Differentiable functions (Sec. 14.4)

- Review: Partial derivatives.

Slide 1

- Partial derivatives and continuity.
- Equation of the tangent plane.
- Differentiable functions.
- Application: Differentials. (Linear approximation.)

Review: Partial derivatives

Definition 1 Consider a function $f: D \subset \mathbb{R}^{2} \rightarrow R \subset \mathbb{R}$. The functions partial derivatives of $f(x, y)$ are denoted by $f_{x}(x, y)$ and
Slide 2 $f_{y}(x, y)$, and are given by the expressions

$$
\begin{aligned}
f_{x}(x, y) & =\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h, y)-f(x, y)] \\
f_{y}(x, y) & =\lim _{h \rightarrow 0} \frac{1}{h}[f(x, y+h)-f(x, y)]
\end{aligned}
$$

Review: Higher derivatives

Higher derivatives of a function $f(x, y)$ are partial derivatives of its partial derivatives. For example, the second partial derivatives of $f(x, y)$ are the following:

Slide 3

$$
\begin{aligned}
& f_{x x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{x}(x+h, y)-f_{x}(x, y)\right] \\
& f_{y y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{y}(x, y+h)-f_{y}(x, y)\right] \\
& f_{x y}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{x}(x+h, y)-f_{x}(x, y)\right] \\
& f_{y x}(x, y)=\lim _{h \rightarrow 0} \frac{1}{h}\left[f_{y}(x, y+h)-f_{y}(x, y)\right]
\end{aligned}
$$

Higher derivatives

Theorem 1 (Partial derivatives commute) Consider a
Slide 4 function $f(x, y)$ in a domain D. Assume that $f_{x y}$ and $f_{y x}$ exists and are continuous in D. Then,

$$
f_{x y}=f_{y x} .
$$

Examples of differential equations

Differential equations are equations where the unknown is a function, and where derivatives of the function enter into the equation. Examples:

- Laplace equation: Find $\phi(x, y, z): D \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ solution of

Slide 5

$$
\phi_{x x}+\phi_{y y}+\phi_{z z}=0 .
$$

- Heat equation: Find a function $T(t, x, y, z): D \subset \mathbb{R}^{4} \rightarrow \mathbb{R}$ solution of

$$
T_{t}=T_{x x}+T_{y y}+T_{z z}
$$

- Wave equation: Find a function $f(t, x, y, z): D \subset \mathbb{R}^{4} \rightarrow \mathbb{R}$ solution of

$$
f_{t t}=f_{x x}+f_{y y}+f_{z z} .
$$

Exercises:

- Verify that the function $T(t, x)=e^{-t} \sin (x)$ satisfies the one-space dimensional heat equation $T_{t}=T_{x x}$.
- Verify that the function $f(t, x)=(t-x)^{3}$ satisfies the one-space dimensional wave equation $T_{t t}=T_{x x}$.
- Verify that the function below satisfies Laplace Equation,

$$
\phi(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

Partial derivatives and continuity

Partial derivatives generalize the idea of derivative from single variable functions, $f(x)$ to functions $f(x, y)$, as follows,

Are the partial derivatives a faithful generalization?
NO.
Claim: If $f^{\prime}(x)$ exists, then $f(x)$ is continuous.
True.
(Proof: $\lim _{h \rightarrow 0}[f(x+h)-f(x)]=\lim _{h \rightarrow 0}\{[f(x+h)-f(x)] / h\} h=$ $\lim _{h \rightarrow 0} f^{\prime}(x) h=0$.)

Claim: If $f_{x}(x, y)$ and $f_{y}(x, y)$ exists, then $f(x, y)$ i continuous.
False.

There is a counterexample:

$$
f(x, y)=\left\{\begin{array}{cl}
2 x y /\left(x^{2}+y^{2}\right) & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

What is a faithful generalization of the concept of derivative to
functions $f(x, y)$?
The concept of linear approximation.
If $f^{\prime}\left(x_{0}\right)$ exists, then $L(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$ approximates $f(x)$ for x near x_{0}.

What is the analog of $L(x)$ in functions of two variables?
The analog to the line $L(x)$ is a plane $L(x, y)$.

