Cross product and determinants

- Review: The dot product is a number.

Slide 1

- Geometric definition of cross product.
- Properties, and determinants.
- Cross product in components.
- Triple product and volumes.

The cross product of two vectors is another vector

Definition 1 Let \mathbf{v}, w be 3-dimensional vectors, and $0 \leq \theta \leq \pi$ be the angle in between them. Then, $\mathbf{v} \times \mathbf{w}$ is
Slide 2 a vector perpendicular to \mathbf{v} and \mathbf{w}, pointing in the direction given by the right hand rule, and with norm

$$
|\mathbf{v} \times \mathbf{w}|=|\mathbf{v}||\mathbf{w}| \sin (\theta) .
$$

The cross product is perpendicular to the original vectors

The cross products of the vectors i, j and k are simple to compute

Slide 4

$$
\begin{aligned}
\mathbf{i} \times \mathbf{j} & =\mathbf{k}, & \mathbf{j} \times \mathbf{i}=-\mathbf{k} \\
\mathbf{j} \times \mathbf{k} & =\mathbf{i}, & \mathbf{k} \times \mathbf{j}=-\mathbf{i} \\
\mathbf{k} \times \mathbf{i} & =\mathbf{j}, & \mathbf{i} \times \mathbf{k}=-\mathbf{j} .
\end{aligned}
$$

Main properties of the cross product

- $\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v} \Rightarrow \mathbf{v} \times \mathbf{v}=0$,

Slide 5

- $(a \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(a \mathbf{w})=a(\mathbf{v} \times \mathbf{w})$,
- $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$,
- $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$.

The cross product is not associative

That is, $\mathbf{u} \times(\mathbf{v} \times \mathbf{w}) \neq(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.

Slide 6
Example: $\mathbf{i} \times(\mathbf{i} \times \mathbf{k})=-\mathbf{k}$; but $(\mathbf{i} \times \mathbf{i}) \times \mathbf{k}=0$.

The cross product of two vectors vanishes when the vectors are parallel

Theorem $1 \mathbf{v}, \mathbf{w} \neq 0$ and $\mathbf{v} \times \mathbf{w}=0 \Leftrightarrow \mathbf{v}$ parallel \mathbf{w}.

The length of a cross product vector is an area

Theorem $2|\mathbf{v} \times \mathbf{w}|$ is the area of the parallelogram formed by \mathbf{v} and \mathbf{w}.

Slide 7

The cross product can be written in terms of the components of the original vectors

Theorem 3 Let $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$.
Slide 8 Then,

$$
\mathbf{v} \times \mathbf{w}=\left\langle\left(v_{2} w_{3}-v_{3} w_{2}\right),\left(v_{3} w_{1}-v_{1} w_{3}\right),\left(v_{1} w_{2}-v_{2} w_{1}\right)\right\rangle .
$$

For the proof of the last theorem, recall that

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j} .
$$

We recall here the definition of determinant of a matrix

We use determinants only as a tool to remember the components of $\mathbf{v} \times \mathbf{w}$.

Slide 9

$$
\begin{gathered}
\left|\begin{array}{cc}
a & b \\
c & d
\end{array}\right|=a d-b c . \\
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
\end{gathered}
$$

The triple product of three vectors is a number

Definition 2 Given $\mathbf{u}, \mathbf{v}, \mathbf{w}$, the triple product is the
Slide 10 number given by

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) .
$$

First do the cross product, and then dot the resulting vector with the third vector

The triple product represents a volume of a solid formed with three vectors

Slide 11
Theorem 4 Fix nonzero vectors \mathbf{u}, \mathbf{v}, w. Then, $|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$ is the volume of the parallelepiped determined by $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

Notice that $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v}$.

The triple product represents a volume of a solid formed with three vectors u, v, and w

Slide 12

Lines and planes in space

- Equations of lines.

Slide 13
(Vector, parametric, and symmetric equations.)

