Coordinates in space

Slide 1

- Overview of vector calculus.
- Coordinate systems in space.
- Distance formula. (Sec. 12.1)

Vector calculus studies derivatives and integrals of functions of more than one variable

Math 20A studies: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)$, differential calculus.
Math 20B studies: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)$, integral calculus.
Slide 2 Math 20C considers:

$$
\begin{gathered}
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y) ; \\
f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f(x, y, z) ; \\
\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle .
\end{gathered}
$$

Incorporate one more axis to \mathbb{R}^{2} and one gets \mathbb{R}^{3}

Every point in a plane can be labeled by an ordered pair of numbers, (x, y). (Descartes' idea.)

Slide 3
Every point in the space can be labeled by an ordered triple of numbers, (x, y, z).

There are two types of coordinates systems in space aside from rotations: Right handed and Left handed.

The same happens in \mathbb{R}^{2}.

The distance between points in space is crucial to generalize the idea of limit to functions in space

Slide 4
Theorem 1 The distance between the points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ is given by $\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$.

A sphere is the set of points at fixed distance from a center

Application of the distance formula: The sphere centered
Slide 5 at $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ of radius R are all points $P=(x, y, z)$ such that

$$
\left|P_{0} P\right|=R,
$$

that is,

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=R^{2} .
$$

Exercises with spheres

- Fix constants a, b, c, and d. Show that

$$
x^{2}+y^{2}+z^{2}-2 a x-2 b y-2 c z=d
$$

Slide 6 is the equation of a sphere if and only if

$$
d>-\left(a^{2}+b^{2}+c^{2}\right)
$$

- Give the expressions for the center P_{0} and the radius R of the sphere.

Vectors in space

- Definition and main operations:

Slide 7

- Addition, Difference.
- Multiplication by a number.
- Components of a vector in a coordinate system.

What are vectors? ~ 1800 Physicists and
Mathematicians realized that several different physical phenomena were described using the same idea, the same concept. These phenomena included velocities,
Slide 8 accelerations, forces, rotations, electric and magnetic phenomena, heat transfer, etc.

The new concept were more than a number in the sense that it was needed more than a single number to specify it.

Definition $1 A$ vector in \mathbb{R}^{3} is an oriented segment.

Operations with vectors

- Addition: Parallelogram law.

Slide 9

- Multiplication by a number. (Positive, negative, or zero.)
- Difference.

Components on a vector The operations with vectors, defined geometrically can be written in terms of components.
Given the vectors $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle, \mathbf{w}=\left\langle w_{x}, w_{y}, w_{z}\right\rangle$ in \mathbb{R}^{3}, and a number $a \in \mathbb{R}$, then the following expressions
Slide 10 hold,

$$
\begin{aligned}
\mathbf{v}+\mathbf{w} & =\left\langle\left(v_{x}+w_{x}\right),\left(v_{y}+w_{y}\right),\left(v_{z}+w_{z}\right)\right\rangle, \\
\mathbf{v}-\mathbf{w} & =\left\langle\left(v_{x}-w_{x}\right),\left(v_{y}-w_{y}\right),\left(v_{z}-w_{z}\right)\right\rangle, \\
a \mathbf{v} & =\left\langle a v_{x}, a v_{y}, a v_{z}\right\rangle, \\
|\mathbf{v}| & =\left[\left(v_{x}\right)^{2}+\left(v_{y}\right)^{2}+\left(v_{z}\right)^{2}\right]^{1 / 2} .
\end{aligned}
$$

Useful vectors:

$$
\begin{aligned}
\mathbf{i} & =\langle 1,0,0\rangle \\
\mathbf{j} & =\langle 0,1,0\rangle \\
\mathbf{k} & =\langle 0,0,1\rangle
\end{aligned}
$$

Every vector \mathbf{v} in \mathbb{R}^{3} can be written uniquely in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$.
The following equation holds,

$$
\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}
$$

Dot Product

Slide 12

- Definition
- Properties
- Equivalent expression

Definition and properties

Definition 2 Let \mathbf{v}, \mathbf{w} be vectors and $0 \leq \theta \leq \pi$ be the angle in between. Then

$$
\mathbf{v} \cdot \mathbf{w}=|\mathbf{v}||\mathbf{w}| \cos (\theta) .
$$

Slide 13
Properties:

- $\mathbf{v} \cdot \mathbf{w}=0 \Longleftrightarrow \mathbf{v} \perp \mathbf{w}, \quad(\theta=\pi / 2) ;$
- $\mathbf{v} \cdot \mathbf{v}=|\mathbf{v}|^{2}, \quad(\theta=0)$;
- $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}, \quad($ commutative);
- $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$.

