Linear algebra

Gabriel Nagy

July 9, 2007

Contents

1 Systems of linear equations 1
1.1 Row picture 2
1.2 Column picture 4
1.3 Gauss elimination method 8
1.4 The span of a set of vectors 11
1.5 A matrix is a function 11

1 Systems of linear equations

Linear Algebra is the branch of mathematics concerned with the study of systems of linear equations, vectors and vector spaces, and linear transformations. The equations are called a system when there is more than one equation, and they are called linear when the unknown appears as a multiplicative factor with power zero or one. Systems of linear equations is the main subject of this Section, and an example is given by Eqs. (1.3)-(1.4). An example of a vector is an oriented segment, which may belong to the line \mathbb{R}, or to the plane \mathbb{R}^{2}, or to space \mathbb{R}^{3}. These three sets, together with a preferred point that is called the origin, are examples of vector spaces (see Fig. 1). Elements in these spaces are oriented segments with origin at the origin point and head at any point in these spaces. The origin of the word "space" in the term "vector space" originates precisely in these first examples, which were associated with the physical space. Two operations are defined on oriented segments: An

Figure 1: Example of vectors in the line, plane and space, respectively.
oriented segment can be stretched or compressed, and two oriented segments with can be added using the parallelogram law. An addition of several strechted or compressed vectors is called a linear combination. Linear transformations are a particular type of functions on vectors that preserve the operation of linear combination. This is the essential structure
called vector space and these notes are meant to be an elementary introduction into this subject.

1.1 Row picture

A central problem in linear algebra is to find solutions of a system of linear equations. A 2×2 linear system is a system of two linear equations in two unknowns, that is, given the real numbers $a_{11}, a_{12}, a_{21}, a_{22}, b_{1}$, and b_{2}, find the real numbers x and y solutions of

$$
\begin{align*}
& a_{11} x+a_{12} y=b_{1}, \tag{1.1}\\
& a_{21} x+a_{22} y=b_{2} . \tag{1.2}
\end{align*}
$$

These equations are called a system because there is more than one equation, and they are called linear because the unknown appears as a multiplicative factor with power zero or one. An example of a linear system is the following: Find the numbers x and y solutions of

$$
\begin{array}{r}
2 x-y=0 \\
-x+2 y=3 . \tag{1.4}
\end{array}
$$

The row picture consists of finding the solutions to the system as the intersection of all solutions to every single equation of the system. The individual equations are called row equations, or simply row of the system. The solution is found geometrically in Fig. 2. Analytically, the solution can be found by substitution:

Figure 2: The solution of a 2×2 linear system in the row picture is the intersection of the two lines, which are the solutions of each row equation.

$$
2 x-y=0 \quad \Rightarrow \quad y=2 x \quad \Rightarrow \quad-x+4 x=3 \quad \Rightarrow \quad\left\{\begin{array}{l}
x=1 \\
y=2
\end{array}\right.
$$

A consequence of the row picture in 2×2 linear systems is the following result.
Theorem 1.1 Every 2×2 linear system satisfies only one of the following statements:
(i) There exists a unique solution;
(ii) There exist infinity many solutions.
(iii) There exists no solution;

Proof of Theorem 1.1: The solutions of each equation in a 2×2 linear system represents a line in \mathbb{R}^{2}. Two lines in \mathbb{R}^{2} can interset at a point, or can be coincident, or can be parallel but not coincident. These are the cases given in (i)-(iii), respectively, and they are represented geometrically in Fig. 3.

Figure 3: An example of the cases given in (i)-(iii), in Theorem 1.1.