- Equations of planes.
- Distance from a point to a plane.
(Sec. 12.5)

A line is specified by a point and a tangent vector

Definition 3 Let P_{0} be a point in space, and \mathbf{v} be a
Slide 14 nonzero vector. Fix a coordinate system with origin at O, and let $\mathbf{r}_{0}=\overrightarrow{O P}{ }_{0}$. Then, the set of vectors

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}, \quad t \in \mathbb{R},
$$

is called the line through P_{0} parallel to \mathbf{v}.
This is the vector equation of the line.

A line is specified by a point and a tangent vector

Slide 15

The parametric equations of a line is to have the functions $x(t), y(t)$ and $z(t)$

Consider the case of 3 dimensions. In components,

$$
\begin{aligned}
\mathbf{r}(t) & =\langle x(t), y(t), z(t)\rangle, \\
\mathbf{r}_{0} & =\left\langle x_{0}, y_{0}, z_{0}\right\rangle, \\
\mathbf{v} & =\left\langle v_{x}, v_{y}, v_{z}\right\rangle,
\end{aligned}
$$

then the parametric equations of the line are

$$
\begin{aligned}
x(t) & =x_{0}+t v_{x}, \\
y(t) & =y_{0}+t v_{y}, \\
z(t) & =z_{0}+t v_{z} .
\end{aligned}
$$

In the symmetric form of the equations the parameter t is taken out of the equations

Slide 17
Compute t in expressions above, and denote $x=x(t)$, $y=y(t)$, and $z=z(t)$. Then,

$$
t=\frac{x-x_{0}}{v_{x}}=\frac{y-y_{0}}{v_{y}}=\frac{z-z_{0}}{v_{z}} .
$$

These are called the symmetric equations of the line.

Two lines are parallel if their tangent vectors are parallel

Definition 4 Two lines $\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}$, and $\tilde{\mathbf{r}}(t)=\tilde{\mathbf{r}}_{0}+t \tilde{\mathbf{v}}$
Slide 18
are parallel if and only if $\mathbf{v}=a \tilde{\mathbf{v}}$, with $a \neq 0$.
In \mathbb{R}^{2} two lines are either parallel or they intersect (or both, when they coincide). This is not true in 3 dimensions.

Two lines in 3 dimensions are called skew lines if they are neither parallel nor they intersect.

A plane in space is determined with a point and a vector perpendicular to the plane

Slide 19
Definition 5 Fix a point in space, P_{0}, and a nonzero
vector \mathbf{n}. The set of all points P satisfying

$$
\overrightarrow{P_{0} P} \cdot \mathbf{n}=0
$$

is called the plane passing through P_{0} normal to \mathbf{n}, and we denote it as $\left(P_{0}, \mathbf{n}\right)$.

A plane in space is determined with a point and a vector perpendicular to the plane

Slide 20

In the equation of a plane appears the dot product

Theorem 5 Fix a coordinate system with origin at O.
Slide 21
The equation of the plane passing through P_{0} normal to \mathbf{n} can be written as

$$
\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot \mathbf{n}=0,
$$

where $\mathbf{r}_{0}=\overrightarrow{O P}_{0}$, and $\mathbf{r}=\overrightarrow{O P}$, with P in the plane.
(Proof: $\overrightarrow{P_{0} P}=\mathbf{r}-\mathbf{r}_{0}$.)

Here is the equations of a plane written explicitly in terms of coordinates

Theorem 6 In components, the equation of a plane
Slide 22 $\left(P_{0}, \mathbf{n}\right)$ has the form

$$
\left(x-x_{0}\right) n_{x}+\left(y-y_{0}\right) n_{y}+\left(z-z_{0}\right) n_{z}=0
$$

where

$$
\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle, \quad \mathbf{n}=\left\langle n_{x}, n_{y}, n_{z}\right\rangle, \quad \mathbf{r}=\langle x, y, z\rangle .
$$

Slide 23
Two planes are parallel if their normals are parallel

The angle between two non-parallel planes is the angle between their normal vectors

