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Differentiable functions (Sec. 14.4)

• Review: Partial derivatives.

• Partial derivatives and continuity.

• Equation of the tangent plane.

• Differentiable functions.

• Application: Differentials. (Linear approximation.)
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Review: Partial derivatives

Definition 1 Consider a function f : D ⊂ IR2 → R ⊂ IR. The

functions partial derivatives of f(x, y) are denoted by fx(x, y) and

fy(x, y), and are given by the expressions

fx(x, y) = lim
h→0

1

h
[f(x+ h, y)− f(x, y)] ,

fy(x, y) = lim
h→0

1

h
[f(x, y + h)− f(x, y)] .
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Review: Higher derivatives

Higher derivatives of a function f(x, y) are partial derivatives of its

partial derivatives. For example, the second partial derivatives of

f(x, y) are the following:

fxx(x, y) = lim
h→0

1

h
[fx(x+ h, y)− fx(x, y)] ,

fyy(x, y) = lim
h→0

1

h
[fy(x, y + h)− fy(x, y)] ,

fxy(x, y) = lim
h→0

1

h
[fx(x+ h, y)− fx(x, y)] ,

fyx(x, y) = lim
h→0

1

h
[fy(x, y + h)− fy(x, y)] .
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Higher derivatives

Theorem 1 (Partial derivatives commute) Consider a

function f(x, y) in a domain D. Assume that fxy and fyx exists

and are continuous in D. Then,

fxy = fyx.
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Examples of differential equations

Differential equations are equations where the unknown is a

function, and where derivatives of the function enter into the

equation. Examples:

• Laplace equation: Find φ(x, y, z) : D ⊂ IR3 → IR solution of

φxx + φyy + φzz = 0.

• Heat equation: Find a function T (t, x, y, z) : D ⊂ IR4 → IR

solution of

Tt = Txx + Tyy + Tzz.

• Wave equation: Find a function f(t, x, y, z) : D ⊂ IR4 → IR

solution of

ftt = fxx + fyy + fzz.

Exercises:

• Verify that the function T (t, x) = e−t sin(x) satisfies the one-space dimensional heat
equation Tt = Txx.

• Verify that the function f(t, x) = (t − x)3 satisfies the one-space dimensional wave
equation Ttt = Txx.

• Verify that the function below satisfies Laplace Equation,

φ(x, y, z) =
1√

x2 + y2 + z2
.
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Partial derivatives and continuity

Partial derivatives generalize the idea of derivative from single

variable functions, f(x) to functions f(x, y), as follows,

Are the partial derivatives a faithful generalization?

NO.

Claim: If f ′(x) exists, then f(x) is continuous.

True.

(Proof: limh→0[f(x+ h)− f(x)] = limh→0{[f(x+ h)− f(x)]/h}h =

limh→0 f
′(x)h = 0.)

Claim: If fx(x, y) and fy(x, y) exists, then f(x, y) i continuous.

False.
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There is a counterexample:

f(x, y) =





2xy/(x2 + y2) (x, y) 6= (0, 0),

0 (x, y) = (0, 0).

What is a faithful generalization of the concept of derivative to

functions f(x, y)?

The concept of linear approximation.

If f ′(x0) exists, then L(x) = f ′(x0)(x− x0) + f(x0) approximates

f(x) for x near x0.

What is the analog of L(x) in functions of two variables?

The analog to the line L(x) is a plane L(x, y).



Math 20C Multivariable Calculus Lecture 13 5

Slide 8

'

&

$

%

Summary

Consider a function f(x, y) such that f(x0, y0), fx(x0, y0), and

fy(x0, y0) exist. Then, the plane

L(x0,y0)(x, y) = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) + f(x0, y0)

is well defined.

If this plane approximates f(x, y) for (x, y) near (x0, y0), then we

will say that f(x, y) is differentiable at (x0, y0).
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Differentiable functions of two variables

Idea: A function f(x, y) is differentiable at (x0, y0) if there exists

the plane from its partial derivatives at (x0, y0),

AND

this plane approximates the graph of f(x, y) near (x0, y0).

Definition 2 (Differentiable functions) The function f(x, y) is

differentiable at (x0, y0) if

f(x, y) = L(x0,y0)(x, y) + ε1(x − x0) + ε2(y − y0),

and εi(x, y)→ 0 when (x, y)→ (x0, y0), for i = 1, 2.
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The following result is useful to check the differentiability of a

function.

Theorem 2 Consider a function f(x, y). Assume that its partial

derivatives fx(x, y), fy(x, y) exist at (x0, y0) and near (x0, y0), and

both are continuous functions at (x0, y0).

Then, f(x, y) is differentiable at (x0, y0).

Definition 3 (Linear approximation) If f(x, y) is

differentiable, then L(x0,y0)(x, y) is called the linear approximation

of f(x, y) at (x0, y0).
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Differentials and chain rule

• Review: Differentiable functions. (Sec. 14.4)

• Linear approximation and differentials.

• Chain rule. (Sec. 14.5)
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Review: Differentiable functions

Let f(x, y) be a function defined in a neighborhood of (x0, y0) such

that the partial derivatives fx(x0, y0), fy(x0, y0) exist.

Consider the plane L(x0,y0)(x, y) constructed with f(x0, y0) and

with the partial derivatives fx(x0, y0), fy(x0, y0) given by

L(x0,y0)(x, y) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0).

