Functions defined using infinite series

Slide 1

- Power series.
- The convergence of power series.
- Differentiation and integration.

The geometric series can be used to define a function

We have learned how to add infinitely many terms.
We can use this knowledge to define functions.
Slide 2

$$
f(x)=\sum_{n=0}^{\infty} x^{n}, \quad-1<x<1 .
$$

In this case we know the explicit expression for the sum:

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad-1<x<1
$$

A power series is an infinite sum of power functions

Definition $1 A$ power series centered at $x=0$ is given by

Slide 3

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots
$$

A power series centered at $x=a$ is given by
$f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots$
where a, c_{n} are constants.

Not every function constructed with an infinite series is a power series

Consider the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, which converges for $p>1$.
Slide 4 (By integral test, although the number that it converges to is not know exactly.)

$$
f(x)=\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{x}, \quad x \in(1, \infty),
$$

converges, but it is not a power series.

Here is a simple example of a power series

$$
f(x)=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}(x-2)^{n}, \quad 0<x<4
$$

Show that for $0<x<4$ holds

$$
\frac{2}{x}=1-\frac{1}{2}(x-2)+\frac{1}{4}(x-2)^{2}-\frac{1}{8}(x-2)^{3}+\cdots,
$$

What is the interval in x where $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges?

$$
\begin{gathered}
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots \\
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{2 n-1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots \\
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\sum_{n=0}^{\infty} n!x^{n}=1+x+2!x^{2}+3!x^{3}+\cdots
\end{gathered}
$$

Summary about the convergence of power series

Theorem 1 The convergence of $\sum_{n-0}^{\infty} c_{n}(x-a)^{n}$ is described by one of the following cases:

Slide 7

- Exists $R>0$ such that the series converges for $|x-a|<R$ and diverges for $|x-a|>R$. The series may or may not converge at the endpoints $x=a+R$ and $x=a-R$.
- The series converges for all $x \in \mathbb{R}(R=\infty)$.
- The series converges only for $x=a \quad(R=0)$.

Differentiation and integration of power series is done term by term

Theorem 2 Suppose that $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges for $|x-a|<R$, with $R>0$. Then,
Slide 9

$$
\begin{gathered}
f^{\prime}(x)=\sum_{n=0}^{\infty} n c_{n}(x-a)^{n-1} \\
\int f(x) d x=\sum_{n=0}^{\infty} \frac{c_{n}}{(n+1)}(x-a)^{(n+1)}+c .
\end{gathered}
$$

Both $f^{\prime}(x)$ and $\int f(x) d x$ converges for $|x-a|<R$.

