 1
0 2− h | k − 1

]
.

Suppose h 6= 2, for example set h = 1, then[
1 1 | 1
0 1 | k − 1

]
→

[
1 0 | 2− k
0 1 | k − 1

]
,

so the system has a unique solution for all values of k. (The same conclusion holds
if one sets h to any number different of 2.) Suppose now that h = 2, then,

[
1 2 | 1
0 0 | k − 1

]
.

If k = 1 then [
1 2 | 1
0 0 | 0

]
⇒

{
x1 = 1− 2x2,

x2 : free variable.
so there are infinitely many solutions. If k 6= 1, then[

1 2 | 1
0 0 | k − 1 6= 0

]

and the system is inconsistent. Summarizing, for h 6= 2 the system has a unique
solution for every k. If h = 2 and k = 1 the system has infinitely many solutions,
and if h = 2 and k 6= 1 the system has no solution. ¤
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1.4. The span of a set of vectors. Recall that in Sec. 1.2 we have said that a
vector u is a linear combination of the vectors v1, · · · , vn iff there exist real numbers
c1, · · · , cn such that

u = c1v1 + · · ·+ cnvn.

An important concept in linear algebra is that of Span of a set of vectors. The
Span of the set of m-vectors {v1, · · · , vn} is the set in Rm of all possible linear
combinations of the vectors v1, · · · , vn. We use the notation

Span{v1, · · · , vn} ⊂ Rm.

For example, all possible linear combinations of a single vector v are vectors of the
form cv, and these vectors belong to a line tangent to v. All linear combinations
of two vectors v, w belong to a plane containing both vectors. Examples of these
situations can be seen in Fig. 13.

x

V

Span{V}

x
1

2

2R x

x

3

2

3

Span{V,W}

V

W

x1

R

Figure 13. Examples of the span of a set of a single vector, and
the span of a set of two vectors.

The concept of span enters in the column picture interpretation of a linear sys-
tem. The m× n linear system a1 x1 + · · ·+ an xn = b has a solution iff the source
vector b belongs to the Span{a1, · · · ,an}. In Fig. 14 we recall the examples of 2×2
linear systems of the form a1x1+a2x2 = b having a unique solution, infinitely many
solutions, and no solution, respectively. In the first two cases the source vector b
belongs to Span{a1,a2}, while in the third case b /∈ Span{a1,a2}.

a

a

b

2

1

b aa 2 1

b

a

a

1

2

xx

x

x

x x

2

1

2

1

2

1

Figure 14. Examples of a solutions of general 2×2 linear systems
having a unique, infinite many, and no solution, represented in the
column picture.

Therefore, in the column picture there are two equivalent interpretations of an m×n
linear system. The first one is: Given the m-vectors a1, · · · ,an and the m-vector b,
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find the real numbers x1, · · · , xn solutions of the equation a1 x1 + · · ·+ an xn = b.
The second interpretation is then the following: Given the m-vectors a1, · · · ,an and
the m-vector b, find the real numbers x1, · · · , xn such that b ∈ Span{a1, · · · ,an}.

1.5. Matrix-vector product. Matrices have been introduced in Sec. 1.3 as a way
to simplify the calculations needed to find solutions of linear systems. For example,
the augmented matrix of a linear system is an object containing all the equation
coefficients and the equations sources which are used in the Gauss elimination
operations in order to obtain the solution to that linear system. In this section
we express a linear system in yet another way, introducing an operation between
matrices and vectors. Consider an m× n linear system given by

a1x1 + · · ·+ anxn = b,

and introduce the matrix of coefficients A = [a1, · · · ,an]. The new idea is to
consider the numbers x1, · · · , xn as an n-vector x ∈ Rn given by

x :=




x1

...
xn


 .

The matrix-vector product of the m×n matrix A and the n-vector x given above
is defined as follows,

Ax := [a1, · · · ,an]




x1

...
xn


 := a1x1 + · · ·+ anxn.

Therefore, an m×n linear system can be presented in the following way: Given an
m×n matrix A and an m-vector b, find an n-vector x solution of the matrix-vector
product equation Ax = b. As an example, consider the 2 × 2 linear system given
in Eq. (1.8). Introduce then the vector

x =
[
x1

x2

]
.

