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Review on Integration (Secs. 5.1 - 5.3)

• Remarks on the course.

• Review: Sec. 5.1-5.3

– Origins of Calculus.

– Riemann Sums.

– New functions from old ones.

Slide 2

'

&

$

%

A mathematical description of motion motivated

the creation of Calculus

Problem of Motion:

• Given x(t) find v(t) ↔ Differential Calculus.

• Given v(t) find x(t) ↔ Integral Calculus.

Derivatives and integrals are operations on functions.

One is the inverse of the other. This is the content of the

Fundamental theorem of Calculus.
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An integral is a sum of infinite many terms

Definition 1 (Integral of a function) Let f(x) be a

function defined on a interval x ∈ [a, b]. The integral of

f(x) in [a, b] is the number given by

∫ b

a
f(x)dx = lim

n→∞

n∑

i=0

f(x∗i ) ∆x,

if the limit exists. Given a natural number n we have

introduced a partition on [a, b] given by ∆x = (b− a)/n.

We denoted x∗i = (xi + xi−1)/2, where xi = a+ i∆x,

i = 0, 1, · · · , n. This choice of the sample point x∗i is

called midpoint rule.
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An integral is a sum of infinite many terms

Continuous functions are integrable. The sum of infinite

many terms is finite.

Theorem 1 If f(x) is continuous in [a, b], then
∫ b

a
f(x) dx = lim

n→∞Rn, exists.

Notation:
∫ b
a
f(x) dx is called the definite integral of f(x) from a to b.

Notice:
∫ b
a
f(x) dx is a number.
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Properties deduced from the definition

∫ b

a
f(x) dx = −

∫ a

b
f(x) dx;

∫ a

a
f(x) dx = 0;

∫ b

a
c dx = c(b− a);

∫ b

a
(f ± g) dx =

∫ b

a
f dx±

∫ b

a
g dx;
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More properties deduced from the definition

∫ b

a
c f(x) dx = c

∫ b

a
f(x) dx;

∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ a

c
f(x) dx;

f ≥ 0 ⇒
∫ b

a
f dx ≥ 0;

f ≥ g ⇒
∫ b

a
f dx ≥

∫ b

a
g x;

m ≤ f ≤M ⇒ m(b− a) ≤
∫ b

a
f dx ≤M(b − a).
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Integration can be used to define new functions

from old ones

Theorem 2 Let f(x) be continuous in [a, b]. Then,

F (x) =
∫ x

a
f(s) ds, x ∈ [a, b],

is a continuous functions and F (a) = 0.

Examples:

ln(x) =
∫ x

1

1

s
ds;

x2 =
∫ x

0
2s ds;