Distance formula from a point to a plane
Theorem 7 The distance d from a point P_{1} to a plane
Slide 24 $\left(P_{0}, \mathbf{n}\right)$ is the shortest distance from P_{1} to any point in the plane, and is given by the expression

$$
\begin{equation*}
d=\frac{\left|\overrightarrow{P_{0} P} \cdot \mathbf{n}\right|}{|\mathbf{n}|} . \tag{1}
\end{equation*}
$$

Proof: Draw a picture of the situation. Then,

$$
d=\left|\overrightarrow{P_{0} P}\right| \cos (\theta),
$$

where θ is the angle between $\overrightarrow{P_{0} P}$ and \mathbf{n}. Recalling that

$$
\overrightarrow{P_{0} P} \cdot \mathbf{n}=|\mathbf{n}|\left|\overrightarrow{P_{0} P}\right| \cos (\theta),
$$

and that the distance is a nonnegative number, one gets Eq. (1).)

Vector valued functions, $\mathbf{r}(t)$

- Definition: $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
- Limits and derivatives.

Slide 26

Vector valued functions are 3 usual functions

Definition 6 A vector valued function $\mathbf{r}(t)$ on \mathbb{R}^{3} is a function

Slide 27

$$
\mathbf{r}: D \subset \mathbb{R} \rightarrow R \subset \mathbb{R}^{3}
$$

with $n \geq 2$, the set D is called domain of \mathbf{r}, and R is the range of \mathbf{r}.

In components, $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$, where $x(t)$, $y(t)$ and $z(t)$ are usual functions

There is a natural association between curves in \mathbb{R}^{n} and vector valued functions

The curve is determined by the head points of the vector valued function $\mathbf{r}(t)$.

Slide 28

The independent variable t is called the parameter of the curve.

The limit of $\mathbf{r}(t)$ as $t \rightarrow t_{0}$ is the limit of its components $x(t), y(t), z(t)$

Definition 7 Consider the function
Slide 29

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle
$$

The limit $\lim _{t \rightarrow t_{0}} \mathbf{r}(t)$ is defined as

$$
\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle
$$

when such limit in each component exists.

Continuous vector valued functions

Definition 8 A function $\mathbf{r}(t)$ is continuous at t_{0} if

$$
\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{r}\left(t_{0}\right) .
$$

Having the idea of limit, one can introduce the idea of a derivative of a vector valued function.

The derivative of a vector valued function $\mathbf{r}(t)$ is another vector valued function, $\mathbf{r}^{\prime}(t)$

Slide 31
Definition 9 The derivative of a vector valued function $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{n}$, denoted $a \mathbf{r}^{\prime}(t)$, is given by

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h},
$$

when such limit exists.
$\mathbf{r}^{\prime}(t)$ is a vector tangent to the curve given by $\mathbf{r}(t)$

Slide 32

If $\mathbf{r}(t)$ represents the vector position of a particle, then $\mathbf{r}^{\prime}(t)$ represents the velocity vector of that particle. That is, $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$.

The derivative of $\mathbf{r}(t)$ is the derivative of its components

Theorem 8 Consider the function
Slide 33

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle,
$$

where $x(t), y(t)$, and $z(t)$ are differentiable functions. Then

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

Proof:

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}, \\
=\lim _{h \rightarrow 0}\left\langle\frac{x(t+h)-x(t)}{h}, \frac{y(t+h)-y(t)}{h}, \frac{z(t+h)-z(t)}{h}\right\rangle \\
=\left\langle\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}, \lim _{h \rightarrow 0} \frac{y(t+h)-y(t)}{h}, \lim _{h \rightarrow 0} \frac{z(t+h)-z(t)}{h}\right\rangle \\
=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle .
\end{gathered}
$$

Examples of vector valued functions and their derivatives
$\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle \Rightarrow \mathbf{v}(t)=\langle-\sin (t), \cos (t), 0\rangle$.