An $m \times n$ linear system is defined as a system of m linear equations in n unknowns, that is, given the real numbers $a_{i j}$ and b_{i}, with $i=1, \cdots, m$ and $j=1, \cdots n$, find the real numbers x_{j} solutions of

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} & =b_{1} \\
& \vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} & =b_{m} .
\end{aligned}
$$

An $m \times n$ linear system is called consistent iff it has solutions, and it is called inconsistent iff it has no solutions. Examples of a 2×3 and 3×3 linear systems are given, respectively, as follows,

$$
\begin{array}{rlrl}
x_{1}+2 x_{2}+x_{3} & =1 & 2 x_{1}+x_{2}+x_{3} & =2 \\
-3 x_{1}+x_{2}-\frac{1}{3} x_{3} & =6 & -x_{1}+2 x_{2} & =1 \tag{1.5}\\
x_{1}-x_{2}+2 x_{3} & =-2
\end{array}
$$

The row picture is appropriate to solve small systems of linear equations. However it becomes difficult to carry out in 3×3 and bigger systems. For example, find the numbers x_{1}, x_{2}, x_{3} solutions of the 3×3 linear system above. Substitute the second equation into the first,

$$
x_{1}=-1+2 x_{2} \quad \Rightarrow \quad x_{3}=2-2 x_{1}-x_{2}=2+2-4 x_{2}-x_{2} \quad \Rightarrow \quad x_{3}=4-5 x_{2}
$$

then, substitute the second equation and $x_{3}=4-5 x_{2}$ into the third equation,

$$
\left(-1+2 x_{2}\right)-x_{2}+2\left(4-5 x_{2}\right)=-2 \quad \Rightarrow \quad x_{2}=1
$$

and then, substituting backwards, $x_{1}=1$ and $x_{3}=-1$, so the solution is a single point in space $(1,1,-1)$.

Graphically, the solution of each separate equation represents a plane in \mathbb{R}^{3}. A solution to the system is a point that below to the three planes. In the example above there is a unique solution, the point $(1,1,-1)$, which means that the three planes intersect at a single point. In the general case, a 3×3 system can have a unique solution, infinitely many solutions or no solutions at all, depending on how the three planes in space intersect among them. The case with unique solution was represented in Fig. 4, while two possible situations corresponding to no solution are given in Fig. 5. Finally, two cases of 3×3 linear system having infinitely many solutions are pictured in Fig 6 , where in the first case the solutions form a line, and in the second case the solution form a plane because the three planes coincide.

The solutions to bigger than a 3×3 linear system can not be represented graphically, and the substitution method becomes more involved to solve, hence alternative ideas are needed to solve such systems. In the next section we introduce the column picture, which together with Gauss elimination operations prove to be appropriate to solve efficiently large systems of linear equations.

Figure 4: Planes representing the solutions of each row equation in a 3×3 linear system having a unique solution.

Figure 5: Two cases of planes representing the solutions of each row equation in 3×3 linear systems having no solutions.

1.2 Column picture

Consider again the linear system in Eqs. (1.1)-(1.2) and introduce a change in the names of the unknonws, calling them x_{1} and x_{2} instead of x and y. The problem is to find the numbers x_{1}, and x_{2} solutions of

$$
\begin{array}{r}
2 x_{1}-x_{2}=0 \\
-x_{1}+2 x_{2}=3
\end{array}
$$

We know that the answer is $x_{1}=1, x_{2}=2$. The row picture consisted in solving each row separately. The main idea in the column picture is to interpret the 2×2 linear system as an addition of new objects, in the following way,

$$
\left[\begin{array}{r}
2 \tag{1.6}\\
-1
\end{array}\right] x_{1}+\left[\begin{array}{r}
-1 \\
2
\end{array}\right] x_{2}=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

We call these new objects column vectors, and we use boldface letters to denote them, that is,

$$
\boldsymbol{a}_{1}=\left[\begin{array}{r}
2 \\
-1
\end{array}\right], \quad \boldsymbol{a}_{2}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

We can represent these vectors in the plane, as it is shown in Fig. 7. This column vector

Figure 6: Two cases of planes representing the solutions of each row equation in 3×3 linear systems having infinity meny solutions.

