

The cross product of two vectors is another vector

Definition 1 Let \mathbf{v} , \mathbf{w} be 3-dimensional vectors, and $0 \le \theta \le \pi$ be the angle in between them. Then, $\mathbf{v} \times \mathbf{w}$ is a vector perpendicular to \mathbf{v} and \mathbf{w} , pointing in the direction given by the right hand rule, and with norm

 $|\mathbf{v} \times \mathbf{w}| = |\mathbf{v}| |\mathbf{w}| \sin(\theta).$

The cross product is perpendicular to the original vectors

Slide 5 $\mathbf{Main \ properties \ of \ the \ cross \ product}$ $\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v} \implies \mathbf{v} \times \mathbf{v} = 0,$ $\mathbf{o} \ (a\mathbf{v}) \times \mathbf{w} = \mathbf{v} \times (a\mathbf{w}) = a(\mathbf{v} \times \mathbf{w}),$ $\mathbf{o} \ \mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w},$ $\mathbf{o} \ \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}.$

Slide 6The cross product is not associative
That is, $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \neq (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.
Example: $\mathbf{i} \times (\mathbf{i} \times \mathbf{k}) = -\mathbf{k}$; but $(\mathbf{i} \times \mathbf{i}) \times \mathbf{k} = 0$.
The cross product of two vectors vanishes when
the vectors are parallel
Theorem 1 \mathbf{v} , $\mathbf{w} \neq 0$ and $\mathbf{v} \times \mathbf{w} = 0 \Leftrightarrow \mathbf{v}$ parallel \mathbf{w} .

The cross product can be written in terms of the components of the original vectors Theorem 3 Let $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$. Then, $\mathbf{v} \times \mathbf{w} = \langle (v_2w_3 - v_3w_2), (v_3w_1 - v_1w_3), (v_1w_2 - v_2w_1) \rangle$. For the proof of the last theorem, recall that $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$.

We recall here the definition of determinant of a matrix

We use determinants only as a tool to remember the components of $\mathbf{v} \times \mathbf{w}$.

Slide 9

Slide 10

	$\begin{vmatrix} a \\ c \end{vmatrix}$	$\begin{vmatrix} b \\ d \end{vmatrix} = ad -$	- <i>bc</i> .			
$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$	$=a_1 \begin{vmatrix} b_2 \\ c_2 \end{vmatrix}$	$\begin{vmatrix} b_3 \\ c_3 \end{vmatrix} - a_2$	$egin{array}{ccc} b_1 & b_3 \ c_1 & c_3 \end{array}$	$\left +a_3\right $	b_1 c_1	b_2 c_2

The triple product of three vectors is a number Definition 2 Given \mathbf{u} , \mathbf{v} , \mathbf{w} , the triple product is the number given by $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$. First do the cross product, and then dot the resulting vector with the third vector

The parametric equations of a line is to have the functions x(t), y(t) and z(t)

Consider the case of 3 dimensions. In components,

$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle,$$

$$\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle,$$

$$\mathbf{v} = \langle v_x, v_y, v_z \rangle,$$

Slide 16

then the parametric equations of the line are

$$\begin{aligned} x(t) &= x_0 + tv_x, \\ y(t) &= y_0 + tv_y, \\ z(t) &= z_0 + tv_z. \end{aligned}$$

In the symmetric form of the equations the parameter t is taken out of the equations

Slide 17

Compute t in expressions above, and denote x = x(t), y = y(t), and z = z(t). Then,

$$t = \frac{x - x_0}{v_x} = \frac{y - y_0}{v_y} = \frac{z - z_0}{v_z}.$$

These are called the symmetric equations of the line.

A plane in space is determined with a point and a vector perpendicular to the plane

Definition 5 Fix a point in space, P_0 , and a nonzero vector **n**. The set of all points P satisfying

 $\overrightarrow{P_0P} \cdot \mathbf{n} = 0$

is called the plane passing through P_0 normal to \mathbf{n} , and we denote it as (P_0, \mathbf{n}) .

A plane in space is determined with a point and a vector perpendicular to the plane

Slide 20

In the equation of a plane appears the dot product

Theorem 5 Fix a coordinate system with origin at O. The equation of the plane passing through P_0 normal to **n** can be written as

$$(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$$

where $\mathbf{r}_0 = \overrightarrow{OP}_0$, and $\mathbf{r} = \overrightarrow{OP}$, with P in the plane. (Proof: $\overrightarrow{P_0P} = \mathbf{r} - \mathbf{r}_0$.)

