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Cross product and determinants

• Review: The dot product is a number.

• Geometric definition of cross product.

• Properties, and determinants.

• Cross product in components.

• Triple product and volumes.
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The cross product of two vectors is another

vector

Definition 1 Let v, w be 3-dimensional vectors, and

0 ≤ θ ≤ π be the angle in between them. Then, v×w is

a vector perpendicular to v and w, pointing in the

direction given by the right hand rule, and with norm

|v ×w| = |v| |w| sin(θ).

The cross product is perpendicular to the original

vectors
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The direction of the cross product vector is given

by the right hand rule
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V

W

W x V

V x W

O

Tails together.
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The cross products of the vectors i, j and k are

simple to compute

i× j = k, j× i = −k,

j× k = i, k× j = −i,

k× i = j, i× k = −j.

i j

k

x

y

z
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Main properties of the cross product

• v ×w = −w × v ⇒ v × v = 0,

• (av)×w = v × (aw) = a(v ×w),

• u× (v + w) = u× v + u×w,

• u× (v ×w) = (u ·w)v − (u · v)w.
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The cross product is not associative

That is, u× (v×w) 6= (u× v)×w.

Example: i× (i× k) = −k; but (i× i)× k = 0.

The cross product of two vectors vanishes when

the vectors are parallel

Theorem 1 v, w 6= 0 and v ×w = 0 ⇔ v parallel w.
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The length of a cross product vector is an area

Theorem 2 |v ×w| is the area of the parallelogram

formed by v and w.

V

W

|V| sin(O)

O
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The cross product can be written in terms of the

components of the original vectors

Theorem 3 Let v = 〈v1, v2, v3〉, and w = 〈w1, w2, w3〉.
Then,

v ×w = 〈(v2w3 − v3w2), (v3w1 − v1w3), (v1w2 − v2w1)〉.

For the proof of the last theorem, recall that

i× j = k, j× k = i, k× i = j.
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We recall here the definition of determinant of a

matrix

We use determinants only as a tool to remember the

components of v ×w.

∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣
= ad− bc.

∣∣∣∣∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣∣∣

= a1

∣∣∣∣∣∣
b2 b3

c2 c3

∣∣∣∣∣∣
− a2

∣∣∣∣∣∣
b1 b3

c1 c3

∣∣∣∣∣∣
+ a3

∣∣∣∣∣∣
b1 b2

c1 c2

∣∣∣∣∣∣
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The triple product of three vectors is a number

Definition 2 Given u, v, w, the triple product is the

number given by

u · (v ×w).

First do the cross product, and then dot the

resulting vector with the third vector
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The triple product represents a volume of a solid

formed with three vectors

Theorem 4 Fix nonzero vectors u, v, w. Then,

|u · (v ×w)| is the volume of the parallelepiped

determined by u, v, w.

Notice that u · (v ×w) = (u× v) ·w = (u×w) · v.
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The triple product represents a volume of a solid

formed with three vectors u, v, and w

W x V

U

V

W
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Lines and planes in space

• Equations of lines.

(Vector, parametric, and symmetric equations.)

• Equations of planes.

• Distance from a point to a plane.

(Sec. 12.5)
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A line is specified by a point and a tangent vector

Definition 3 Let P0 be a point in space, and v be a

nonzero vector. Fix a coordinate system with origin at O,

and let r0 = ~OP 0. Then, the set of vectors

r(t) = r0 + tv, t ∈ IR,

is called the line through P0 parallel to v.

This is the vector equation of the line.
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A line is specified by a point and a tangent vector

r(t)

r(0)

y

x

z

O

V

P

line
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The parametric equations of a line is to have the

functions x(t), y(t) and z(t)

Consider the case of 3 dimensions. In components,

r(t) = 〈x(t), y(t), z(t)〉,
r0 = 〈x0, y0, z0〉,
v = 〈vx, vy, vz〉,

then the parametric equations of the line are

x(t) = x0 + tvx,

y(t) = y0 + tvy,

z(t) = z0 + tvz.
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In the symmetric form of the equations the

parameter t is taken out of the equations

Compute t in expressions above, and denote x = x(t),

y = y(t), and z = z(t). Then,

t =
x− x0

vx
=
y − y0

vy
=
z − z0

vz
.

