



An integral is a sum of infinite many terms Definition 1 (Integral of a function) Let f(x) be a function defined on a interval $x \in [a, b]$. The integral of f(x) in [a, b] is the number given by

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_{i}^{*}) \Delta x,$$

if the limit exists. Given a natural number n we have introduced a partition on [a, b] given by $\Delta x = (b - a)/n$. We denoted $x_i^* = (x_i + x_{i-1})/2$, where $x_i = a + i\Delta x$, $i = 0, 1, \dots, n$. This choice of the sample point x_i^* is called midpoint rule.

An integral is a sum of infinite many terms

Continuous functions are integrable. The sum of infinite many terms is finite.

Slide 4

Theorem 1 If
$$f(x)$$
 is continuous in $[a, b]$, then

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} R_n, \quad exists$$

Notation: $\int_a^b f(x) dx$ is called the definite integral of f(x) from a to b. Notice: $\int_a^b f(x) dx$ is a number.

Slide 3

Slide 5

Properties deduced from the definition

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx;$$

$$\int_{a}^{a} f(x) dx = 0;$$

$$\int_{a}^{b} c dx = c(b-a);$$

$$\int_{a}^{b} (f \pm g) dx = \int_{a}^{b} f dx \pm \int_{a}^{b} g dx;$$

More properties deduced from the definition $\int_{a}^{b} c f(x) dx = c \int_{a}^{b} f(x) dx;$

Slide 6

$$\int_{a}^{b} c f(x) dx = c \int_{a}^{c} f(x) dx;$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{a} f(x) dx;$$

$$f \ge 0 \implies \int_{a}^{b} f dx \ge 0;$$

$$f \ge g \implies \int_{a}^{b} f dx \ge \int_{a}^{b} g x;$$

$$m \le f \le M \implies m(b-a) \le \int_{a}^{b} f dx \le M(b-a).$$

Integration can be used to define new functions from old ones

Theorem 2 Let f(x) be continuous in [a, b]. Then,

$$F(x) = \int_{a}^{x} f(s) \, ds, \quad x \in [a, b],$$

Slide 7

is a continuous functions and F(a) = 0.

Examples:

$$\ln(x) = \int_1^x \frac{1}{s} \, ds;$$
$$x^2 = \int_0^x 2s \, ds;$$