Figure 7: Graphical representation of column vectors in the plane.
interpretation of a 2×2 linear system determines the addition law of vectors and the multiplication law of a vector by a number. In the example above, we know that the solution is given by $x_{1}=1$ and $x_{2}=2$, therefore in the column picture interpretation the following equation must hold

$$
\left[\begin{array}{r}
2 \\
-1
\end{array}\right]+\left[\begin{array}{r}
-1 \\
2
\end{array}\right] 2=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

This example and the study of other examples determines the multiplication law of a vector by numbers and the addition law of two vectors, according the following equations,

$$
\left[\begin{array}{r}
-1 \\
2
\end{array}\right] 2=\left[\begin{array}{r}
(-1) 2 \\
(2) 2
\end{array}\right], \quad\left[\begin{array}{r}
2 \\
-1
\end{array}\right]+\left[\begin{array}{r}
-2 \\
4
\end{array}\right]=\left[\begin{array}{r}
2-2 \\
-1+4
\end{array}\right] .
$$

The study of several examples of 2×2 linear systems in the column picture determines the following rule. Given any 2 -vectors $\boldsymbol{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ and $\boldsymbol{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, and real numbers a and b, introduce the linear combination of \boldsymbol{u} and \boldsymbol{v} as follows,

$$
a\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+b\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
a u_{1}+b v_{1} \\
a u_{2}+b v_{2}
\end{array}\right]
$$

A linear combination includes the particular cases of addition ($a=b=1$), and multiplication of a vector by a number $(b=0)$, respectively given by,

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right], \quad a\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
a u_{1} \\
a u_{2}
\end{array}\right]
$$

The addition law in terms of components is represented graphically by the parallelogram law, as it can be seen in Fig. 8. The multiplication of a vector by a number a affects the length and direction of the vector. The product $a \boldsymbol{u}$ stretches the vector \boldsymbol{u} when $a>1$ and it compresses \boldsymbol{u} when $0<a<1$. If $a<0$ then it reverses the direction of \boldsymbol{u} and it stretches when $a<-1$ and compresses when $-1<a<0$. Fig. 8 represents some of these possibilities. Notice that the difference of two vectors is a particular case of the parallelogram law, as it can be seen in Fig. 9.

Figure 8: The addition of vectors can be computed with the parallelogram law. The multiplication of a vector by a number stretches or compreses the vector, and changes it direction in the case that the number is negative.

Figure 9: The difference of two vectors is a particular case of the parallelogram law of addition of vectors.

Let us return to the 2×2 linear system in Eq. (1.6). This system of equations can be thought as follows: Given the vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ and the source \boldsymbol{b}, find the coefficients x_{1} and x_{2} that change the length of \boldsymbol{a}_{1} and \boldsymbol{a}_{2} such that they add up to \boldsymbol{b}, that is,

$$
\mathbf{a}_{1} x_{1}+\mathbf{a}_{2} x_{2}=\mathbf{b}
$$

Knowing that the solution is $x_{1}=1$ and $x_{2}=2$, then it is represented in Fig. 10.
The existence and uniqueness of solutions in the case of 2×2 systems can be studied geometrically in the column picture as it was done in the row picture. In this latter case we have seen that all possible 2×2 systems fall into one of these three cases, unique solution, infinitely many solutions and no solutions at all. In Fig. 11 we present these three casses in both row and column pictures.

The ideas in the column picture can be generalized to $m \times n$ linear equations, which gives rise to the generalization to m-vectors of the definitions of linear combination presented above. Given m-vectors

$$
\boldsymbol{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right] \quad \boldsymbol{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]
$$

Figure 10: Representation of the solution of a 2×2 linear system in the column picture.

