Review on Integration (Secs. 5.1-5.3)

- Remarks on the course.

Slide 1

- Review: Sec. 5.1-5.3
- Origins of Calculus.
- Riemann Sums.
- New functions from old ones.

A mathematical description of motion motivated the creation of Calculus

Problem of Motion:
Slide 2

- Given $x(t)$ find $v(t) \leftrightarrow$ Differential Calculus.
- Given $v(t)$ find $x(t) \leftrightarrow$ Integral Calculus.

Derivatives and integrals are operations on functions.
One is the inverse of the other. This is the content of the Fundamental theorem of Calculus.

An integral is a sum of infinite many terms
Definition 1 (Integral of a function) Let $f(x)$ be a function defined on a interval $x \in[a, b]$. The integral of $f(x)$ in $[a, b]$ is the number given by

Slide 3

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

if the limit exists. Given a natural number n we have introduced a partition on $[a, b]$ given by $\Delta x=(b-a) / n$. We denoted $x_{i}^{*}=\left(x_{i}+x_{i-1}\right) / 2$, where $x_{i}=a+i \Delta x$, $i=0,1, \cdots, n$. This choice of the sample point x_{i}^{*} is called midpoint rule.

An integral is a sum of infinite many terms
Continuous functions are integrable. The sum of infinite many terms is finite.

Slide 4
Theorem 1 If $f(x)$ is continuous in $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} R_{n}, \quad \text { exists. }
$$

Notation: $\int_{a}^{b} f(x) d x$ is called the definite integral of $f(x)$ from a to b. Notice: $\int_{a}^{b} f(x) d x$ is a number.

Properties deduced from the definition

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =-\int_{b}^{a} f(x) d x \\
\int_{a}^{a} f(x) d x & =0 \\
\int_{a}^{b} c d x & =c(b-a) \\
\int_{a}^{b}(f \pm g) d x & =\int_{a}^{b} f d x \pm \int_{a}^{b} g d x
\end{aligned}
$$

More properties deduced from the definition

$$
\begin{aligned}
\int_{a}^{b} c f(x) d x & =c \int_{a}^{b} f(x) d x \\
\int_{a}^{b} f(x) d x & =\int_{a}^{c} f(x) d x+\int_{c}^{a} f(x) d x \\
f \geq 0 & \Rightarrow \int_{a}^{b} f d x \geq 0 \\
f \geq g & \Rightarrow \int_{a}^{b} f d x \geq \int_{a}^{b} g x \\
m \leq f \leq M & \Rightarrow m(b-a) \leq \int_{a}^{b} f d x \leq M(b-a)
\end{aligned}
$$

Integration can be used to define new functions from old ones

Theorem 2 Let $f(x)$ be continuous in $[a, b]$. Then,

$$
F(x)=\int_{a}^{x} f(s) d s, \quad x \in[a, b]
$$

Slide 7
is a continuous functions and $F(a)=0$.
Examples:

$$
\begin{gathered}
\ln (x)=\int_{1}^{x} \frac{1}{s} d s \\
x^{2}=\int_{0}^{x} 2 s d s
\end{gathered}
$$