These are called the symmetric equations of the line.
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Two lines are parallel if their tangent vectors are

parallel

Definition 4 Two lines r(t) = r0 + tv, and r̃(t) = r̃0 + tṽ

are parallel if and only if v = aṽ, with a 6= 0.

In IR2 two lines are either parallel or they intersect (or both, when they

coincide). This is not true in 3 dimensions.

Two lines in 3 dimensions are called skew lines if they are neither

parallel nor they intersect.
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A plane in space is determined with a point and a

vector perpendicular to the plane

Definition 5 Fix a point in space, P0, and a nonzero

vector n. The set of all points P satisfying

−−→
P0P · n = 0

is called the plane passing through P0 normal to n, and

we denote it as (P0,n).
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A plane in space is determined with a point and a

vector perpendicular to the plane

n

P
P

0

y

x

z

O

n
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In the equation of a plane appears the dot

product

Theorem 5 Fix a coordinate system with origin at O.

The equation of the plane passing through P0 normal to n

can be written as

(r− r0) · n = 0,

where r0 =
−→
OP 0, and r =

−→
OP , with P in the plane.

(Proof:
−−→
P0P = r− r0.)
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Here is the equations of a plane written explicitly

in terms of coordinates

Theorem 6 In components, the equation of a plane

(P0,n) has the form

(x− x0)nx + (y − y0)ny + (z − z0)nz = 0,

where

r0 = 〈x0, y0, z0〉, n = 〈nx, ny, nz〉, r = 〈x, y, z〉.
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Two planes are parallel if their normals are

parallel

n

N

n

N
n N

The angle between two non-parallel planes is the

angle between their normal vectors
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Distance formula from a point to a plane

Theorem 7 The distance d from a point P1 to a plane

(P0,n) is the shortest distance from P1 to any point in

the plane, and is given by the expression

d =
| ~P0P · n|
|n| . (1)
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Distance from a point to a plane

P

P

0

n

n

d

Proof: Draw a picture of the situation. Then,

d = | ~P0P | cos(θ),

where θ is the angle between ~P0P and n. Recalling that

~P0P · n = |n| | ~P0P | cos(θ),

and that the distance is a nonnegative number, one gets Eq. (1).)
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Vector valued functions, r(t)

• Definition: r : IR→ IR3.

• Limits and derivatives.

r(0)
r(t)

x

y

z
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Vector valued functions are 3 usual functions

Definition 6 A vector valued function r(t) on IR3 is a

function

r : D ⊂ IR→ R ⊂ IR3,

with n ≥ 2, the set D is called domain of r, and R is the

range of r.

In components, r(t) = 〈x(t), y(t), z(t)〉, where x(t),

y(t) and z(t) are usual functions
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There is a natural association between curves in

IRn and vector valued functions

The curve is determined by the head points of the vector

valued function r(t).

r(0)
r(t)

x

y

z

The independent variable t is called the parameter of the curve.
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The limit of r(t) as t→ t0 is the limit of its

components x(t), y(t), z(t)

Definition 7 Consider the function

r(t) = 〈x(t), y(t), z(t)〉.

The limit limt→t0 r(t) is defined as

lim
t→t0

r(t) =
〈

lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)
〉
,

when such limit in each component exists.
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Continuous vector valued functions

Definition 8 A function r(t) is continuous at t0 if

lim
t→t0

r(t) = r(t0).