Figure 11: Examples of a solutions of general 2×2 linear systems having a unique, infinite many, and no solution, represented in the row picture and in the column picture.
and real numbers a and b, introduce the linear combination of the vectors \boldsymbol{u} and \boldsymbol{v} as follows

$$
a\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right]+b\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right]=\left[\begin{array}{c}
a u_{1}+b v_{1} \\
\vdots \\
a u_{m}+b v_{m}
\end{array}\right] .
$$

This definition can be generalized to an arbitrary number of vectors. The m-vector \boldsymbol{b} is a linear combination of the m-vectors $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}$ iff there exist real numbers x_{1}, \cdots, x_{n} such that the following equation holds,

$$
\boldsymbol{a}_{1} x_{1}+\cdots+\boldsymbol{a}_{n} x_{n}=\boldsymbol{b}
$$

For example, recall the 3×3 system given as the second system in Eqs.(1.5). This system in the column picture is the following: Find numbers x_{1}, x_{2} and x_{3} such that

$$
\left[\begin{array}{r}
2 \tag{1.7}\\
-1 \\
1
\end{array}\right] x_{1}+\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] x_{2}+\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] x_{3}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right] .
$$

These are the main ideas in the column picture. We will se later that linear algebra emerges from the column picture. The next section we give a method, due to Gauss, to solve in an efficient way $m \times n$ linear systems for large m and n.

1.3 Gauss elimination method

The Gauss elimination operations (GEO) is a method to find solutions to $m \times n$ linear systems in an efficient way. Efficient means performing as few as possible algebraic steps to find the solution or to show that the solutions does not exist. Before introducing this method, weneed several definitions. Consider an $m \times n$ linear system

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} & =b_{1} \\
& \vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} & =b_{m} .
\end{aligned}
$$

Introduce the matrix of coefficients and the augmented matrix of a linear system, given respectively by the following expressions,

$$
A:=\overbrace{\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]}^{n \text { columns }} m \text { rows, } \quad[A \mid \boldsymbol{b}]:=\left[\begin{array}{ccc|c}
a_{11} & \cdots & a_{1 n} & b_{1} \\
\vdots & & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

We call A an $m \times n$ matrix, and so the augmented matrix of an $m \times n$ linear system is given by the coefficients and the source vector together, so it is an $m \times(n+1)$ matrix. The symbol ":=" denote "definition". For example, in the linear system

$$
\begin{array}{r}
2 x_{1}-x_{2}=0, \\
-x_{1}+2 x_{2}=3,
\end{array}
$$

the matrix of coefficients is 2×2 and the augmented matrix is 2×3, given respectively by

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad\left[\begin{array}{rr|r}
2 & -1 & 0 \\
-1 & 2 & 3
\end{array}\right]
$$

We also use the alternative notation $A=\left[a_{i j}\right], \boldsymbol{b}=\left[b_{i}\right]$. Given a matrix $A=\left[a_{i j}\right]$, the elements $a_{i i}$ are called diagonal elements. Examples of diagonal elements in $3 \times 3,2 \times 3$ and 3×2 matrices are given by the following matrices, where $*$ means a non-diagonal element,

$$
\left[\begin{array}{ccc}
a_{11} & * & * \\
* & a_{22} & * \\
* & * & a_{33}
\end{array}\right], \quad\left[\begin{array}{ccc}
a_{11} & * & * \\
* & a_{22} & *
\end{array}\right], \quad\left[\begin{array}{cc}
a_{11} & * \\
* & a_{22} \\
* & *
\end{array}\right] .
$$

The Gauss elimination operations refers to the following three operations performed on the augmented matrix:
(i) Adding to one row a multiple of the another;
(ii) Interchanging two rows;
(iii) Multiplying a row by a non-zero number.

These operations are respectively represented by the symbols given in Fig. 12.

