
Math 20F
Quiz 2 (version 1)
April 22, 2005

1. (1.7.14) Find the value of h for which the set of vectors
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is linearly dependent. Justify your answer.
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will be linearly dependent if and only if the homogeneous vector

equation x1
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 has a nontrivial solution.

The augmented matrix of the corresponding homogeneous matrix equation is
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−1 6 −1 0
−2 11 h 0
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which is row equivalent to
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1 −5 2 0
0 1 1 0
0 0 3 + h 0
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, which has has nontrivial solutions when h = −3.

Thus, the set of vectors is linearly dependent precisely when h = −3. A typical dependence relation

is −7





1
−1
−2



 −





−5
6
11



 +





2
−1
−3



 =





0
0
0



.

2. (1.9.3) Find the standard matrix for the linear transformation T :
�

2
→

�
2 that

rotates points (about the origin) through 3π

2
radians (counterclockwise).

Rotating

[
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by 3π
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radians yields
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and rotating
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by 3π

2
radians yields
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. Thus,

T (e1) = T

([

1
0

])

=

[

0
−1

]

T (e2) = T

([

0
1
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=

[

1
0

]

Hence, the standard matrix for T is [ T (e1) T (e2) ] =

[

0 1
−1 0

]

.

3. (2.2.24) Suppose A is n × n and the equation Ax = b has a solution for each b

in
�

n . Explain why A must be invertible. [Hint: Is A row equivalent to I
n
?]

Since Ax = b has a solution for each b in � n , we can solve each of the n matrix equations

Au1 = e1

Au2 = e2

· · · · · ·

Aun = en

Thus, A [ u1 u2 · · · un ] = [ Au1 Au2 · · · Aun ] = [ e1 e2 · · · en ] = I . This means that the matrix

B = [ u1 u2 · · · un ] satisfies AB = I , which implies that A is invertible.


