Integrals of functions on infinite domains

Slide 1

- Review: Improper integrals type I.
- Type II: Three main possibilities.
- Limit of an infinite sequence.

Generalizations of $\int_{a}^{b} f(x) d x$ in $I=[a, b]$
Integrals on infinite domains are called improper integrals of type I

Slide 2

- Type I: The interval is infinite: $I=(-\infty, b]$, or $I=[a, \infty)$ or $I=(-\infty, \infty)$.

Integrals of divergent functions on finite domains are called improper integrals of type II.

- Type II: $f(x)$ is not bounded at one or more points in $[a, b] .(f(x)$ can have a vertical asymptote in $[a, b]$.
Slide 3

$$
\int_{a}^{b^{-}} f(t) d t=\lim _{x \rightarrow b^{-}} \int_{a}^{x} f(t) d t
$$

The integral is said to converge if the limit exists and it is finite.
Otherwise the integral is said to diverge.

Type II: Vertical asymptote at a

Possibility (b):
Definition 2 If $f(x)$ is continuous in $(a, b]$ then
Slide 4

$$
\int_{a^{+}}^{b} f(t) d t=\lim _{x \rightarrow a^{+}} \int_{x}^{b} f(t) d t
$$

The integral is said to converge if the limit exists and it is finite.

Otherwise the integral is said to diverge.

Type II: Vertical asymptote in the interior
Possibility (c):
Definition 3 If $f(x)$ has a vertical asymptote at
Slide 5 $c \in(a, b)$, then

$$
\int_{a}^{b} f(t) d t=\int_{a}^{c^{-}} f(t) d t+\int_{c^{+}}^{b} f(t) d t
$$

provided that both integrals in the right hand side are convergent.

Comparison theorem: Type I (a) case

Theorem 1 Let $f(x), g(x)$ be continuous functions for
Slide 6 $x \geq a$ and such that $0 \leq g(x) \leq f(x)$. Then:

- If $\int_{a}^{\infty} f(x) d x$ converges $\Rightarrow \int_{a}^{\infty} g(x) d x$ converges.
- If $\int_{a}^{\infty} g(x) d x$ diverges $\Rightarrow \int_{a}^{\infty} f(x) d x$ diverges.

There are analogous versions for all other cases.

A sequence is a function whose domain are the positive integers

Definition 4 If for every positive integer n there is associated a real or complex number a_{n}, then the ordered

Slide 7 set

$$
a_{1}, a_{2}, \cdots, a_{n}, \cdots
$$

is called an infinite sequence. Is is denoted as $\left\{a_{n}\right\}$.
Definition 5 a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ (or \mathbb{C}) is called an infinite sequence.

The limits of sequences is the same as in functions of real numbers

Definition 6 The sequence $\left\{a_{n}\right\}$ is said to have the limit L is for all $\epsilon>0$ there exists a number $N>0$ such that

$$
\left|a_{n}-L\right|<\epsilon, \quad \text { for all } n \geq N .
$$

In this case we say $\lim _{n \rightarrow \infty} a_{n}=n$ or $a_{n} \rightarrow L$ as $n \rightarrow \infty$. We say that the sequence converges.
Otherwise, we say that the sequence diverges.

Increasing-decreasing and bounded above-below

 are important classes of sequences- A sequence $\left\{a_{n}\right\}$ is said to be increasing $\Leftrightarrow a_{n}<a_{n+1}$ for all $n \geq 1$.

Slide 9
A sequence $\left\{a_{n}\right\}$ is said to be decreasing $\Leftrightarrow a_{n+1}<a_{n}$ for all $n \geq 1$.

- A sequence $\left\{a_{n}\right\}$ is said to be bounded above \Leftrightarrow exists $M>0$ such that $a_{n}<M$ for all $n \geq 1$.
A sequence $\left\{a_{n}\right\}$ is said to be bounded below \Leftrightarrow exists $m>0$ such that $m<a_{n}$ for all $n \geq 1$.

Important tool to show that a sequence converges

- If $\left\{a_{n}\right\}$ is increasing and bounded above then converges.
- If $\left\{a_{n}\right\}$ is decreasing and bounded below then converges.

