Coordinates in space

Slide 1

- Overview of vector calculus.
- Coordinate systems in space.
- Distance formula. (Sec. 12.1)

Vector calculus studies derivatives and integrals of functions of more than one variable

Math 20A studies: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)$, differential calculus.
Math 20B studies: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)$, integral calculus.
Slide 2 Math 20C considers:

$$
\begin{gathered}
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y) ; \\
f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f(x, y, z) ; \\
\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle .
\end{gathered}
$$

Incorporate one more axis to \mathbb{R}^{2} and one gets \mathbb{R}^{3}

Every point in a plane can be labeled by an ordered pair of numbers, (x, y). (Descartes' idea.)

Slide 3
Every point in the space can be labeled by an ordered triple of numbers, (x, y, z).

There are two types of coordinates systems in space aside from rotations: Right handed and Left handed.

The same happens in \mathbb{R}^{2}.

The distance between points in space is crucial to generalize the idea of limit to functions in space

Slide 4
Theorem 1 The distance between the points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ is given by $\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$.

A sphere is the set of points at fixed distance from a center

Application of the distance formula: The sphere centered
Slide 5 at $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ of radius R are all points $P=(x, y, z)$ such that

$$
\left|P_{0} P\right|=R,
$$

that is,

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=R^{2} .
$$

Exercises with spheres

- Fix constants a, b, c, and d. Show that

$$
x^{2}+y^{2}+z^{2}-2 a x-2 b y-2 c z=d
$$

Slide 6 is the equation of a sphere if and only if

$$
d>-\left(a^{2}+b^{2}+c^{2}\right)
$$

- Give the expressions for the center P_{0} and the radius R of the sphere.

Vectors on the plane and in space

- Review: Distances and spheres.

Slide 7

- Vectors in R^{2} and \mathbb{R}^{3}. (Sec 12.2)
- Components of a vector in a coordinate system.
- Operations: Geometric definition, and components.

The concept of vector is an abstraction that describes many different phenomena
~ 1800 Physicists and Mathematicians realized that several different physical phenomena were described using the same idea, the same concept. These phenomena included velocities, accelerations, forces, rotations, electric and magnetic phenomena, heat transfer, etc.

The new concept were more than a number in the sense that it was needed more than a single number to specify it.

A vector in \mathbb{R}^{2} or in \mathbb{R}^{3} is an oriented line segment

Slide 8
An oriented line segment has an initial (tail) point P_{0} and a final (head) point P_{1}.

Notation: $\overrightarrow{P_{0} P_{1}}$, also, \vec{v}, and \mathbf{v}.
The length of a vector $\overrightarrow{P_{0} P_{1}}$ is denoted by $\left|\overrightarrow{P_{0} P_{1}}\right|$.

Vectors can be written in terms of components in a coordinate system

The vector with tail point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and head
Slide 9 point $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ has components

$$
\overrightarrow{P_{0} P_{1}}=\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle
$$

Points and a vector are different objects.
However, both are specified with an ordered pair of numbers in \mathbb{R}^{2}, or an ordered triple of numbers in \mathbb{R}^{3}.

The addition of two vectors is given by the parallelogram law

Slide 10

A vector can be stretched or compressed

The operations with vectors can be written in terms of components

Given the vectors $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle, \mathbf{w}=\left\langle w_{x}, w_{y}, w_{z}\right\rangle$ in
\mathbb{R}^{3}, and a number $a \in \mathbb{R}$, then the following expressions
Slide 11 hold,

$$
\begin{aligned}
\mathbf{v}+\mathbf{w} & =\left\langle\left(v_{x}+w_{x}\right),\left(v_{y}+w_{y}\right),\left(v_{z}+w_{z}\right)\right\rangle, \\
\mathbf{v}-\mathbf{w} & =\left\langle\left(v_{x}-w_{x}\right),\left(v_{y}-w_{y}\right),\left(v_{z}-w_{z}\right)\right\rangle, \\
a \mathbf{v} & =\left\langle a v_{x}, a v_{y}, a v_{z}\right\rangle, \\
|\mathbf{v}| & =\left[\left(v_{x}\right)^{2}+\left(v_{y}\right)^{2}+\left(v_{z}\right)^{2}\right]^{1 / 2} .
\end{aligned}
$$

The vectors $\mathbf{i}, \mathbf{j}, \mathrm{k}$ are very useful to write any other vector

$$
\mathbf{i}=\langle 1,0,0\rangle, \quad \mathbf{j}=\langle 0,1,0\rangle, \quad \mathbf{k}=\langle 0,0,1\rangle .
$$

Slide 12

Every vector \mathbf{v} in \mathbb{R}^{3} can be written uniquely in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$, and the following equation holds, $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}$.

Dot product and projections

- Review: Parallelogram law and stretching.

Slide 13

- Dot product. Geometric definition.
- Orthogonal vectors, projections, and properties.
- Dot product in components.

The dot product of two vectors is a number
Definition 1 Let \mathbf{v}, \mathbf{w} be vectors and $0 \leq \theta \leq \pi$ be the angle in between. Then $\mathbf{v} \cdot \mathbf{w}=|\mathbf{v}||\mathbf{w}| \cos (\theta)$.

Slide 14

Tails together.

The dot product vanishes when the vectors are perpendicular

The dot product is closely related to projections of one vector onto the other.

Slide 15

$$
\frac{\mathrm{V} \cdot \mathrm{~W}}{|\mathrm{~W}|}=|\mathrm{V}| \cos (\Theta)
$$

Here are some of the main properties of the dot product

Slide 16
$\bullet \mathbf{v} \cdot \mathbf{w}=0 \Longleftrightarrow \mathbf{v} \perp \mathbf{w}, \quad(\theta=\pi / 2) ;$

- $\mathbf{v} \cdot \mathbf{v}=|\mathbf{v}|^{2}, \quad(\theta=0)$;
- $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}, \quad$ (commutative);
- $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}, \quad($ distributive).

The dot product of the vectors i, j and k is very easy to compute

$$
\mathbf{i}=\langle 1,0,0\rangle, \quad \mathbf{j}=\langle 0,1,0\rangle, \quad \mathbf{k}=\langle 0,0,1\rangle
$$

Slide 17

$$
\begin{aligned}
\mathbf{i} \cdot \mathbf{i} & =1, & \mathbf{j} \cdot \mathbf{j} & =1, & \mathbf{k} \cdot \mathbf{k} & =1 \\
\mathbf{i} \cdot \mathbf{j} & =0, & \mathbf{j} \cdot \mathbf{i} & =0, & \mathbf{k} \cdot \mathbf{i} & =0 \\
\mathbf{i} \cdot \mathbf{k} & =0, & \mathbf{j} \cdot \mathbf{k} & =0, & \mathbf{k} \cdot \mathbf{j} & =0
\end{aligned}
$$

The dot product of two vectors can be written in terms of the components of the vectors

Theorem 2 Let $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle, \mathbf{w}=\left\langle w_{x}, w_{y}, w_{z}\right\rangle$. Then

$$
\mathbf{v} \cdot \mathbf{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z} .
$$

For the proof, recall that $\mathbf{v}=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}$, and $\mathbf{w}=w_{x} \mathbf{i}+w_{y} \mathbf{j}+w_{z} \mathbf{k}$, then the theorem follows from the distributive property of the dot product.

