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Orthogonal vectors, spaces and bases

• Review: Inner product → Norm → Distance.

• Orthogonal vectors and subspaces.

• Orthogonal projections.

• Orthogonal and orthonormal bases.
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An inner product fixes the notions of angles,

length and distance

( , ), must be positive, symmetric and linear, that is,

1. (u,u) ≥ 0, and (u,u) = 0 ⇔ u = 0;

2. (u,v) = (v,u);

3. (au + bv,w) = a(u,w) + b(v,w).

‖u‖ =
√

(u,u),

dist(u,v) = ‖u− v‖.
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We transfer the notion of perpendicular vectors

from IR2, IR3 to V

In IR2 holds

u ⊥ v ⇔ Pythagoras formula holds,

⇔ Diagonals of a parallelogram

have the same length,

Definition 1 Let V , ( , ) be an inner product space,

then u, v ∈ V are called orthogonal or perpendicular

⇔ (u,v) = 0.
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Double-check, orthogonal vectors then form a

generalized rectangle

Theorem 1 Let V be a vector space and u, v ∈ V .

Then,

‖u + v‖ = ‖u− v‖ ⇔ (u,v) = 0.

Proof:

‖u + v‖2 = (u + v,u + v) = ‖u‖2 + ‖v‖2 + 2(u,v).

‖u− v‖2 = (u− v,u− v) = ‖u‖2 + ‖v‖2 − 2(u,v).

then,

‖u + v‖2 − ‖u − v‖2 = 4(u,v).
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The vectors cos(x), sin(x) which belong to C([0, 2π])

are orthogonal

(cos(x), sin(x)) =

∫ 2π

0

sin(x) cos(x) dx,

=
1

2

∫ 2π

0

sin(2x) dx,

= −1

4

(
cos(2x)|2π0

)
,

= 0.
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Even subspaces can be orthogonal!

Definition 2 Let V , ( , ) an inner product space and

W ⊂ V a subspace. Then W⊥ is the orthogonal subspace,

given by

W⊥ = {v ∈ V : (v,u) = 0, for all u ∈ W}.
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Orthogonal projection of a vector along any other

vector is always possible

Fix V, ( , ), and u ∈ V , with u 6= 0.

Can any vector x ∈ V be decomposed in orthogonal parts

with respect to u?

That is, x = au + x′ with (u,x′) = 0?

Is this decomposition unique?

Answer: Yes.
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Here is how to compute a and x′

Theorem 2 V, ( , ), an inner product vector space, and

u ∈ V , with u 6= 0. Then, any vector x ∈ V can be

uniquely decomposed as

x = au + x′, where a =
(x,u)

‖u‖2
.

Therefore,

x′ = x− (x,u)

‖u‖2
u, ⇒ (u,x′) = 0.
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Orthogonal projection along a vector
Proof: Introduce x′ by the equation x = au + x′. The condition (u,x′) = 0 implies that

(x,u) = a(u,u), ⇒ a =
(x,u)

‖u‖2 ,

then

x =
(x,u)

‖u‖2 u + x′, ⇒ x′ =
(x,u)

‖u‖2 u− x̂.

This decomposition is unique, because, given a second decomposition x = bu + y′ with
(u,y′) = 0, then

au + x′ = bu + y′ ⇒ a = b,

from a multiplication by u, and then,

x′ = y′.
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Bases can be chose to be composed by mutually

orthogonal vectors

Definition 3 Let V, ( , ) be an n dimensional inner

product space, and {u1, · · · ,un} be a basis of V .

The basis is orthogonal ⇔ (ui,uj) = 0, for all i 6= j.

The basis is orthonormal ⇔ it is orthogonal, and

‖ui‖ = 1, for all i,

where i, j = 1, · · · , n.
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To write x in an orthogonal basis is to decompose

x along each basis vector direction

Theorem 3 Let V, ( , ) be an n dimensional inner

product vector space, and {u1, · · · ,un} be an orthogonal

basis. Then, any x ∈ V can be written as

x = c1u1 + · · ·+ cnun,

with the coefficients have the form

ci =
(x,ui)

‖ui‖2
, i = 1, · · · , n.

Proof: The set {u1, · · · ,un} is a basis, so there exist coefficients ci such that x =
c1u1 + · · · + cnun. The basis is orthogonal, so multiplying the expression of x by ui, and
recalling (ui,uj) = 0 for all i 6= j, one gets,

(x,ui) = ci(ui,ui).

The ui are nonzero, so (ui,ui) = ‖ui‖2 6= 0, so ci = (x,ui)/‖ui‖2.