Slide 34

Differentiation rules are the same as for usual (scalar) functions

- $[\mathbf{v}(t)+\mathbf{w}(t)]^{\prime}=\mathbf{v}^{\prime}(t)+\mathbf{w}^{\prime}(t)$, (addition);

Slide 35

- $[c \mathbf{v}(t)]^{\prime}=c \mathbf{v}^{\prime}(t)$, (product rule for constants);
- $[f(t) \mathbf{v}(t)]^{\prime}=f^{\prime}(t) \mathbf{v}(t)+f(t) \mathbf{v}^{\prime}(t)$, (product rule for scalar functions);
- $[\mathbf{v}(f(t))]^{\prime}=\mathbf{v}^{\prime}(f(t)) f^{\prime}(t)$, (chain rule for functions).

Differentiation rules for the new products on vectors

Slide 36

- $[\mathbf{v}(t) \cdot \mathbf{w}(t)]^{\prime}=\mathbf{v}^{\prime}(t) \cdot \mathbf{w}(t)+\mathbf{v}(t) \cdot \mathbf{w}^{\prime}(t)$, (product rule for dot product);
- $[\mathbf{v}(t) \times \mathbf{w}(t)]^{\prime}=\mathbf{v}^{\prime}(t) \times \mathbf{w}(t)+\mathbf{v}(t) \times \mathbf{w}^{\prime}(t)$, (product rule for cross product);

Higher derivatives can also be computed

The m derivative of $\mathbf{r}(t)$ is denoted as $\mathbf{r}^{(m)}(t)$ and is given by the expression $\mathbf{r}^{(m)}(t)=\left[\mathbf{r}^{(m-1)}(t)\right]^{\prime}$.
Example:
Slide 37

$$
\begin{aligned}
\mathbf{r}(t) & =\left\langle\cos (t), \sin (t), t^{2}+2 t+1\right\rangle, \\
\mathbf{r}^{\prime}(t) & =\langle-\sin (t), \cos (t), 2 t+2\rangle, \\
\mathbf{r}^{(2)}(t) & =\left(\mathbf{r}^{\prime}(t)\right)^{\prime}=\langle-\cos (t),-\sin (t), 2\rangle, \\
\mathbf{r}^{(3)}(t) & =\left(\mathbf{r}^{(2)}(t)\right)^{\prime}=\langle\sin (t),-\cos (t), 0\rangle .
\end{aligned}
$$

If $\mathbf{r}(t)$ is the vector position of a particle, then the velocity vector is $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$, and the acceleration vector is $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{(2)}(t)$.

Definite integrals are computed component by component

Definition 10 The definite integral of $\mathbf{r}(t)$ form $t \in[a, b]$
Slide 38 is a vector whose components are the integrals of the components of $\mathbf{r}(t)$, namely,

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left\langle\int_{a}^{b} x(t) d t, \int_{a}^{b} y(t) d t, \int_{a}^{b} z(t) d t\right\rangle .
$$

An explicit example

Slide 39

$$
\begin{aligned}
\int_{0}^{\pi}\langle\cos (t), \sin (t), t\rangle d t & =\left\langle\int_{0}^{\pi} \cos (t) d t, \int_{0}^{\pi} \sin (t) d t, \int_{0}^{\pi} t d t\right\rangle \\
& =\left\langle\left.\sin (t)\right|_{0} ^{\pi},-\left.\cos (t)\right|_{0} ^{\pi},\left.\frac{t^{2}}{2}\right|_{0} ^{\pi},\right\rangle \\
& =\left\langle 0,2, \frac{\pi^{2}}{2}\right\rangle
\end{aligned}
$$

How to compute derivatives in polar coordinates?

The definitions of limit and derivative of vector valued functions were introduced component by component in a fixed, given in advance, Cartesian coordinate system.

Slide 40
What does happen if one needs to work in other coordinate system, say, spherical coordinates, or arbitrary coordinates?

All the notions of limit and derivatives for vector valued functions can be generalized in a way that the Cartesian coordinates system need not to be introduced. When one introduce such Cartesian coordinates systems, one recovers the definitions presented here.

We do not study in our course this coordinate independent notion of limit and derivatives.