Theorem 6 In components, the equation of a plane (P_0, \mathbf{n}) has the form

Slide 22

Slide 21

$$(x - x_0)n_x + (y - y_0)n_y + (z - z_0)n_z = 0,$$

where

$$\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle, \quad \mathbf{n} = \langle n_x, n_y, n_z \rangle, \quad \mathbf{r} = \langle x, y, z \rangle.$$

Proof: Draw a picture of the situation. Then,

 $d = |\vec{P_0 P}| \cos(\theta),$

where θ is the angle between $\vec{P_0P}$ and **n**. Recalling that

$$\vec{P_0P} \cdot \mathbf{n} = |\mathbf{n}| |\vec{P_0P}| \cos(\theta),$$

and that the distance is a nonnegative number, one gets Eq. (1).)

The limit of $\mathbf{r}(t)$ as $t \to t_0$ is the limit of its components x(t), y(t), z(t)

Definition 7 Consider the function

Slide 29

$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle.$$

The limit $\lim_{t\to t_0} \mathbf{r}(t)$ is defined as

$$\lim_{t \to t_0} \mathbf{r}(t) = \left\langle \lim_{t \to t_0} x(t), \lim_{t \to t_0} y(t), \lim_{t \to t_0} z(t) \right\rangle$$

when such limit in each component exists.

Continuous vector valued functions

Definition 8 A function $\mathbf{r}(t)$ is continuous at t_0 if

$$\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{r}(t_0)$$

Having the idea of limit, one can introduce the idea of a derivative of a vector valued function.

The derivative of a vector valued function $\mathbf{r}(t)$ is another vector valued function, $\mathbf{r}'(t)$

Definition 9 The derivative of a vector valued function $\mathbf{r} : \mathbb{R} \to \mathbb{R}^n$, denoted a $\mathbf{r}'(t)$, is given by

t)

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t+h)}{h}$$

when such limit exists.

Slide 30

The derivative of $\mathbf{r}(t)$ is the derivative of its components

Theorem 8 Consider the function

Slide 33

$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle,$$

where x(t), y(t), and z(t) are differentiable functions. Then

 $\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$

Proof:

$$\mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h},$$

$$= \lim_{h \to 0} \left\langle \frac{x(t+h) - x(t)}{h}, \frac{y(t+h) - y(t)}{h}, \frac{z(t+h) - z(t)}{h} \right\rangle$$

$$= \left\langle \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}, \lim_{h \to 0} \frac{y(t+h) - y(t)}{h}, \lim_{h \to 0} \frac{z(t+h) - z(t)}{h} \right\rangle$$

$$= \left\langle x'(t), y'(t), z'(t) \right\rangle.$$

Differentiation rules are the same as for usual (scalar) functions

- Slide 35
- $[\mathbf{v}(t) + \mathbf{w}(t)]' = \mathbf{v}'(t) + \mathbf{w}'(t)$, (addition);
- $[c\mathbf{v}(t)]' = c\mathbf{v}'(t)$, (product rule for constants);
- $[f(t)\mathbf{v}(t)]' = f'(t)\mathbf{v}(t) + f(t)\mathbf{v}'(t)$, (product rule for scalar functions);
- $[\mathbf{v}(f(t))]' = \mathbf{v}'(f(t))f'(t)$, (chain rule for functions).

Higher derivatives can also be computed

The *m* derivative of $\mathbf{r}(t)$ is denoted as $\mathbf{r}^{(m)}(t)$ and is given by the expression $\mathbf{r}^{(m)}(t) = [\mathbf{r}^{(m-1)}(t)]'$.

Example:

Slide 37

$$\mathbf{r}(t) = \langle \cos(t), \sin(t), t^2 + 2t + 1 \rangle,$$

$$\mathbf{r}'(t) = \langle -\sin(t), \cos(t), 2t + 2 \rangle,$$

$$\mathbf{r}^{(2)}(t) = (\mathbf{r}'(t))' = \langle -\cos(t), -\sin(t), 2 \rangle,$$

$$\mathbf{r}^{(3)}(t) = (\mathbf{r}^{(2)}(t))' = \langle \sin(t), -\cos(t), 0 \rangle.$$

If $\mathbf{r}(t)$ is the vector position of a particle, then the velocity vector is $\mathbf{v}(t) = \mathbf{r}'(t)$, and the acceleration vector is $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}^{(2)}(t)$.

Slide 38

20

An explicit example

$$\begin{split} \int_0^{\pi} \langle \cos(t), \sin(t), t \rangle dt &= \left\langle \int_0^{\pi} \cos(t) dt, \int_0^{\pi} \sin(t) dt, \int_0^{\pi} t dt \right\rangle, \\ &= \left\langle \sin(t) |_0^{\pi}, -\cos(t) |_0^{\pi}, \frac{t^2}{2} \Big|_0^{\pi}, \right\rangle, \\ &= \left\langle 0, 2, \frac{\pi^2}{2} \right\rangle. \end{split}$$

