Integration of rational functions

- Review: Decomposition of a polynomial.

Slide 1

- Integration of rational functions: Cases I - IV.
- Examples.
- The three main integrals.

A rational function is a quotient of polynomials

$$
\frac{P_{n}(x)}{Q_{m}(x)}=S_{p}(x)+\frac{R_{q}(x)}{Q_{m}(x)} .
$$

Slide 2
with $p=n-m$ and $0 \leq q<m$.
Quotients of polynomials can always be integrated

They can be reduced into one of four cases

There are four possible cases in the decomposition of a rational function

I: The denominator is a product of distinct linear factors.

II: The denominator is a product of linear factors, some
Slide 3
of which are repeated.

III: The denominator contains irreducible quadratic factors, none of which are repeated.

IV: The denominator contains irreducible quadratic factors, some of which are repeated.

Case I: The denominator is a product of distinct linear factors

$$
\int \frac{2 x^{2}+5 x-1}{x(x-1)(x+2)} d x
$$

Slide 4
Case II: The denominator is a product of linear factors, some of which are repeated

$$
\int \frac{x^{2}+2 x+3}{(x-1)(x+1)^{2}} d x
$$

Case III: The denominator contains irreducible quadratic factors, none of which are repeated

$$
\int \frac{3 x^{2}+2 x-2}{(x-1)\left(x^{2}+x+1\right)} d x
$$

Slide 5
Case IV: The denominator contains irreducible quadratic factors, some of which are repeated

$$
\int \frac{x^{4}-x^{3}+2 x^{2}-x+2}{(x-1)\left(x^{2}+2\right)^{2}} d x
$$

Every polynomial can be decomposed into a product of polynomials of degree one and two

Theorem 1 Every polynomial $Q_{m}(x)$ with $m \geq 0$ and real coefficients can be decomposed as
Slide 6
$Q_{m}(x)=a\left(x-a_{1}\right)^{\ell_{1}} \cdots\left(x-a_{r}\right)^{\ell_{r}}\left(x^{2}+b_{1} x+c_{1}\right)^{m_{1}} \cdots\left(x^{2}+b_{s} x+c_{s}\right)^{m_{s}}$.
with $m=\ell_{1}+\cdots+\ell_{r}+m_{1}+\cdots+m_{s}$.
The a_{1}, \cdots, a_{r} are roots of $Q_{m}(x)$, that is, $Q_{m}\left(a_{i}\right)=0$, for $i=1, \cdots, r$.

The problem of integrate a rational function reduces to that of calculating integrals of the form:

Slide 7

$$
\begin{gathered}
I_{1}=\int \frac{d x}{(x+a)^{m}} \\
I_{2}=\int \frac{x d x}{\left(x^{2}+b x+c\right)^{m}}, \quad I_{3}=\int \frac{d x}{\left(x^{2}+b x+c\right)^{m}}
\end{gathered}
$$

The solution for I_{1} is:
Slide 8

$$
I_{1}=\int \frac{d x}{(x+a)^{m}}= \begin{cases}\ln (|x+a|)+c & m=-1 \\ \frac{1}{(1-m)(x+a)^{m-1}}+c & m \neq-1\end{cases}
$$

The integrals I_{2} and I_{3} can be transformed into the following:

$$
\tilde{I}_{2}=\int \frac{u d u}{\left(u^{2}+\alpha^{2}\right)^{m}}, \quad \tilde{I}_{3}=\int \frac{d u}{\left(u^{2}+\alpha^{2}\right)^{m}} .
$$

with the substitution

$$
u=x+\frac{b}{2}, \quad \alpha=\frac{1}{2} \sqrt{4 c-b^{2}} .
$$

The solution of \tilde{I}_{2} is:
Slide 10

$$
\tilde{I}_{2}=\int \frac{u d u}{\left(u^{2}+\alpha^{2}\right)^{m}}= \begin{cases}\frac{1}{2} \ln \left(u^{2}+\alpha^{2}\right)+c & m=-1 \\ \frac{1}{2(1-m)\left(u^{2}+\alpha^{2}\right)^{m-1}}+c & m \neq-1 /\end{cases}
$$

The solution of \tilde{I}_{3} is:

$$
\tilde{I}_{3}=\int \frac{d u}{\left(u^{2}+\alpha^{2}\right)}=\frac{1}{\alpha} \arctan \left(\frac{u}{\alpha}\right)+c, \quad m=1
$$

Slide 11
The case $m>1$ is reduced to the case $m=1$ by the following recursive formula
$\int \frac{d u}{\left(u^{2}+\alpha^{2}\right)^{m}}=\frac{1}{2(m-1) \alpha^{2}} \frac{u}{\left(u^{2}+\alpha^{2}\right)^{m}}+\frac{2 m-3}{2(m-1) \alpha^{2}} \int \frac{d u}{\left(u^{2}+\alpha^{2}\right)^{(m-1)}}$.

So, we have integrated all possible cases!