Figure 12: A representation of the Gauss elimination operations.
The Gauss elimination operations change the coefficients of the augmented matrix of a system but do not change its solution. Two systems of linear equations having the same
solutions are called equivalent. It can be shown that there is an algorithm using these operations such that given any $m \times n$ linear system there exists an equivalent system whose augmented matrix is simple in the sense that the solution can be found by inspection. For example, consider the 2×2 linear system in Eq. (1.6), construct its augmented matrix, and perform the following Gauss elimination operations,

$$
\begin{gathered}
{\left[\begin{array}{rr|r}
2 & -1 & 0 \\
-1 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
2 & -1 & 0 \\
-2 & 4 & 6
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
2 & -1 & 0 \\
0 & 3 & 6
\end{array}\right] \rightarrow} \\
{\left[\begin{array}{rr|r}
2 & -1 & 0 \\
0 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
2 & 0 & 2 \\
0 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right],}
\end{gathered}
$$

and in the last augmented matrix the solution, $x_{1}=1, x_{2}=2$ is easy to read. A precise way to define the notion of easy to read is captured in the notion is in echelon form. An $m \times n$ matrix is in echelon form iff every element below the diagonal vanishes. Matrices with this property are also called upper triangular. A matrix is in reduced echelon form iff it is in echelon form and the first nonzero element in every row satisfies both that it is equal to 1 and it is the only nonzero element in that column. As an example, the following matrices are in echelon form,

$$
\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{rrr}
2 & 3 & 2 \\
0 & 4 & -2
\end{array}\right], \quad\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 3 & 4 \\
0 & 0 & 0
\end{array}\right] .
$$

And the following matrices are not only in echelon form but also in reduced echelon form,

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 0 & 4 \\
0 & 1 & 5
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Summarizing, the Gauss elimination operations can transform any matrix into a reduce echelon form. Once the augmented matrix of a linear system is written in reduced echelon form, it is not difficult to decide whether the system has solutions or not. For example, suppose that the augmented matrix of a 3×3 linear system has the following reduced echelon form,

$$
\left[\begin{array}{lll|l}
1 & 0 & 2 & 1 \\
0 & 1 & 3 & \mid \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
x_{1}=1-2 x_{3} \\
x_{2}=2-3 x_{3} \\
x_{3}: \text { free variable }
\end{array}\right.
$$

A variable of an $m \times n$ linear system is called a free variable iff for every value of that variable there exists a solution to the linear system. The following result characterizes $n \times n$ linear systems having free variables.

Lemma 1.1 An $n \times n$ linear system has k free variables iff the reduced echelon form of its augmented matrix contains k rows of the form $[0, \cdots, 0 \mid 0]$.

We left the proof as an exercise. As an example, consider the 2×2 linear system

$$
\begin{align*}
2 x_{1}-x_{2} & =1 \tag{1.8}\\
-\frac{1}{2} x_{1}+\frac{1}{4} x_{1} & =-\frac{1}{4} . \tag{1.9}
\end{align*}
$$

It is not difficult to check that Gauss elimination oparations can transform the system augmented matrix as follow,

$$
\left[\begin{array}{cc|c}
2 & -1 & 1 \\
-\frac{1}{2} & \frac{1}{4} & -\frac{1}{4}
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
2 & -1 & 1 \\
0 & 0 & 0
\end{array}\right],
$$

so the system above has a free variable, and therefore, infinitely many solutions. On the other hand, consider a linear system with the same matrix coefficients as the one in Eq. (1.8)-(1.9) but with a different source vector:

$$
\begin{align*}
2 x_{1}-x_{2} & =0 \tag{1.10}\\
-\frac{1}{2} x_{1}+\frac{1}{4} x_{1} & =-\frac{1}{4} . \tag{1.11}
\end{align*}
$$

Multiplying the second equation by -4 one obtains the equation

$$
2 x_{1}-x_{2}=1
$$

whose solutions form a parallel line to the line given in Eq. (1.10). Therefore, the system in Eqs. (1.10)-(1.11) has no solution. Using Gauss elimination operations it is not difficult to check that the system augmented matrix can be transformed as follows,

$$
\left[\begin{array}{cc:c}
2 & -1 & 0 \\
-\frac{1}{2} & \frac{1}{4} & -\frac{1}{4}
\end{array}\right] \rightarrow\left[\begin{array}{cc:c}
2 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The last row has the form $[0,0 \mid 1]$, which is a contradiction, therefore the system in Eqs. (1.10)(1.11) has no solutions. These examples are particular cases of the following result.