Summary

Consider a function $f(x, y)$ such that $f\left(x_{0}, y_{0}\right), f_{x}\left(x_{0}, y_{0}\right)$, and $f_{y}\left(x_{0}, y_{0}\right)$ exist. Then, the plane
Slide 8

$$
L_{\left(x_{0}, y_{0}\right)}(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

is well defined.
If this plane approximates $f(x, y)$ for (x, y) near $\left(x_{0}, y_{0}\right)$, then we will say that $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$.

Differentiable functions of two variables

Idea: A function $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if there exists the plane from its partial derivatives at $\left(x_{0}, y_{0}\right)$,

AND
Slide 9
this plane approximates the graph of $f(x, y)$ near $\left(x_{0}, y_{0}\right)$.
Definition 2 (Differentiable functions) The function $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if

$$
f(x, y)=L_{\left(x_{0}, y_{0}\right)}(x, y)+\epsilon_{1}\left(x-x_{0}\right)+\epsilon_{2}\left(y-y_{0}\right)
$$

and $\epsilon_{i}(x, y) \rightarrow 0$ when $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$, for $i=1,2$.

The following result is useful to check the differentiability of a function.

Theorem 2 Consider a function $f(x, y)$. Assume that its partial derivatives $f_{x}(x, y), f_{y}(x, y)$ exist at $\left(x_{0}, y_{0}\right)$ and near $\left(x_{0}, y_{0}\right)$, and both are continuous functions at $\left(x_{0}, y_{0}\right)$.
Then, $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$.
Definition 3 (Linear approximation) If $f(x, y)$ is
differentiable, then $L_{\left(x_{0}, y_{0}\right)}(x, y)$ is called the linear approximation of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$.

Differentials and chain rule

Slide 11

- Review: Differentiable functions. (Sec. 14.4)
- Linear approximation and differentials.
- Chain rule. (Sec. 14.5)

Review: Differentiable functions

Let $f(x, y)$ be a function defined in a neighborhood of $\left(x_{0}, y_{0}\right)$ such that the partial derivatives $f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)$ exist.

Consider the plane $L_{\left(x_{0}, y_{0}\right)}(x, y)$ constructed with $f\left(x_{0}, y_{0}\right)$ and
Slide 12 with the partial derivatives $f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)$ given by

$$
L_{\left(x_{0}, y_{0}\right)}(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

If this plane approximates the function $f(x, y)$ near $\left(x_{0}, y_{0}\right)$, then we call $f(x, y)$ differentiable at $\left(x_{0}, y_{0}\right)$.
(Then, for differentiable functions, the plane is called the linear approximation of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$.)

Exercise: Differentiable functions

- Show that $f(x, y)=\arctan (x+2 y)$ is differentiable at $(1,0)$.
- Find its linear approximation at $(1,0)$.

$$
f_{x}(x, y)=\frac{1}{1+(x+2 y)^{2}}, \quad f_{y}(x, y)=\frac{2}{1+(x+2 y)^{2}}
$$

These functions are continuous in \mathbb{R}^{2}, so $f(x, y)$ is differentiable at every point in \mathbb{R}^{2}.

$$
L_{(1,0)}(x, y)=f_{x}(1,0)(x-1)+f_{y}(1,0)(y-0)+f(1,0),
$$

where $f(1,0)=\arctan (1)=\pi / 4, f_{x}(1,0)=1 / 2, f_{y}(1,0)=1$. Then,

$$
L_{(1,0)}(x, y)=\frac{1}{2}(x-1)+y+\frac{\pi}{4}
$$

Exercise: Linear approximation

- Find the linear approximation of $f(x, y)=\sqrt{17-x^{2}-4 y^{2}}$ at $(2,1)$.

We need three numbers: $f(2,1), f_{x}(2,1)$, and $f_{y}(2,1)$. Then, we
Slide 14

Differentials

Different names for the same idea: Compute the linear approximation of a differentiable function.
The differential is a special name for $L_{\left(x_{0}, y_{0}\right)}(x, y)-f\left(x_{0}, y_{0}\right)$.
Single variable case:
Slide 15

$$
d f(x)=L_{x_{0}}(x)-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=f^{\prime}\left(x_{0}\right) d x
$$

We called $\left(x-x_{0}\right)=d x$.
Functions of two variables:

$$
d f(x, y)=L_{\left(x_{0}, y_{0}\right)}(x, y)-f\left(x_{0}, y_{0}\right), \quad d x=x-x_{0}, \quad d y=y-y_{0}
$$