Then the linear system above can be written as
[

2 −1
−1 2

] [
x1

x2

]
=

[
b1

b2

]
.

Let us consider a second example, given by the 2×3 linear system in the unknowns
x1 and x2 given by

x1 − x2 = 0,

−x1 + x2 = 2,

x1 + x2 = 0.

The column picture interpretation is



1
−1
1


 x1 +



−1
1
1


 x2 =




0
2
0


 .
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while the matrix-vector product interpretation is



1 −1
−1 1
1 1




[
x1

x2

]
=



0
2
0


 .

Consider a third example, the 2× 3 linear system

2x1 − x2 + x3 = 0,

−x1 + 2x2 − x3 = 3.

The column picture interpretation is
[

2
−1

]
x1 +

[−1
2

]
x2 +

[
1
−1

]
x3 =

[
0
3

]
.

while the matrix-vector product interpretation is

[
2 −1 1
−1 2 −1

] 


x1

x2

x3


 =

[
0
3

]
.

The matrix-vector product introduced above satisfies several properties, and
one of those properties we are most interested in is that the matrix-vector product
preserves linear combination. This property is summarized in the following result.

Theorem 2. If A is an m × n matrix, u, v are arbitrary n-vectors, and a, b
are arbitrary real numbers, then the matrix-vector product satisfies the following
equation

A(au + bv) = aAu + bAv.

This Theorem says that the matrix-vector product of a linear combination of
vectors is the linear combination of the matrix-vector products.
Proof of Theorem 2: This property follows directly from the definition of the
matrix-vector product:

A(au + bv) = [a1, · · · ,an]




au1 + bv2

...
aun + bvn




= a1(au1 + bv2) + · · ·+ an(aun + bvn)

= a
(
a1u1 + · · ·+ anun

)
+ b

(
a1v1 + · · ·+ anvn

)

= aAu + bAv.

¤
As usual, the expression above contains the particular cases a = b = 1 and b = 0,

which are given, respectively, by

A(u + v) = Au + Av, A(au) = aAu.

1.6. Homogeneous linear systems and Spans. An m×n linear system Ax = b
is called homogeneous iff the source vector b = 0. This type of linear systems
possess several interesting properties, the simplest one is that they always have at
least one solution, x = 0, called the trivial solution. An equally important property



16 GABRIEL NAGY

is that homogeneous linear systems can also have non-zero solutions. Consider the
following example: Find the solutions x =

[
x1
x2

]
of the system

(1.15)
[
2 −4
1 −2

] [
x1

x2

]
=

[
0
0

]
.

The solution of this system can be found using Gauss elimination operations, as
follows [

2 −4
1 −2

]
→

[
2 −4
0 0

]
→

[
1 −2
0 0

]
⇒

{
x1 = 2x2,

x2 free variable.

Therefore, the set of all solutions of the linear system above is given by

x =
[
x1

x2

]
=

[
2x2

x2

]
=

[
2
1

]
x2, ∀x2 ∈ R ⇒ x ∈ Span

{[
2
1

]}
.

The expression above means that all solutions to the linear system given in Eq. (1.15)
are elements in the span of the vector

[
2
1

]
. Therefore, the set of all solutions of this

linear system can be identified with the set of points that belong to the line shown
in Fig. 15.

Span{       }

2

1

2

1

Figure 15. Solutions of the homogeneous linear system given in Eq. (1.15).

From the example above we find out that there exists a relation between non-
trivial solutions to homogeneous linear systems and free variables of this system.
This relation is summarized in the following result.

Proposition 1. An m× n homogeneous linear system has non-trivial solutions iff
the system has free variables.

Proof of Proposition 1: Suppose that the vector x is the solution to an homo-
geneous linear system, and suppose that the component x1 of the vector x is a free
variable. Then, the component x1 can take any value and the vector x is a solution
of the linear system, so then take x1 = 1, which then implies that there exists a
non-zero vector x solution of the linear system. ¤

The non-trivial solutions of homogeneous m × n linear systems Ax = 0, where
the coefficient matrix A = [a1, · · · ,an] is formed by column vectors ai ∈ Rm,
i = 1, · · ·m, can be expressed in terms of spans of vectors in Rn. As an example,
consider the following 2× 3 linear system,

(1.16)
[
2 −2 4
1 3 2

] 


x1

x2

x3


 =

[
0
0

]
.
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The coefficient matrix has column vectors that belong to R2. Let us now com-
pute the solutions to the homogeneous linear system above. We start with Gauss
elimination operations

[
1 3 2
2 −2 4

]
→

[
1 3 2
0 −8 0

]
→

[
1 0 2
0 1 0

]
⇒





x1 = −2x3,

x2 = 0,

x3 free variable.

