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Functions defined using infinite series

• Power series.

• The convergence of power series.

• Differentiation and integration.
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The geometric series can be used to define a

function

We have learned how to add infinitely many terms.

We can use this knowledge to define functions.

f(x) =

∞∑

n=0

xn, −1 < x < 1.

In this case we know the explicit expression for the sum:

1

1− x =

∞∑

n=0

xn, −1 < x < 1.
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A power series is an infinite sum of power

functions

Definition 1 A power series centered at x = 0 is given

by

f(x) =
∞∑

n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·

A power series centered at x = a is given by

f(x) =

∞∑

n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·

where a, cn are constants.
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Not every function constructed with an infinite

series is a power series

Consider the p-series
∑∞

n=1
1
np

, which converges for p > 1.

(By integral test, although the number that it converges to is not know

exactly.)

f(x) =
∞∑

n=1

(
1

n

)x
, x ∈ (1,∞),

converges, but it is not a power series.
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Here is a simple example of a power series

f(x) =
∞∑

n=0

(
−1

2

)n
(x− 2)n, 0 < x < 4.

Show that for 0 < x < 4 holds

2

x
= 1− 1

2
(x− 2) +

1

4
(x− 2)2 − 1

8
(x− 2)3 + · · · ,
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What is the interval in x where
∑∞

n=0 cn(x− a)n

converges?

∞X

n=1

(−1)n−1 x
n

n
= x− x2

2
+
x3

3
− · · · ,

∞X

n=1

(−1)n−1 x
2n−1

2n − 1
= x− x3

3
+
x5

5
− · · · ,

∞X

n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · · ,

∞X

n=0

n! xn = 1 + x+ 2!x2 + 3! x3 + · · · .
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Summary about the convergence of power series

Theorem 1 The convergence of
∑∞

n−0 cn(x− a)n is

described by one of the following cases:

• Exists R > 0 such that the series converges for

|x− a| < R and diverges for |x− a| > R. The series

may or may not converge at the endpoints x = a +R

and x = a− R.

• The series converges for all x ∈ IR (R =∞).

• The series converges only for x = a (R = 0).
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We introduce here the radius and interval of

convergence

In the above formulas R is called the radius of

convergence.

The interval of radius R centered at x = a where the

series converges is called interval of convergence.

This interval can be open, closed, of half open.
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Differentiation and integration of power series is

done term by term

Theorem 2 Suppose that f(x) =
∑∞

n=0 cn(x− a)n

converges for |x− a| < R, with R > 0. Then,

f ′(x) =
∞∑

n=0

n cn(x− a)n−1,

∫
f(x) dx =

∞∑

n=0

cn
(n+ 1)

(x− a)(n+1) + c.

Both f ′(x) and
∫
f(x) dx converges for |x− a| < R.
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Taylor polynomials and Taylor series

• Review: Differentiation and integration

of power series.

• Taylor polynomials and series of a function.

• Convergence of Taylor series.



Math 20B Integral Calculus Lecture 24 6

Slide 11

'

&

$

%

Differentiation and integration of power series is

done term by term

Theorem 3 Suppose that
∑∞

n=0 cn(x− a)n converges for

|x− a| < R, with R > 0. Then,
( ∞∑

n=0

cn(x− a)n

)′
=
∞∑

n=0

(cn(x− a)n)′ ,

∫ ( ∞∑

n=0

cn(x− a)n

)
dx =

∞∑

n=0

∫
(cn(x− a)n) dx.

Both right hand sides converge for |x− a| < R.
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We summarize some ideas so far and formulate

our next big problem

Power series
∑∞

n=0 cn(x− a)n are well defined functions

where they converge. Say for x such that 0 ≤ |x− a| ≤ R.

Power series functions have ∞-many derivatives.

Power series functions agree with previously known

functions on some intervals.

Has any function with ∞-many derivatives a

power series expression, at least in some interval?
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Given a function f(x), how can the coefficients of

a power series be constructed?

A key idea for the answer is to see what actually happens

with power series functions.