Lemma 1.2 An $m \times n$ linear system is inconsistent iff the reduced echelon form of its augmented matrix contains a row of the form $[0, \cdots, 0 \mid 1]$.

Furthermore, a consistent system contains:
(i) A unique solution iff has no free variables;
(ii) Infinitely many solutions iff it contains at least one free variable.

The proof is left as an exercise. The idea of the proof is to study all possible forms a reduced echelon form can have, one concluds that there are three main cases, no solutions, unique solutions, or infinitely many solutions, according to the form of the reduced echelon for of the system augmented matrix. In the case of 3×3 linear systems they have, respectively, the following form,

$$
\left[\begin{array}{ccc|c}
1 & 0 & * & * \\
0 & 1 & * & * \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc|c}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right], \quad\left[\begin{array}{lll|l}
1 & 0 & * & * \\
0 & 1 & * & * \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Consider the following exercise: Find all numbers h and k such that the system below has only one, many, or no solutions,

$$
\begin{aligned}
x_{1}+h x_{2} & =1 \\
x_{1}+2 x_{2} & =k
\end{aligned}
$$

Start finding the associated augmented matrix and reducing it into echelon form,

$$
\left[\begin{array}{cc:c}
1 & h & 1 \\
1 & 2 & k
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & h & 1 \\
0 & 2-h & k-1
\end{array}\right]
$$

Suppose $h \neq 2$, for example set $h=1$, then

$$
\left[\begin{array}{cc:c}
1 & 1 & 1 \\
0 & 1 & k-1
\end{array}\right] \rightarrow\left[\begin{array}{cc:c}
1 & 0 & 2-k \\
0 & 1 & k-1
\end{array}\right]
$$

so the system has a unique solution for all values of k. (The same conclusion holds if one sets h to any number different of 2.) Suppose now that $h=2$, then,

$$
\left[\begin{array}{cc|c}
1 & 2 & 1 \\
0 & 0 & k-1
\end{array}\right]
$$

If $k=1$ then

$$
\left[\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
x_{1}=1-2 x_{2} \\
x_{2}: \text { free variable }
\end{array}\right.
$$

so there are infinitely many solutions. If $k \neq 1$, then

$$
\left[\begin{array}{cc|c}
1 & 2 & 1 \\
0 & 0 & k-1 \neq 0
\end{array}\right]
$$

and the system is inconsistent. Summarizing, for $h \neq 2$ the system has a unique solution for every k. If $h=2$ and $k=1$ the system has infinitely many solutions, and if $h=2$ and $k \neq 1$ the system has no solution.

1.4 The span of a set of vectors

Recall that in Sec. 1.2 we have said that a vector \boldsymbol{u} is a linear combination of the vectors $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}$ iff there exist real numbers c_{1}, \cdots, c_{n} such that

$$
\boldsymbol{u}=c_{1} \boldsymbol{v}_{1}+\cdots+c_{n} \boldsymbol{v}_{n}
$$

An important concept in linear algebra is that of Span of a set of vectors. The Span of the set of m-vectors $\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ is the set in \mathbb{R}^{m} of all possible linear combinations of the vectors $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}$. We use the notation

$$
\operatorname{Span}\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\} \subset \mathbb{R}^{m}
$$

For example, all possible linear combinations of a single vector \mathbf{v} are vectors of the form $c \mathbf{v}$, which form a line tangent to \mathbf{v}. All linear combinations of two vectors \mathbf{v}, \mathbf{w} form a plane that contains both vectors. Examples of these situations can be seen in Fig. 13.

Figure 13: Examples of the span of a set of a single vector, and the span of a set of two vectors.

