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The beginning of Linear Algebra

• Review

– Broad overview.

– Main results (so far).

– Examples.

• The need of abstraction: Vector Space.
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Main results so far including an invertible matrix

Theorem 1 Let A = [a1, · · · , an] be an n× n matrix.

A is invertible

• ⇔ ∃A−1, n× n, such that (A−1)A = I = A(A−1);

• ⇔ Ax = b has a unique solution x for all b ∈ IRn.

• ⇔ Col(A) = IRn;

• ⇔ N(A) = {0};
• ⇔ {a1, · · · , an} are l.i.;
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Main results so far including an m× n matrix

Theorem 2 Let A = [a1, · · · , an] be an m× n matrix.

• Ax = b has a solution x ∈ IRn ⇔ b ∈ Col(A) ⊂ IRm.

• The solution x ∈ IRn above is unique ⇔ N(A) = {0}.
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All these interrelated concepts must be organized

in a unified subject

It was realized that the central concept unifying this

subject was the one of linear combination:

• column vectors: u = av + w;

• m× n matrices: C = aA+ bB;

• continuous functions: h(x) = af(x) + g(x);

• row vectors: uT = avT + bwT .
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The operation of linear combination itself was the

crucial concept

The elements that are added up or multiplied by a

number are NOT important.

This is the breakthrough.

The heart of a Vector Space is the operation of

linear combination
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No redundant properties must be specified in the

definition of a vector space

Its definition is to specify the operation of linear

combination through is properties.

The absence of redundant properties saves much time and

effort when one checks whether a set is a vector space.
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A vector space is defined by characterizing the

operation linear combination

Definition 1 (Vector space) Let V be a set of objects,

to be called vectors; and let IR be the real numbers.

Assume that there are two operations;

(u,v)→ u + v ∈ V, (a,v)→ av ∈ V,

called addition and scalar multiplication, respectively,

defined for any u, v ∈ V and a ∈ IR. These operations

are to satisfy the following rules.

(Continues)
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Definition 2 (Vector space, addition)

• u + v = v + u for any u, v ∈ V (commutative law);

• (u + v) + w = u + (v + w), for any u, v, w ∈ V (associative

law);

• there is an element 0 ∈ V such that 0 + u = u for any u ∈ V
(existence of the zero element);

• for any u ∈ V there is an element −u ∈ V such that

u + (−u) = 0 (existence of negative elements);

(Continues)
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Definition 3 (Vector space, multiplication by a number)

• 1u = u for any u ∈ V ;

• a(bu) = (ab)u for any u ∈ V , a, b ∈ IR (associative law for

scalar multiplication);

• a(u + v) = au + av and (a+ b)u = au + bu for any u, v ∈ V ,

and a, b ∈ IR (distributive laws).

Then V is called a real vector space, or a linear space.
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Known examples of a Vector Space

• Real numbers IR, with the usual operations + and ·.
• The space IRn of n-column vectors, or n-tuples ,with

the addition and multiplication by real numbers

defined in terms of components.

• The set of all m× n matrices, with the addition of

matrices and the multiplication by a number.
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Not so known examples of a Vector Space

• The complex numbers C, with the addition of

complex numbers, and multiplication by a real

number.

• The set of all polynomials of degree n, Pn : [a, b]→ IR.

• The set of all polynomials, P : [a, b]→ IR.

• The space of continuous functions f : [a, b]→ IR.

• The set of differentiable functions f : [a, b]→ IR.

From the commutative law and the associative law we observe that to add several ele-
ments, the order of the summation does not matter, and it does not cause any ambiguity
to write expression such u + v + w or Σn

i=1u1.
By using the commutative law and the associative law it is not difficult to verify that the

zero element 0 and the negative element −u of a given element u ∈ V are unique, and they
can be equivalently defined by the relations u + 0 = u for any u ∈ V , and (−u) + u = 0.
Below we write u− v for u + (v).
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The zero element is unique

Proof: Suppose there are two elements, 01, 02 such that

01 + u = u, ∀u ∈ V,
02 + u = u, ∀u ∈ V,

then take u = 02 in the first equation, and u = 01 in the

second equation, then one gets, respectively,

01 + 02 = 02, 02 + 01 = 01.

The left hand sides are equal, because of the commutative

law, the the right hand sides are equal, so 01 = 02.

Slide 13

'

&

$

%

This property is also deduced from the definition

of vector space

Theorem 3 0u = 0.

Proof: u = 1u = (0 + 1)u = 0u + 1u = 0u + u, then

0u + u = u,

that is, 0u is a zero element. But the zero element is

unique, so

0u = 0.
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The negative element is unique

Proof: Assume that there are two negative elements, v1

and v2 for u, that is,

u + v1 = 0, u + v2 = 0.

Then, one has that

v1 = 0 + v1,

= u + v2 + v1,

= u + v1 + v2,

= 0 + v2,

= v2.
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Even this property comes from the definition

Theorem 4 (−u) = (−1)u.

Proof:

0 = 0u,

= (1− 1)u,

= 1u + (−1)u,

= u + (−1)u,

therefore, (−1)u is a negative element of u. But negative

elements are unique, so,

(−1)u = −u.
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Subspaces

• Review: Vector Space.

• Subspace.

• Span.
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A Subspace is a particular class of sets in a vector

space

Definition 4 (Subspace) A subspace W of a vector

space V is a subset of V that is closed under the addition

and scalar multiplication operations on V .

That is, W ⊂ V , and for all u, v ∈ W and a ∈ IR holds

that

u + v ∈ W, au ∈ W.
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Examples

• The set W ⊂ IR3 given by

W = {x ∈ IR3 : x = (x1, x2, 0), x1, x2 ∈ IR},

is a subspace of IR3.

• The set Ŵ ⊂ IR3 given by

Ŵ = {x ∈ IR3 : x = (x1, x2, 1), x1, x2 ∈ IR},

in contrast is not a subspace of IR3.
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Span

Definition 5 The Span of v1, · · ·vn ∈ V is defined as

the set of all linear combinations of these vectors, that is

Span(v1, · · · ,vn) = {x = a1v1 + · · ·+ anvn},

where a1, · · · , an ∈ IR.

Theorem 5 Span(v1, · · · ,vn) ⊂ V is a subspace of V .
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Examples

Ŵ = span{e1, e2},
= span{(1, 1, 0), (−1, 1, 0)},
= span{(2, 0, 0), (1, 1, 0), (12,−1, 0)},
= span{(2, 0, 0), (1, 1, 0), (12,−1, 0), (−3,−1, 0)}.
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Examples

• The set W = {(x1, x2) ∈ IR2 : x1 ≥ 0} is not a

subspace of IR2.

• The segment W{x ∈ IR : −1 ≤ x ≤ 1} is not a

subspace of IR.

• The line W = {x ∈ IR3 : x = (1, 2, 3)t} is a subspace

or IR3.

• The line W = {x ∈ IR3 : x = (1, 2, 0) + (1, 2, 3)t} is

not a subspace or IR3.


