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Limits and Continuity

• Review of Limit.

• Side limits and squeeze theorem.

• Continuous functions of 2,3 variables.
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Review: Limits

Definition 1 Given a function f(x, y) : D ⊂ IR2 → IR and a point

(x0, y0) ∈ IR2, we write

lim
(x,y)→(x0,y0)

f(x, y) = L,

if and only if for all (x, y) ∈ D close enough in distance to (x0, y0)

the values of f(x, y) approaches L.
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A tool to show that a limit does not exist is the following:

Theorem 1 (Side limits) If f(x, y)→ L1 along a path C1 as

(x, y)→ (x0, y0), and f(x, y)→ L2 along a path C2 as

(x, y)→ (x0, y0), with L1 6= L2, then

lim
(x,y)→(x0,y0)

f(x, y) does not exist.

A tool to prove that a limit exists is the following:

Theorem 2 (Squeeze) Assume f(x, y) ≤ g(x, y) ≤ h(x, y) for all

(x, y) near (x0, y0);

Assume

lim
(x,y)→(x0,y0)

f(x, y) = L = lim
(x,y)→(x0,y0)

h(x, y),

Then

lim
(x,y)→(x0,y0)

g(x, y) = L.

Example: How to use the side limit theorem.

• Does the following limit exist?

lim
(x,y)→(0,0)

3x2

x2 + 2y2
. (1)

So, the function is f(x, y) = (3x2)/(x2 + 2y2). Let pick the curve C1 as the x-axis,
that is, y = 0. Then,

f(x, 0) =
3x2

x2
= 3,

then
lim

(x,0)→(0,0)
f(x, 0) = 3.

Let us now pick up the curve C2 as the y-axis, that is, x = 0. Then,

f(0, y) = 0,

then
lim

(x,0)→(0,0)
f(x, 0) = 0.

Therefore, the limit in (1) does not exist.

Notice that in the above example one could compute the limit for arbitrary lines, that is,
Cm given by y = mx, with m a constant. Then

f(x,mx) =
3x2

x2 + 2m2x2
=

3

1 + 2m2
,
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so one has that

lim
(x,mx)→(0,0)

f(x,mx) =
3

1 + 2m2

is different for each value of m.
Example: How to use the squeeze theorem.

• Does the following limit exist?

lim
(x,y)→(0,0)

x2y

x2 + y2
. (2)

Let us first try the side limit theorem, to try to prove that the limit does not exist.
Consider the curves Cm given by y = mx, with m a constant. Then

f(x,mx) =
x2mx

x2 +m2x2
=

mx

1 +m2
,

so one has that
lim

(x,mx)→(0,0)
f(x,mx) = 0, ∀m ∈ IR.

Therefore, one cannot conclude that the limit does not exist. However, this argu-
ment does not prove that the limit actually exists.This can be done with the squeeze
theorem.

First notice that

x2

x2 + y2
≤ 1, ∀ (x, y) ∈ IR2, (x, y) 6= (0, 0).

(proof: 0 ≤ y2, then x2 ≤ (x2 + y2).) Therefore, one has the inequality

−|y| ≤ x2y

x2 + y2
≤ |y|, ∀ (x, y) ∈ IR2, (x, y) 6= (0, 0).

Then, one knows that limy→0 |y| = 0, therefore the squeeze theorem says that

lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.
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Limits and Continuity

Limit laws for functions of a single variable also holds for functions

of two variables.

If the limits limx→x0 f and limx→x0 g exist, then

lim
x→x0

(f ± g) =

(
lim

x→x0

f

)
±
(

lim
x→x0

g

)
,

lim
x→x0

(fg) =

(
lim

x→x0

f

)(
lim

x→x0

g

)
.

Definition 2 (Continuity) A function f(x, y) is continuous at

(x0, y0) if

lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).
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Continuity

Examples of continuous functions:

• Polynomial functions are continuous in IR2, for example

P2(x, y) = a0 + b1x+ b2y + c1x
2 + c2xy + c3y

2.

• Rational functions are continuous on their domain,

f(x, y) =
Pn(x, y)

Qm(x, y)
,

for example,

f(x, y) =
x2 + 3y − x2y2 + y4

x2 − y2
, x 6= ±y.

• Composition of continuous functions are continuous, example

f(x, y) = cos(x2 + y2).
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Partial derivatives

• Definition of Partial derivatives.

• Higher derivatives.

• Examples of differential equations.
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Partial derivatives

Definition 3 (Partial derivative) Consider a function

f : D ⊂ IR2 → R ⊂ IR.

The partial derivative of f(x, y) with respect to x at (a, b) ∈ D is

denoted as fx(a, b) and is given by

fx(a, b) = lim
h→0

1

h
[f(a+ h, b)− f(a, b)] .