Equivalent expression

Theorem 2 Let $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle, \mathbf{w}=\left\langle w_{x}, w_{y}, w_{z}\right\rangle$. Then

$$
\mathbf{v} \cdot \mathbf{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}
$$

Slide 14
For the proof, recall that

$$
\begin{aligned}
& \mathbf{i}=\langle 1,0,0\rangle, \quad \mathbf{j}=\langle 0,1,0\rangle, \quad \mathbf{k}=\langle 0,0,1\rangle \\
& \mathbf{i} \cdot \mathbf{i}=1, \quad \mathbf{j} \cdot \mathbf{j}=1, \quad \mathbf{k} \cdot \mathbf{k}=1, \\
& \mathbf{i} \cdot \mathbf{j}=0, \quad \mathbf{j} \cdot \mathbf{i}=0, \quad \mathbf{k} \cdot \mathbf{i}=0, \\
& \mathbf{i} \cdot \mathbf{k}=0, \quad \mathbf{j} \cdot \mathbf{k}=0, \quad \mathbf{k} \cdot \mathbf{j}=0
\end{aligned}
$$

Cross Product

- Definition

Slide 15

- Properties (Determinants)
- Equivalent expression
- Triple product

Definition

Definition 3 Let \mathbf{v}, w be 3-dimensional vectors, and $0 \leq \theta \leq \pi$ be the angle in between them. Then, $\mathbf{v} \times \mathbf{w}$ is a vector normal to \mathbf{v} and \mathbf{w}, pointing in the direction given by the right hand rule, and with norm

Slide 16

$$
|\mathbf{v} \times \mathbf{w}|=|\mathbf{v}||\mathbf{w}| \sin (\theta) .
$$

Example:

$$
\begin{aligned}
\mathbf{i} \times \mathbf{j} & =\mathbf{k}, & \mathbf{j} \times \mathbf{i} & =-\mathbf{k}, \\
\mathbf{j} \times \mathbf{k} & =\mathbf{i}, & \mathbf{k} \times \mathbf{j} & =-\mathbf{i}, \\
\mathbf{k} \times \mathbf{i} & =\mathbf{j}, & \mathbf{i} \times \mathbf{k} & =-\mathbf{j} .
\end{aligned}
$$

Properties

- $\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}$,
- $\mathbf{v} \times \mathbf{v}=0$,

Slide 17

- $(a \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(a \mathbf{w})=a(\mathbf{v} \times \mathbf{w})$,
- $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$,
- $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$.

Notice: $\mathbf{u} \times(\mathbf{v} \times \mathbf{w}) \neq(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.
Example: $\mathbf{i} \times(\mathbf{i} \times \mathbf{k})=-\mathbf{k}$, but $(\mathbf{i} \times \mathbf{i}) \times \mathbf{k}=0$.

Theorem 3 If $\mathbf{v}, \mathbf{w} \neq 0$, then the following assertion holds:

$$
\mathbf{v} \times \mathbf{w}=0 \Leftrightarrow \mathbf{v} \text { parallel } \mathbf{w}
$$

Theorem $4|\mathbf{v} \times \mathbf{w}|$ is the area of the parallelogram formed by \mathbf{v} and \mathbf{w}.
Slide 18
Theorem 5 Let $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$. Then,

$$
\mathbf{v} \times \mathbf{w}=\left\langle\left(v_{2} w_{3}-v_{3} w_{2}\right),\left(v_{3} w_{1}-v_{1} w_{3}\right),\left(v_{1} w_{2}-v_{2} w_{1}\right)\right\rangle .
$$

For the proof of the last theorem, recall that

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j} .
$$

Note on determinants

They are useful un several areas of Mathematics. We don't study them in our course. We use them only as a tool to remember the components of $\mathbf{v} \times \mathbf{w}$.

Slide 19

$$
\begin{gathered}
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c . \\
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{cc}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
\end{gathered}
$$

Triple product

Definition 4 Given $\mathbf{u}, \mathbf{v}, \mathbf{w}$, the triple product is the number given by

Slide 20

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})
$$

Theorem 6 Fix nonzero vectors \mathbf{u}, \mathbf{v}, w. Then, $|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$ is the volume of the parallelepiped determined by $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

Note: $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v}$.

