

Review: Partial derivatives

Definition 1 Consider a function $f: D \subset \mathbb{R}^2 \to R \subset \mathbb{R}$. The functions partial derivatives of f(x, y) are denoted by $f_x(x, y)$ and $f_y(x, y)$, and are given by the expressions

$$f_x(x,y) = \lim_{h \to 0} \frac{1}{h} [f(x+h,y) - f(x,y)],$$

$$f_y(x,y) = \lim_{h \to 0} \frac{1}{h} [f(x,y+h) - f(x,y)].$$

Review: Higher derivatives

Higher derivatives of a function f(x, y) are partial derivatives of its partial derivatives. For example, the second partial derivatives of f(x, y) are the following:

Slide 3

$$f_{xx}(x,y) = \lim_{h \to 0} \frac{1}{h} \left[f_x(x+h,y) - f_x(x,y) \right],$$

$$f_{yy}(x,y) = \lim_{h \to 0} \frac{1}{h} \left[f_y(x,y+h) - f_y(x,y) \right],$$

$$f_{xy}(x,y) = \lim_{h \to 0} \frac{1}{h} \left[f_x(x+h,y) - f_x(x,y) \right],$$

$$f_{yx}(x,y) = \lim_{h \to 0} \frac{1}{h} \left[f_y(x,y+h) - f_y(x,y) \right].$$

Higher derivatives

Slide 4

Theorem 1 (Partial derivatives commute) Consider a function f(x, y) in a domain D. Assume that f_{xy} and f_{yx} exists and are continuous in D. Then,

$$f_{xy} = f_{yx}.$$

Differential equations are equations where the unknown is a function, and where derivatives of the function enter into the equation. Examples:

• Laplace equation: Find $\phi(x, y, z) : D \subset \mathbb{R}^3 \to \mathbb{R}$ solution of

$$\phi_{xx} + \phi_{yy} + \phi_{zz} = 0.$$

Slide 5

• Heat equation: Find a function $T(t,x,y,z):D\subset I\!\!R^4\to I\!\!R$ solution of

$$T_t = T_{xx} + T_{yy} + T_{zz}.$$

• Wave equation: Find a function $f(t,x,y,z):D\subset I\!\!R^4\to I\!\!R$ solution of

 $f_{tt} = f_{xx} + f_{yy} + f_{zz}.$

Exercises:

- Verify that the function $T(t, x) = e^{-t} \sin(x)$ satisfies the one-space dimensional heat equation $T_t = T_{xx}$.
- Verify that the function $f(t, x) = (t x)^3$ satisfies the one-space dimensional wave equation $T_{tt} = T_{xx}$.
- Verify that the function below satisfies Laplace Equation,

$$\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

There is a counterexample:

$$f(x,y) = \begin{cases} 2xy/(x^2 + y^2) & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

Slide 7

What is a faithful generalization of the concept of derivative to functions f(x, y)?

The concept of linear approximation.

If $f'(x_0)$ exists, then $L(x) = f'(x_0)(x - x_0) + f(x_0)$ approximates f(x) for x near x_0 .

What is the analog of L(x) in functions of two variables?

The analog to the line L(x) is a plane L(x, y).

Summary

Consider a function f(x, y) such that $f(x_0, y_0)$, $f_x(x_0, y_0)$, and $f_y(x_0, y_0)$ exist. Then, the plane

Slide 8

 $L_{(x_0,y_0)}(x,y) = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + f(x_0,y_0)$

is well defined.

If this plane approximates f(x, y) for (x, y) near (x_0, y_0) , then we will say that f(x, y) is differentiable at (x_0, y_0) .

Differentiable functions of two variables

Idea: A function f(x, y) is differentiable at (x_0, y_0) if there exists the plane from its partial derivatives at (x_0, y_0) ,

AND

Slide 9

this plane approximates the graph of f(x, y) near (x_0, y_0) .

Definition 2 (Differentiable functions) The function f(x, y) is differentiable at (x_0, y_0) if

 $f(x,y) = L_{(x_0,y_0)}(x,y) + \epsilon_1(x-x_0) + \epsilon_2(y-y_0),$

and $\epsilon_i(x,y) \to 0$ when $(x,y) \to (x_0,y_0)$, for i = 1, 2.

The following result is useful to check the differentiability of a function.

Theorem 2 Consider a function f(x, y). Assume that its partial derivatives $f_x(x, y)$, $f_y(x, y)$ exist at (x_0, y_0) and near (x_0, y_0) , and both are continuous functions at (x_0, y_0) .

Then, f(x, y) is differentiable at (x_0, y_0) .

Definition 3 (Linear approximation) If f(x, y) is differentiable, then $L_{(x_0,y_0)}(x, y)$ is called the linear approximation of f(x, y) at (x_0, y_0) .

Slide 11

Slide 10

• Linear approximation and differentials.

• Review: Differentiable functions. (Sec. 14.4)

• Chain rule. (Sec. 14.5)

Review: Differentiable functions Let f(x, y) be a function defined in a neighborhood of (x_0, y_0) such that the partial derivatives $f_x(x_0, y_0)$, $f_y(x_0, y_0)$ exist. Consider the plane $L_{(x_0, y_0)}(x, y)$ constructed with $f(x_0, y_0)$ and with the partial derivatives $f_x(x_0, y_0)$, $f_y(x_0, y_0)$ given by $L_{(x_0, y_0)}(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$. If this plane approximates the function f(x, y) near (x_0, y_0) , then we call f(x, y) differentiable at (x_0, y_0) . (Then, for differentiable functions, the plane is called the linear approximation of f(x, y) at (x_0, y_0) .)