The partial derivative of f(x, y) with respect to y at (a, b) ∈ D is

denoted as fy(a, b) and is given by

fy(a, b) = lim
h→0

1

h
[f(a, b+ h)− f(a, b)] .
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So, to compute the partial derivative of f(x, y) with respect to x at (a, b), one can do the
following: First, evaluate the function at y = b, that is compute f(x, b); second, compute
the usual derivative of single variable functions; evaluate the result at x = a, and the result
is fx(a, b).

Example:

• Find the partial derivative of f(x, y) = x2 + y2/4 with respect to x at (1, 3).

1. f(x, 3) = x2 + 9/4;

2. fx(x, 3) = 2x;

3. fx(1, 3) = 2.

To compute the partial derivative of f(x, y) with respect to y at (a, b), one follows the
same idea: First, evaluate the function at x = a, that is compute f(a, y); second, compute
the usual derivative of single variable functions; evaluate the result at y = b,, and the result
is fy(a, b).

Example:

• Find the partial derivative of f(x, y) = x2 + y2/4 with respect to y at (1, 3).

1. f(1, y) = 1 + y2/4;

2. fy(1, y) = y/2;

3. fy(1, 3) = 3/2.

Discuss the geometrical meaning of the partial derivative using the graph of the function.
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Partial derivatives

The partial derivatives of f computed at any point (x, y) ∈ D define

the functions fx(x, y) and fy(x, y), the partial derivatives of f .

More precisely:

Definition 4 Consider a function f : D ⊂ IR2 → R ⊂ IR. The

functions partial derivatives of f(x, y) are denoted by fx(x, y) and

fy(x, y), and are given by the expressions

fx(x, y) = lim
h→0

1

h
[f(x+ h, y)− f(x, y)] ,

fy(x, y) = lim
h→0

1

h
[f(x, y + h)− f(x, y)] .
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Examples:

•

f(x, y) = ax2 + by2 + xy.

fx(x, y) = 2ax+ 0 + y,

= 2ax+ y.

fy(x, y) = 0 + 2by + x,

= 2by + x.

•

f(x, y) = x2 ln(y),

fx(x, y) = 2x ln(y),

fy(x, y) =
x2

y
.

•

f(x, y) = x2 +
y2

4
,

fx(x, y) = 2x,

fy(x, y) =
y

2
.

•

f(x, y) =
2x− y
x+ 2y

,

fx(x, y) =
2(x+ 2y)− (2x− y)

(x+ 2y)2
,

=
2x+ 4y − 2x+ y

(x + 2y)2
,

=
5y

(x+ 2y)2
.

fy(x, y) =
−(x+ 2y)− (2x− y)2

(x+ 2y)2
,

=
−5x

(x+ 2y)2
.

•

f(x, y) = x3e2y + 3y,

fx(x, y) = 3x2e2y,

fy(x, y) = 2x3e2y + 3,

fyy(x, y) = 4x3e2y,

fyyy(x, y) = 8x3e2y,

fxy = 6x2e2y,

fyx = 6x2e2y.
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Higher derivatives

Higher derivatives of a function f(x, y) are partial derivatives of its

partial derivatives. For example, the second partial derivatives of

f(x, y) are the following:

fxx(x, y) = lim
h→0

1

h
[fx(x+ h, y)− fx(x, y)] ,

fyy(x, y) = lim
h→0

1

h
[fy(x, y + h)− fy(x, y)] ,

fxy(x, y) = lim
h→0

1

h
[fx(x+ h, y)− fx(x, y)] ,

fyx(x, y) = lim
h→0

1

h
[fy(x, y + h)− fy(x, y)] .
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Higher derivatives

Theorem 3 (Partial derivatives commute) Consider a

function f(x, y) in a domain D. Assume that fxy and fyx exists

and are continuous in D. Then,

fxy = fyx.
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Examples of differential equations

Differential equations are equations where the unknown is a

function, and where derivatives of the function enter into the

equation. Examples:

• Laplace equation: Find φ(x, y, z) : D ⊂ IR3 → IR solution of

φxx + φyy + φzz = 0.

• Heat equation: Find a function T (t, x, y, z) : D ⊂ IR4 → IR

solution of

Tt = Txx + Tyy + Tzz.

• Wave equation: Find a function f(t, x, y, z) : D ⊂ IR4 → IR

solution of

ftt = fxx + fyy + fzz.
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Exercises:

• Verify that the function T (t, x) = e−t sin(x) satisfies the one-space dimensional heat
equation Tt = Txx.

• Verify that the function f(t, x) = (t − x)3 satisfies the one-space dimensional wave
equation Ttt = Txx.

• Verify that the function below satisfies Laplace Equation,

φ(x, y, z) =
1√

x2 + y2 + z2
.