Therefore, the set of all solutions of the linear system above is given by

x =




x1

x2

x3


 =



−2x3

0
x3


 =



−2
0
1


 x3, ∀x3 ∈ R ⇒ x ∈ Span

{


−2
0
1


}

.

In Fig. 16 we emphasize that the vectors x, which are solutions of the homoge-
neous linear system above, belong to the space R3, while the column vectors of the
coefficient matrix of this same system belong to the space R2.

1 1

x

1

2

3

2

3

−1−2

2

41

a

a2

1

3a

Figure 16. The picture on the left represents the solutions of the
homogeneous linear system given in Eq. (1.16), which are elements
in the space R3. The picture on the right represents the column
vectors of the coefficient matrix in this system given in Eq. (1.16),
which are vectors in the space R2.

Knowing the solutions of an homogeneous linear system gives information about
the solutions of an inhomogeneous linear system with the same coefficient matrix.
The next result establishes this relation in a precise way.

Theorem 3. If the m×n linear system Ax = b is consistent, and the vector xp is
one particular solution of this linear system, then all solutions to this linear system
are vectors of the form x = xp + xh, where the vector xh is any solution of the
homogeneous linear system Axh = 0.

Proof of Theorem 3: Let the vector x be any solution of the linear system above,
that is, Ax = b. Given the particular solution xp of this linear system, introduce
the vector x̂ := x− xp. Then, this vector x̂ satisfies the equation

Ax̂ = A(x− xp) = Ax−Axp = b − b = 0.

Therefore, the vector x̂ is solution of the homogeneous linear system Ax̂ = 0. This
establishes the Theorem. ¤

We say that the solutions of a linear system are expressed in parametric form
iff the solution vector x is written as is described in Theorem 3, that is, x = xp +xh,
where the vector xh is a solution of the homogeneous linear system, and the vector
xp is any solution of the inhomogeneous linear system.
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Exercise: Find all solutions of the 2 × 2 linear system below, and write them in
parametric form, where the linear system is given by

(1.17)
[
2 −4
1 −2

] [
x1

x2

]
=

[
6
3

]
.

Solution: Find the solutions of this inhomogeneous linear system using Gauss
elimination operations,

[
1 −2 | 3
2 −4 | 6

]
→

[
1 −2 | 3
0 0 | 0

]
⇒

{
x1 = 2x2 + 3,

x2 free variable.

Therefore, the set of all solutions of the linear system above is given by

x =
[
x1

x2

]
=

[
2x2 + 3

x2

]
⇒ x =

[
2
1

]
x2 +

[
3
0

]
.

¤
The solution in the exercise above can also be expressed in the form

x =
[
3
0

]
+ xh, xh ∈ Span{

[
2
1

]
}.

In Fig. 17 we represent these solutions on the plane.

21

1

2

1 3 21

x

1

2

1 3

Figure 17. The picture on the left represents four solutions of
the inhomogeneous linear system given in Eq. (1.17), which are
vectors ending in the line drawn in that picture. The picture on
the right represents the line associated with the space Span{[21

]},
which pass through the origin, and the line associated with the
solutions of the inhomogeneous system given in Eq. (1.17).

1.7. Linear dependence and independence. A non-empty set of m-vectors
{v1, · · · , vn} is linearly independent (l.i.) iff the m × n homogeneous linear
system V x = 0 has only the trivial solution x = 0, where the matrix V is given
by V = [v1, · · · , vn] and the the vector x ∈ Rn. The set of vectors above is called
linearly dependent (L.d.) iff there exists a non-trivial solution, x 6= 0, of the
linear system V x = 0.
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Appendix A. Notation and conventions

Vectors will be denoted by boldface letters, like a and b. Matrices will be denoted
by capital letters like A and B. We list below several mathematical symbols used
in these notes:

:= Definition, =⇒ Implies,
∀ For all, ∃ exists,

Proof . Begining of a proof, ¤ End of a proof.


