The arc length of a curve in space

Slide 1

- Arc length of a curve.
- Arc length function.
- Examples.

The arc length of a curve is a number that measures the extension of the curve

Slide 2
Definition 1 Let $\mathbf{r}(t)$ be a continuously differentiable vector-valued function. The length of the curve associated with $\mathbf{r}(t)$ for $t \in[a, b]$ is the number given by

$$
\ell_{b a}=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

The arc length of a curve in space has the following form in components

$$
\begin{aligned}
\mathbf{r}(t) & =\langle x(t), y(t), z(t)\rangle \\
\mathbf{r}^{\prime}(t) & =\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle \\
\ell_{b a} & =\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t .
\end{aligned}
$$

Suppose that the curve represents the path traveled by a particle in space. Then, the length of the curve is the integral of the speed, $|\mathbf{v}(t)|$.

So in this case the length of the curve is the distance traveled by the particle.

The arc length formula can be obtained as a limit procedure

One adds up the lengths of a polygonal line that approximates the original curve

The arc length function $\ell(t)$ represents the length up to t of the curve given by $\mathbf{r}(t)$

Definition 2 Let $\mathbf{r}(t)$ be a continuously differentiable

Slide 5 vector-valued function. The arc length function $\ell(t)$ from $t=t_{0}$ to t is given by

$$
\ell(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u .
$$

$\ell(t)$ is a scalar function. It satisfies $\ell\left(t_{0}\right)=0$

Reparametrization of a given vector valued function $\mathbf{r}(t)$ using the arc length function

- With $\mathbf{r}(t)$ compute $\ell(t)$, starting at some $t=t_{0}$.
- Invert the function $\ell(t)$ to find the function $t(\ell)$. Example: If $\ell(t)=3 e^{t / 2}$, then $t(\ell)=2 \ln (\ell / 3)$.
- Compute the composition $\mathbf{r}(\ell)=\mathbf{r}(t(\ell))$.

That is, replace t by $t(\ell)$.
The function $\mathbf{r}(\ell)$ is the reparametrization of $\mathbf{r}(t)$ using the arc length as the new parameter

Examples, Sec. 13.4

- (Probl. 14 Sec. 13.4) Find the velocity, acceleration, and speed of the following position function

$$
\mathbf{r}(t)=t \sin (t) \mathbf{i}+t \cos (t) \mathbf{j}+t^{2} \mathbf{k}
$$

Slide 7

- (Probl. 16 Sec. 13.4) Find the velocity and position vectors given the acceleration and initial velocity and position:

$$
\mathbf{a}(t)=-10 \mathbf{k}, \quad \mathbf{v}(0)=\mathbf{i}+\mathbf{j}-\mathbf{k}, \quad \mathbf{r}(0)=2 \mathbf{i}+3 \mathbf{j} .
$$

- Problems with projectiles. Given the initial speed $\left|\mathbf{v}_{0}\right|$ and the initial angle of the projectile with the horizontal, θ, describe the movement of the projectile.

