

Slide 2

Areas between curves are computed with appropriate integrals

Slide 3

Theorem 2 Let f(x), g(x) be continuous functions in [a, b]. If $f(x) \ge g(x)$ with $x \in [a, b]$, then the area between their graphs is

$$A = \int_{a}^{b} [f(x) - g(x)] \, dx.$$

The hypothesis that $f(x) \ge g(x)$ is not needed

Theorem 3 Let f(x), g(x) be continuous functions in [a, b]. Then the area between their graphs is

Slide 4

$$A = \int_a^b |f(x) - g(x)| \, dx.$$

Just replace f(x) - g(x) by its absolute value |f(x) - g(x)|.

Volumes are computed integrating the area function

Slide 5

Theorem 4 Let S be 3-dimensional body that along the x-axis lies in [a, b]. Let A(x) be the cross section area of S perpendicular to the x-axis evaluated at x. Then, the volume of S is

$$V = \int_{a}^{b} A(x) \, dx.$$

The volume of solids of revolution are computed with a particular case of the previous formula

- Given a function f(x) with $x \in [a, b]$, construct a solid of revolution rotating the graph of f around the *x*-axis.
- The sections perpendicular to the x-axis of such a solid are precisely disks or radius f(x).
- Then, the area of cross sections for such a solid is $A(x) = \pi [f(x)]^2$.

Slide 6

The volume of solids of revolution are computed with a particular case of the previous formula

Slide 7

Theorem 5 Let S be 3-dimensional solid of revolution obtained rotating the graph of f(x) for $x \in [a, b]$ along the x-axis. Then, the volume of S is

$$V = \pi \int_a^b [f(x)]^2 \, dx.$$