The concept of span enters in the column picture interpretation of a linear system. The $m \times n$ linear system $\boldsymbol{a}_{1} x_{1}+\cdots+\boldsymbol{a}_{n} x_{n}=\boldsymbol{b}$ has a solution iff the source vector \boldsymbol{b} belongs to the $\operatorname{Span}\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right\}$.

1.5 A matrix is a function

Matrices have been introduced in Sec. 1.3, in order to find solutions to linear systems using the Gauss elimination operations on the augmented matrix of the linear system. In this section we introduce another interpretation of a matrix, which is thought as a function between two sets. Consider an $m \times n$ linear system given by

$$
\boldsymbol{a}_{1} x_{1}+\cdots+\boldsymbol{a}_{n} x_{n}=\boldsymbol{b}
$$

and introduce the matrix of coefficients $A=\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right]$. The new idea is to consider the numbers x_{1}, \cdots, x_{n} as an n-vector $\boldsymbol{x} \in \mathbb{R}^{n}$ given by

$$
\boldsymbol{x}:=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

The matrix-vector product of an $m \times n$ matrix A and an n-vector \boldsymbol{x} is defined as

$$
A \boldsymbol{x}:=\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]:=\boldsymbol{a}_{1} x_{1}+\cdots+\boldsymbol{a}_{n} x_{n}
$$

Therefore, an $m \times n$ linear system can be presented as follows: Given an $m \times n$ matrix A and an m-vector \boldsymbol{b}, find an n-vector \boldsymbol{x} solution of $A \boldsymbol{x}=\boldsymbol{b}$. As an example, consider the 2×2 linear system given in Eq. (1.6). Introduce then the vector

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Then the linear system above can be written as

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

Let us consider a second example, given by the 2×3 linear system in the unknowns x_{1} and x_{2} given by

$$
\begin{array}{r}
x_{1}-x_{2}=0, \\
-x_{1}+x_{2}=2, \\
x_{1}+x_{2}=0
\end{array}
$$

The column picture interpretation is

$$
\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] x_{1}+\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right] x_{2}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right] .
$$

while the matrix interpretation is

$$
\left[\begin{array}{rr}
1 & -1 \\
-1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]
$$

Consider a third example,

$$
\begin{array}{r}
2 x_{1}-x_{2}+x_{3}=0, \\
-x_{1}+2 x_{2}-x_{3}=3 .
\end{array}
$$

The column picture interpretation is

$$
\left[\begin{array}{r}
2 \\
-1
\end{array}\right] x_{1}+\left[\begin{array}{r}
-1 \\
2
\end{array}\right] x_{2}+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] x_{3}=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

while the matrix intepretation is

$$
\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

Theorem 1.2 If A is an $m \times n$ matrix, $\boldsymbol{u}, \boldsymbol{v}$ are arbitrary n-vectors, and a, b are arbitrary real numbers, then the matrix-vector product satisfies the following equation

$$
A(a \boldsymbol{u}+b \boldsymbol{v})=a A \boldsymbol{u}+b A \boldsymbol{v}
$$

Proof of Theorem 1.2:

$$
\begin{aligned}
A(a \boldsymbol{u}+b \boldsymbol{v}) & =\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right]\left[\begin{array}{c}
a u_{1}+b v_{2} \\
\vdots \\
a u_{n}+b v_{n}
\end{array}\right] \\
& =\boldsymbol{a}\left(a u_{1}+b v_{2}\right)+\cdots+\boldsymbol{a}_{n}\left(a u_{n}+b v_{n}\right) \\
& =a\left(\boldsymbol{a}_{1} u_{1}+\cdots+\boldsymbol{a}_{n} u_{n}\right)+b\left(\boldsymbol{a}_{1} v_{1}+\cdots+\boldsymbol{a}_{n} v_{n}\right) \\
& =a A \boldsymbol{u}+b A \boldsymbol{v} .
\end{aligned}
$$