Theorem 4 Consider a power series function∑∞
n=0 cn(x− a)n that converges for 0 < |x− a| < R.

Denote
∞∑

n=0

cn(x− a)n = f(x).

Then,

cn =
f (n)(a)

n!
.
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The previous formula suggests what is a candidate

for a power series of a given function f(x)

Definition 2 Let f(x) be a function having ∞-many

derivatives at x = a. The Taylor series generated by f(x)

at x = a is defined as

∞∑

n=0

f (n)(a)

n!
(x− a)n.

For what x does the Taylor series converge?

Does it converge to f(x)?
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Let us start defining a polynomial in n, and later

on we study the limit n→∞

Definition 3 Let f(x) be a function having n derivatives

at x = a. The Taylor polynomial of order n generated by

f(x) at x = a is defined as

Tn(x) =

n∑

k=0

f (k)(a)

k!
(x− a)k.

The degree of Tn(x) is ≤ n, because f (n)(a) could be zero.
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The Taylor series of a function is well defined

when the remainder Rn(x)→ 0 as n→∞

If f(x) having n derivatives then Tn(x) is well defined.

The remainder Rn(x) is defined by the equation

f(x) = Tn(x) +Rn(x).

Tn(x)→
∞∑

n=0

f (n)(a)

n!
(x− a)n, as n→∞.

f(x) has a series representation ⇔ limn→∞Rn(x) = 0
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Here is what Rn(x) looks like

Theorem 5 Let f , f ′, · · ·, f (n+1) be continuous in

0 < |x− a| < R. Then

f(x) = Tn(x) +Rn(x),

with Tn(x) the Taylor polynomial of order n and

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)(n+1), 0 < |a− c| < R.
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Here is what is needed on the remainder Rn(x) in

order it tends to zero for large n

Theorem 6 Let f , f ′, · · ·, f (n) be continuous and satisfy

|f (n)(x)| < M for all n ≥ 0 and 0 < |x− a| < R. Then

lim
n→∞

|Rn(x)| = 0

for 0 < |x− a| < R and then

f(x) =

∞∑

n=0

f (n)(a)

n!
(x− a)n.
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Taylor polynomials approximate functions

• Review: Convergence of Taylor series.

• Taylor polynomials to approximate functions.
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The Taylor series of a function is well defined

when the remainder Rn(x)→ 0 as n→∞

If f(x) having n derivatives then Tn(x) is well defined.

The remainder Rn(x) is defined by the equation

f(x) = Tn(x) +Rn(x).

Tn(x)→
∞∑

n=0

f (n)(a)

n!
(x− a)n, as n→∞.

f(x) has a series representation ⇔ limn→∞Rn(x) = 0
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Here is what is needed on the remainder Rn(x) in

order it tends to zero for large n

Theorem 7 Let f , f ′, · · ·, f (n) be continuous and satisfy

|f (n)(x)| < M for all n ≥ 0 and 0 < |x− a| < R. Then

lim
n→∞

|Rn(x)| = 0

for 0 < |x− a| < R and then

f(x) =

∞∑

n=0

f (n)(a)

n!
(x− a)n.
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A useful limit to verify whether Taylor series

converges

Given any number a ∈ IR, the following limit holds,

lim
n→∞

an

n!
= 0,
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Taylor polynomials approximate functions with

polynomials

Consider the following example:

The energy of a free particle with rest mass m and

velocity v is given by Einstein’s formula

E(v) =
mc2

√
1−

(
v
c

)2

where c is the speed of light.

Slide 24

'

&

$

%

Einsteinian and Newtonian kinetic energies have

very different expressions

The Einstein kinetic energy is the difference between

E(v) and the rest energy E(0),

EK(v) =
mc2

√
1−

(
v
c

)2
−mc2.

The Newtonian kinetic energy is

NK(v) =
1

2
mv2.
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Newtonian kinetic energy is an approximation of

the Einstein’s kinetic energy

mc2

√
1−

(
v
c

)2
= T2(v) +R2(v),

where

T2(v) = mc2 +
1

2
mv2,

Therefore we get that Newton kinetic energy is the

second Taylor polynomial approximation of Einstein’s

kinetic energy:

NK(v) =
1

2
mv2.