Then, the formula is easy to remember:

$$
d f(x, y)=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

Exercise: Differentials

- Compute the $d f$ of $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$ at $(1,1)$ for $d x=0.1, d y=0.2$.

$$
\begin{aligned}
d f\left(x_{0}, y_{0}\right) & =f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y \\
& =\frac{2 x_{0}}{1+x_{0}^{2}+y_{0}^{2}} d x+\frac{2 y_{0}}{1+x_{0}^{2}+y_{0}^{2}} d y
\end{aligned}
$$

Then,

$$
\begin{aligned}
d f(1,1) & =\frac{2}{3} \frac{1}{10}+\frac{2}{3} \frac{2}{10} \\
& =\frac{2}{3} \frac{3}{10} \\
& =\frac{1}{5}
\end{aligned}
$$

Exercise: Differentials

- Use differentials to estimate the amount of tin in a closed tin can with internal diameter f 8 cm and height of 12 cm if the tin is 0.04 cm thick.

Data of the problem: $h_{0}=12 \mathrm{~cm}, r_{0}=4 \mathrm{~cm}, d r=0.04 \mathrm{~cm}$ and $d h=0.08 \mathrm{~cm}$. Draw a picture of the cylinder.
Slide 17
The function to consider is the volume of the cylinder,

$$
V(r, h)=\pi r^{2} h
$$

Then,

$$
\begin{aligned}
d V\left(r_{0}, h_{0}\right) & =V_{r}\left(r_{0}, h_{0}\right) d r+V_{h}\left(r_{0}, h_{0}\right) d h \\
& =2 \pi r_{0} h_{0} d r+\pi r_{0}^{2} d h \\
& =16.1 \mathrm{~cm}
\end{aligned}
$$

Chain rule

- Single variable case. Given $f(x)$, and $x(t)$ differentiable functions, introduce $z(t)=f(x(t))$. Then, $z(t)$ is differentiable, and

$$
\frac{d z}{d t}=\frac{d f}{d x}(x(t)) \frac{d x}{d t}(t) .
$$

Or, using the new notation,

$$
z_{t}(t)=f_{x}(x(t)) x_{t}(t)
$$

Chain rule

- Case 1: Given $f(x, y)$ differentiable, and $x(t), y(t)$
differentiable functions of a single variable, then $z(t)=f(x(t), y(t))$ is differentiable and

$$
\frac{d z}{d t}=f_{x}(x(t), y(t)) \frac{d x}{d t}(t)+f_{y}(x(t), y(t)) \frac{d y}{d t}(t)
$$

Example: $f(x, y)=x^{2}+2 y^{3}, x(t)=\sin (t), y(t)=\cos (2 t)$. Let $z(t)=f(x(t), y(t))$. Then,

$$
\begin{aligned}
\frac{d z}{d t} & =2 x(t) \frac{d x}{d t}+6[y(t)]^{2} \frac{d y}{d t} \\
& =2 x(t) \cos (t)-12[y(t)]^{2} \sin (2 t) \\
& =2 \sin (t) \cos (t)-12 \cos ^{2}(2 t) \sin (2 t)
\end{aligned}
$$

Chain rule

- Case 2: Given $f(x, y)$ differentiable, and $x(t, s), y(t, s)$

Slide 20

Example: Change of coordinates

Consider the function $f(x, y)=x^{2}+a y^{2}$, with $a \in \mathbb{R}$. Introduce polar coordinates r, θ by the formula

$$
x(r, \theta)=r \cos (\theta), \quad y(r, \theta)=r \sin (\theta) .
$$

Let $z(r, \theta)=f(x(r, \theta), y(r, \theta))$. Then, the chain rule, case 2 , says
Slide 21

$$
z_{r}=f_{x} x_{r}+f_{y} y_{r}
$$

Each term can be computed as follows,

$$
\begin{gathered}
f_{x}=2 x, \quad f_{y} 2 a y, \\
x_{r}=\cos (\theta), \quad y_{r}=\sin (\theta),
\end{gathered}
$$

then one has

$$
z_{r}=2 r \cos ^{2}(\theta)+2 a r \sin ^{2}(\theta) .
$$