Having the idea of limit, one can introduce the idea of a derivative of a

vector valued function.
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The derivative of a vector valued function r(t) is

another vector valued function, r′(t)

Definition 9 The derivative of a vector valued function

r : IR→ IRn, denoted a r′(t), is given by

r′(t) = lim
h→0

r(t+ h)− r(t)

h
,

when such limit exists.
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r′(t) is a vector tangent to the curve given by r(t)

x

y

z

r’(t)

r(t)

If r(t) represents the vector position of a particle, then r′(t) represents

the velocity vector of that particle. That is, v(t) = r′(t).
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The derivative of r(t) is the derivative of its

components

Theorem 8 Consider the function

r(t) = 〈x(t), y(t), z(t)〉,

where x(t), y(t), and z(t) are differentiable functions.

Then

r′(t) = 〈x′(t), y′(t), z′(t)〉.
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Proof:

r′(t) = limh→0
r(t+h)−r(t)

h ,

= limh→0

〈
x(t+h)−x(t)

h , y(t+h)−y(t)
h , z(t+h)−z(t)

h

〉

=
〈

limh→0
x(t+h)−x(t)

h , limh→0
y(t+h)−y(t)

h , limh→0
z(t+h)−z(t)

h

〉

= 〈x′(t), y′(t), z′(t)〉. )
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Examples of vector valued functions and their

derivatives

r(t) = 〈cos(t), sin(t), 0〉 ⇒ v(t) = 〈− sin(t), cos(t), 0〉.

r(0) r(t)
v(t)

v(0)x

y

t

z
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Differentiation rules are the same as for usual

(scalar) functions

• [v(t) + w(t)]′ = v′(t) + w′(t), (addition);

• [cv(t)]′ = cv′(t), (product rule for constants);

• [f(t)v(t)]′ = f ′(t)v(t) + f(t)v′(t), (product rule for scalar

functions);

• [v(f(t))]′ = v′(f(t))f ′(t), (chain rule for functions).

Slide 36

'

&

$

%

Differentiation rules for the new products on

vectors

• [v(t) ·w(t)]′ = v′(t) ·w(t) + v(t) ·w′(t),
(product rule for dot product);

• [v(t)×w(t)]′ = v′(t)×w(t) + v(t)×w′(t),

(product rule for cross product);
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Higher derivatives can also be computed

The m derivative of r(t) is denoted as r(m)(t) and is given

by the expression r(m)(t) = [r(m−1)(t)]′.

Example:

r(t) = 〈cos(t), sin(t), t2 + 2t+ 1〉,
r′(t) = 〈− sin(t), cos(t), 2t+ 2〉,

r(2)(t) = (r′(t))′ = 〈− cos(t),− sin(t), 2〉,
r(3)(t) = (r(2)(t))′ = 〈sin(t),− cos(t), 0〉.

If r(t) is the vector position of a particle, then the velocity vector is

v(t) = r′(t), and the acceleration vector is a(t) = v′(t) = r(2)(t).
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Definite integrals are computed component by

component

Definition 10 The definite integral of r(t) form t ∈ [a, b]

is a vector whose components are the integrals of the

components of r(t), namely,

∫ b

a
r(t)dt =

〈∫ b

a
x(t)dt,

∫ b

a
y(t)dt,

∫ b

a
z(t)dt

〉
.
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An explicit example

∫ π

0

〈cos(t), sin(t), t〉dt =

〈∫ π

0

cos(t)dt,

∫ π

0

sin(t)dt,

∫ π

0

tdt

〉
,

=

〈
sin(t)|π0 ,− cos(t)|π0 ,

t2

2

∣∣∣∣
π

0

,

〉
,

=

〈
0, 2,

π2

2

〉
.
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How to compute derivatives in polar coordinates?

The definitions of limit and derivative of vector valued functions were

introduced component by component in a fixed, given in advance,

Cartesian coordinate system.

What does happen if one needs to work in other coordinate system, say,

spherical coordinates, or arbitrary coordinates?

All the notions of limit and derivatives for vector valued functions can be

generalized in a way that the Cartesian coordinates system need not to

be introduced. When one introduce such Cartesian coordinates systems,

one recovers the definitions presented here.

We do not study in our course this coordinate independent notion of

limit and derivatives.