The approximation is by a second Taylor

polynomial
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Introduction to differential equations

• Examples of differential equations.

• Separable differential equations.

• Examples and applications.
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Physics describes nature through differential

equations

Newton’s law of movement of a particle.

Unknown: x(t), position as function of time.

Equation: (mass times acceleration equal force)

mx′′(t) = F (t, x(t)).

where m is the mass of the particle, and F is the force

applied to the particle.

Maxwell equations for electromagnetism,

Schrödinger equations for quantum mechanics
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Physics describes nature through differential

equations

Radioactive decay of a substance.

Unknown: m(t), mass as function of time.

Equation: (The mass decay rate is proportional to the actual mass)

m′(t) = −km(t), 0 < k.
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Physics describes nature through differential

equations

Population growth in biological systems.

Unknown: P (t) number of individuals as function of time.

Equation:

P ′(t) = k P (t), k > 0.

Population growth with limited resources:

P ′(t) = k P (t)

(
1− P (t)

K

)
, k > 0, K > 0..
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Separable equations are easy to integrate

General differential equation of first order:

y′(x) = f(x, y(x)).

Definition 4 A differential equation is separable if t has

the form

y′(x) =
g(x)

h(y(x))
.
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Separable equations are easy to integrate

Theorem 8 Let H(u) and G(x) be differentiable

functions, and let H ′(u) = h(u), and G′(x) = g(x), be

continuous functions. Let H(u) be invertible. Then, the

separable equation

y′(x) =
g(x)

h(y(x))

has the solution

y(x) = H−1(G(x) + c), c constant.
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To find family of curves orthogonal to another

family of curves is an application of differential

equations

Given a family of curves ỹ(x), find another family of

curves y(x) orthogonal to ỹ(x), that is

y′(x) = − 1

ỹ(x)
.
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Separable differential equations

• Review: Separable equations.

• Application: Find orthogonal trajectories.

• The Logistic equation.
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Separable equations are a particular class of

differential equations.

Definition 5 A differential equation is separable if t has

the form

y′(x) =
g(x)

h(y(x))
, h(y(x)) 6= 0.

Examples:

y′(x) = cos(x)[y(x)]2, P ′(t) = kP (t)

„
1− P (t)

K

«
.

Not separable equation:

y′(x) = cos(xy(x)).
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There is a general formula to integrate separable

equations

Theorem 9 Let h(u) 6= 0 and g(x) be continuous

function. Introduce their antiderivatives

H(u) =

∫ u

u0

h(s) ds, G(x) =

∫ x

x0

g(s) ds.

Assume that H(u) is invertible. Then, the separable

equation

y′(x) =
g(x)

h(y(x))
, y(x0) = y0,

has the solution y(x) = H−1(G(x)), with H(y0) = 0,

G(x0) = 0.
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Application: Find curves orthogonal to a family

of curves

Given a family of curves ỹ(x), find another family of

curves y(x) orthogonal to ỹ(x).

Theorem 10 The curve y(x) is orthogonal to the curve

ỹ(x) at x ⇔
y′(x) = − 1

ỹ(x)
.
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Orthogonal curves can be found following three

main steps

Find a differential equation obeyed by ỹ(x).

y(x) is orthogonal to the curve ỹ(x) at x ⇔
y′(x) = −1/y(x). That gives a differential equation for y(x).

Solve the differential equation for y(t).
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The Logistic equations has two main sets of

solutions

The logistic equation describes population growth with

limited resources. The equation is:

P ′(t) = k P (t)

(
1− P (t)

K

)
, P (t = 0) = P0.

with k > 0, and K > 0.

The two types of solutions are increasing solutions, and

decreasing solutions.
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Here is the general solution to the Logistic

equation

The solution is:

P (t) =
K

1 + Ae−kt
, A =

K − P0

P0
.

where P (t = 0) = P0.


