Areas and volumes are computed by integration

- Review: Substitution rule.

Slide 1

- Areas between curves (Sec. 6.1).
- Volumes: (Sec. 6.2)
- General solid.
- Solids of revolution.

Substitution is an inverse form of the chain rule.
Theorem 1 (Change of variable) Let $g(x)$ be
Slide 2 differentiable in $[a, b]$ with $g^{\prime}(x)$ continuous in $[a, b]$. Let $f(u)$ be continuous for $u=g(x)$ and $x \in[a, b]$. Then,

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u .
$$

Areas between curves are computed with appropriate integrals

Slide 3
Theorem 2 Let $f(x), g(x)$ be continuous functions in $[a, b]$. If $f(x) \geq g(x)$ with $x \in[a, b]$, then the area between their graphs is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

The hypothesis that $f(x) \geq g(x)$ is not needed
Theorem 3 Let $f(x), g(x)$ be continuous functions in $[a, b]$. Then the area between their graphs is

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

Just replace $f(x)-g(x)$ by its absolute value $|f(x)-g(x)|$.

Volumes are computed integrating the area function

Theorem 4 Let S be 3-dimensional body that along the

Slide 5 x-axis lies in $[a, b]$. Let $A(x)$ be the cross section area of S perpendicular to the x-axis evaluated at x. Then, the volume of S is

$$
V=\int_{a}^{b} A(x) d x
$$

The volume of solids of revolution are computed with a particular case of the previous formula

- Given a function $f(x)$ with $x \in[a, b]$, construct a solid of revolution rotating the graph of f around the x-axis.
- The sections perpendicular to the x-axis of such a solid are precisely disks or radius $f(x)$.
- Then, the area of cross sections for such a solid is $A(x)=\pi[f(x)]^{2}$.

The volume of solids of revolution are computed with a particular case of the previous formula

Slide 7 Theorem 5 Let S be 3-dimensional solid of revolution obtained rotating the graph of $f(x)$ for $x \in[a, b]$ along the x-axis. Then, the volume of S is

$$
V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

