$z=a+b i$, powers, roots, and exponentials

Slide 1

- Review: Cartesian and polar representations.
- Powers and roots.
- Exponential and Euler formula.

Complex numbers can be associated with points in a plane

- Cartesian picture: Good for representing addition and

Slide 2 real number multiplication. (Parallelogram law and stretching.)

- Polar picture: Good for representing the multiplication law.
(Stretching and rotation.)

The power of a complex number is very easy to compute in the polar representation

Theorem 1 (De Moivre)
Slide 3

$$
(r[\cos (\theta)+i \sin (\theta)])^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)]
$$

Equivalently:

$$
z=r[\cos (\theta)+i \sin (\theta)] \Rightarrow z^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)]
$$

Then,

$$
(a+b i)^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)] .
$$

Magic at work: There are n solutions to the n-th root of a complex number
(In real numbers there are one or two, for n is odd or even, respectively.)
Theorem 2 Let $z=r[\cos (\theta)+i \sin (\theta)]$ and $n \geq 1$.
Slide 5
Then, the complex numbers

$$
w_{k}=r^{\frac{1}{n}}\left[\cos \left(\frac{\theta}{n}+\frac{2 \pi}{n} k\right)+i \sin \left(\frac{\theta}{n}+\frac{2 \pi}{n} k\right)\right]
$$

$k=0, \cdots, n-1$ satisfy the equation

$$
\left(w_{k}\right)^{n}=z
$$

First, recall a simple result with real numbers

Slide 6 Theorem 3

$$
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

for all $x \in \mathbb{R}$.

Second, consider the following application of De Moivre formula

$$
[\cos (\theta)+i \sin (\theta)]=\left[\cos \left(\frac{\theta}{n}\right)+i \sin \left(\frac{\theta}{n}\right)\right]^{n} .
$$

Therefore,

$$
[\cos (\theta)+i \sin (\theta)]=\lim _{n \rightarrow \infty}\left(1+\frac{i \theta}{n}\right)^{n}
$$

Euler formula is one of the most beautiful formulas we have seen so far

The calculation above suggests the following relation:
Slide 8

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta) .
$$

In particular, one has Euler formula:

$$
e^{i \pi}-1=0 .
$$