Exercise: Differentiable functions

- Show that $f(x, y) = \arctan(x + 2y)$ is differentiable at (1, 0).
- Find its linear approximation at (1,0).

$$f_x(x,y) = \frac{1}{1 + (x+2y)^2}, \quad f_y(x,y) = \frac{2}{1 + (x+2y)^2}.$$

Slide 13

These functions are continuous in \mathbb{R}^2 , so f(x, y) is differentiable at every point in \mathbb{R}^2 .

$$L_{(1,0)}(x,y) = f_x(1,0)(x-1) + f_y(1,0)(y-0) + f(1,0),$$

where
$$f(1,0) = \arctan(1) = \pi/4$$
, $f_x(1,0) = 1/2$, $f_y(1,0) = 1$. Then

$$L_{(1,0)}(x,y) = \frac{1}{2}(x-1) + y + \frac{\pi}{4}$$

Exercise: Linear approximation

• Find the linear approximation of $f(x, y) = \sqrt{17 - x^2 - 4y^2}$ at (2, 1).

We need three numbers: f(2,1), $f_x(2,1)$, and $f_y(2,1)$. Then, we compute the linear approximation by the formula

$$L_{(2,1)}(x,y) = f_x(2,1)(x-2) + f_y(2,1)(y-1) + f(2,1).$$

The result is: f(2,1) = 3, $f_x(2,1) = -2/3$, and $f_y(2,1) = -4/3$. Then the plane is given by

$$L_{(2,1)}(x,y) = -\frac{2}{3}(x-2) - \frac{4}{3}(y-1) + 3$$

${\it Differentials}$

Different names for the same idea: Compute the linear approximation of a differentiable function.

The differential is a special name for $L_{(x_0,y_0)}(x,y) - f(x_0,y_0)$. Single variable case:

$$df(x) = L_{x_0}(x) - f(x_0) = f'(x_0)(x - x_0) = f'(x_0)dx$$

We called $(x - x_0) = dx$.

Functions of two variables:

$$df(x,y) = L_{(x_0,y_0)}(x,y) - f(x_0,y_0), \quad dx = x - x_0, \quad dy = y - y_0.$$

Then, the formula is easy to remember:

 $df(x,y) = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy.$

Slide 15

Exercise: Differentials • Compute the df of $f(x, y) = \ln(1 + x^2 + y^2)$ at (1, 1) for dx = 0.1, dy = 0.2. $df(x_0, y_0) = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy,$ $= \frac{2x_0}{1 + x_0^2 + y_0^2}dx + \frac{2y_0}{1 + x_0^2 + y_0^2}dy.$ Then, $df(1, 1) = \frac{2}{3}\frac{1}{10} + \frac{2}{3}\frac{2}{10},$ $= \frac{2}{3}\frac{3}{10},$

Slide 16

Exercise: Differentials• Use differentials to estimate the amount of tin in a closed tin can with internal diameter f 8cm and height of 12cm if the tin is 0.04cm thick. Data of the problem: $h_0 = 12cm$, $r_0 = 4cm$, dr = 0.04cm and dh = 0.08cm. Draw a picture of the cylinder. The function to consider is the volume of the cylinder, $V(r, h) = \pi r^2 h$. Then, $dV(r_0, h_0) = V_r(r_0, h_0)dr + V_h(r_0, h_0)dh$, $= 2\pi r_0 h_0 dr + \pi r_0^2 dh$ = 16.1cm.

Chain rule

• Single variable case. Given f(x), and x(t) differentiable functions, introduce z(t) = f(x(t)). Then, z(t) is differentiable, and

Slide 18

$$\frac{dz}{dt} = \frac{df}{dx}(x(t))\frac{dx}{dt}(t)$$

Or, using the new notation,

$$z_t(t) = f_x(x(t)) x_t(t)$$

 $Chain \ rule$ • Case 1: Given f(x, y) differentiable, and x(t), y(t)differentiable functions of a single variable, then z(t) = f(x(t), y(t)) is differentiable and $\frac{dz}{dt} = f_x(x(t), y(t)) \frac{dx}{dt}(t) + f_y(x(t), y(t)) \frac{dy}{dt}(t).$ Example: $f(x, y) = x^2 + 2y^3, x(t) = \sin(t), y(t) = \cos(2t).$ Let z(t) = f(x(t), y(t)). Then, $\frac{dz}{dt} = 2x(t)\frac{dx}{dt} + 6[y(t)]^2\frac{dy}{dt},$ $= 2x(t)\cos(t) - 12[y(t)]^2\sin(2t),$ $= 2\sin(t)\cos(t) - 12\cos^2(2t)\sin(2t).$

Example: Change of coordinates Consider the function $f(x, y) = x^2 + ay^2$, with $a \in \mathbb{R}$. Introduce polar coordinates r, θ by the formula $x(r, \theta) = r \cos(\theta), \quad y(r, \theta) = r \sin(\theta).$ Let $z(r, \theta) = f(x(r, \theta), y(r, \theta))$. Then, the chain rule, case 2, says that $z_r = f_x x_r + f_y y_r.$ Each term can be computed as follows, $f_x = 2x, \quad f_y 2ay,$ $x_r = \cos(\theta), \quad y_r = \sin(\theta),$ then one has $z_r = 2r\cos^2(\theta) + 2ar\sin^2(\theta).$