If this plane approximates the function f(x, y) near (x0, y0), then

we call f(x, y) differentiable at (x0, y0).

(Then, for differentiable functions, the plane is called the linear

approximation of f(x, y) at (x0, y0).)
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Exercise: Differentiable functions

• Show that f(x, y) = arctan(x+ 2y) is differentiable at (1, 0).

• Find its linear approximation at (1, 0).

fx(x, y) =
1

1 + (x+ 2y)2
, fy(x, y) =

2

1 + (x+ 2y)2
.

These functions are continuous in IR2, so f(x, y) is differentiable at

every point in IR2.

L(1,0)(x, y) = fx(1, 0)(x− 1) + fy(1, 0)(y − 0) + f(1, 0),

where f(1, 0) = arctan(1) = π/4, fx(1, 0) = 1/2, fy(1, 0) = 1. Then,

L(1,0)(x, y) =
1

2
(x− 1) + y +

π

4
.
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Exercise: Linear approximation

• Find the linear approximation of f(x, y) =
√

17− x2 − 4y2 at

(2, 1).

We need three numbers: f(2, 1), fx(2, 1), and fy(2, 1). Then, we

compute the linear approximation by the formula

L(2,1)(x, y) = fx(2, 1)(x− 2) + fy(2, 1)(y − 1) + f(2, 1).

The result is: f(2, 1) = 3, fx(2, 1) = −2/3, and fy(2, 1) = −4/3.

Then the plane is given by

L(2,1)(x, y) = −2

3
(x− 2)− 4

3
(y − 1) + 3.
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Differentials

Different names for the same idea: Compute the linear

approximation of a differentiable function.

The differential is a special name for L(x0,y0)(x, y)− f(x0, y0).

Single variable case:

df(x) = Lx0(x) − f(x0) = f ′(x0)(x − x0) = f ′(x0)dx.

We called (x− x0) = dx.

Functions of two variables:

df(x, y) = L(x0,y0)(x, y)− f(x0, y0), dx = x− x0, dy = y − y0.

Then, the formula is easy to remember:

df(x, y) = fx(x0, y0)dx+ fy(x0, y0)dy.
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Exercise: Differentials

• Compute the df of f(x, y) = ln(1 + x2 + y2) at (1, 1) for

dx = 0.1, dy = 0.2.

df(x0, y0) = fx(x0, y0)dx+ fy(x0, y0)dy,

=
2x0

1 + x2
0 + y2

0

dx+
2y0

1 + x2
0 + y2

0

dy.

Then,

df(1, 1) =
2

3

1

10
+

2

3

2

10
,

=
2

3

3

10
,

=
1

5
.
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Exercise: Differentials

• Use differentials to estimate the amount of tin in a closed tin

can with internal diameter f 8cm and height of 12cm if the tin

is 0.04cm thick.

Data of the problem: h0 = 12cm, r0 = 4cm, dr = 0.04cm and

dh = 0.08cm. Draw a picture of the cylinder.

The function to consider is the volume of the cylinder,

V (r, h) = πr2h.

Then,

dV (r0, h0) = Vr(r0, h0)dr + Vh(r0, h0)dh,

= 2πr0h0dr + πr2
0dh

= 16.1cm.
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Chain rule

• Single variable case. Given f(x), and x(t) differentiable

functions, introduce z(t) = f(x(t)). Then, z(t) is differentiable,

and
dz

dt
=
df

dx
(x(t))

dx

dt
(t).

Or, using the new notation,

zt(t) = fx(x(t))xt(t).
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Chain rule

• Case 1: Given f(x, y) differentiable, and x(t), y(t)

differentiable functions of a single variable, then

z(t) = f(x(t), y(t)) is differentiable and

dz

dt
= fx(x(t), y(t))

dx

dt
(t) + fy(x(t), y(t))

dy

dt
(t).

Example: f(x, y) = x2 + 2y3, x(t) = sin(t), y(t) = cos(2t). Let

z(t) = f(x(t), y(t)). Then,

dz

dt
= 2x(t)

dx

dt
+ 6[y(t)]2

dy

dt
,

= 2x(t) cos(t)− 12[y(t)]2 sin(2t),

= 2 sin(t) cos(t)− 12 cos2(2t) sin(2t).
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Chain rule

• Case 2: Given f(x, y) differentiable, and x(t, s), y(t, s)

differentiable functions of a two variable, then

z(t, s) = f(x(t, s), y(t, s)) is differentiable and

zt(t, s) = fx(x(t, s), y(t, s))xt(t, s) + fy(x(t, s), y(t, s)) yt(t, s),

zs(t, s) = fx(x(t, s), y(t, s))xs(t, s) + fy(x(t, s), y(t, s)) ys(t, s).
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Example: Change of coordinates

Consider the function f(x, y) = x2 + ay2, with a ∈ IR. Introduce

polar coordinates r, θ by the formula

x(r, θ) = r cos(θ), y(r, θ) = r sin(θ).

Let z(r, θ) = f(x(r, θ), y(r, θ)). Then, the chain rule, case 2, says

that

zr = fxxr + fyyr.

Each term can be computed as follows,

fx = 2x, fy2ay,

xr = cos(θ), yr = sin(θ),

then one has

zr = 2r cos2(θ) + 2ar sin2(θ).


