Functions defined using infinite series

Slide 1

- Power series.
- The convergence of power series.
- Differentiation and integration.

The geometric series can be used to define a function

We have learned how to add infinitely many terms.
We can use this knowledge to define functions.
Slide 2

$$
f(x)=\sum_{n=0}^{\infty} x^{n}, \quad-1<x<1 .
$$

In this case we know the explicit expression for the sum:

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad-1<x<1
$$

A power series is an infinite sum of power functions

Definition $1 A$ power series centered at $x=0$ is given by

Slide 3

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots
$$

A power series centered at $x=a$ is given by
$f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots$
where a, c_{n} are constants.

Not every function constructed with an infinite series is a power series

Consider the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, which converges for $p>1$.
Slide 4 (By integral test, although the number that it converges to is not know exactly.)

$$
f(x)=\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{x}, \quad x \in(1, \infty),
$$

converges, but it is not a power series.

Here is a simple example of a power series

$$
f(x)=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}(x-2)^{n}, \quad 0<x<4
$$

Show that for $0<x<4$ holds

$$
\frac{2}{x}=1-\frac{1}{2}(x-2)+\frac{1}{4}(x-2)^{2}-\frac{1}{8}(x-2)^{3}+\cdots,
$$

What is the interval in x where $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges?

$$
\begin{gathered}
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots \\
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{2 n-1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots \\
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\sum_{n=0}^{\infty} n!x^{n}=1+x+2!x^{2}+3!x^{3}+\cdots
\end{gathered}
$$

Summary about the convergence of power series

Theorem 1 The convergence of $\sum_{n-0}^{\infty} c_{n}(x-a)^{n}$ is described by one of the following cases:

Slide 7

- Exists $R>0$ such that the series converges for $|x-a|<R$ and diverges for $|x-a|>R$. The series may or may not converge at the endpoints $x=a+R$ and $x=a-R$.
- The series converges for all $x \in \mathbb{R}(R=\infty)$.
- The series converges only for $x=a \quad(R=0)$.

Differentiation and integration of power series is done term by term

Theorem 2 Suppose that $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges for $|x-a|<R$, with $R>0$. Then,
Slide 9

$$
\begin{gathered}
f^{\prime}(x)=\sum_{n=0}^{\infty} n c_{n}(x-a)^{n-1}, \\
\int f(x) d x=\sum_{n=0}^{\infty} \frac{c_{n}}{(n+1)}(x-a)^{(n+1)}+c . \\
\text { Both } f^{\prime}(x) \text { and } \int f(x) d x \text { converges for }|x-a|<R .
\end{gathered}
$$

Taylor polynomials and Taylor series

Slide 10

- Review: Differentiation and integration of power series.
- Taylor polynomials and series of a function.
- Convergence of Taylor series.

Differentiation and integration of power series is done term by term

Theorem 3 Suppose that $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges for $|x-a|<R$, with $R>0$. Then,
Slide 11

$$
\begin{aligned}
\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right)^{\prime} & =\sum_{n=0}^{\infty}\left(c_{n}(x-a)^{n}\right)^{\prime} \\
\int\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right) d x & =\sum_{n=0}^{\infty} \int\left(c_{n}(x-a)^{n}\right) d x
\end{aligned}
$$

Both right hand sides converge for $|x-a|<R$.

We summarize some ideas so far and formulate our next big problem

Power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ are well defined functions where they converge. Say for x such that $0 \leq|x-a| \leq R$.
Slide 12
Power series functions have ∞-many derivatives.
Power series functions agree with previously known functions on some intervals.

Has any function with ∞-many derivatives a power series expression, at least in some interval?

Given a function $f(x)$, how can the coefficients of a power series be constructed?

A key idea for the answer is to see what actually happens with power series functions.

Slide 13
Theorem 4 Consider a power series function
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ that converges for $0<|x-a|<R$.
Denote

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=f(x)
$$

Then,

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

The previous formula suggests what is a candidate for a power series of a given function $f(x)$

Definition 2 Let $f(x)$ be a function having ∞-many derivatives at $x=a$. The Taylor series generated by $f(x)$ at $x=a$ is defined as

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

For what x does the Taylor series converge?
Does it converge to $f(x)$?

Let us start defining a polynomial in n, and later on we study the limit $n \rightarrow \infty$

Definition 3 Let $f(x)$ be a function having n derivatives
Slide 15 at $x=a$. The Taylor polynomial of order n generated by $f(x)$ at $x=a$ is defined as

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
$$

The degree of $T_{n}(x)$ is $\leq n$, because $f^{(n)}(a)$ could be zero.

The Taylor series of a function is well defined

 when the remainder $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$If $f(x)$ having n derivatives then $T_{n}(x)$ is well defined.
The remainder $R_{n}(x)$ is defined by the equation

$$
f(x)=T_{n}(x)+R_{n}(x)
$$

$$
T_{n}(x) \rightarrow \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, \quad \text { as } \quad n \rightarrow \infty
$$

$f(x)$ has a series representation $\Leftrightarrow \lim _{n \rightarrow \infty} R_{n}(x)=0$

Here is what $R_{n}(x)$ looks like

Theorem 5 Let $f, f^{\prime}, \cdots, f^{(n+1)}$ be continuous in $0<|x-a|<R$. Then
Slide 17

$$
f(x)=T_{n}(x)+R_{n}(x),
$$

with $T_{n}(x)$ the Taylor polynomial of order n and

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{(n+1)}, \quad 0<|a-c|<R .
$$

Here is what is needed on the remainder $R_{n}(x)$ in order it tends to zero for large n

Theorem 6 Let $f, f^{\prime}, \cdots, f^{(n)}$ be continuous and satisfy $\left|f^{(n)}(x)\right|<M$ for all $n \geq 0$ and $0<|x-a|<R$. Then

$$
\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0
$$

for $0<|x-a|<R$ and then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Taylor polynomials approximate functions
Slide 19

- Review: Convergence of Taylor series.
- Taylor polynomials to approximate functions.

The Taylor series of a function is well defined when the remainder $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$

If $f(x)$ having n derivatives then $T_{n}(x)$ is well defined.
The remainder $R_{n}(x)$ is defined by the equation

Slide 20

$$
f(x)=T_{n}(x)+R_{n}(x)
$$

$$
T_{n}(x) \rightarrow \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, \quad \text { as } \quad n \rightarrow \infty
$$

$f(x)$ has a series representation $\Leftrightarrow \lim _{n \rightarrow \infty} R_{n}(x)=0$

Here is what is needed on the remainder $R_{n}(x)$ in order it tends to zero for large n

Theorem 7 Let $f, f^{\prime}, \cdots, f^{(n)}$ be continuous and satisfy $\left|f^{(n)}(x)\right|<M$ for all $n \geq 0$ and $0<|x-a|<R$. Then
Slide 21

$$
\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0
$$

for $0<|x-a|<R$ and then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

A useful limit to verify whether Taylor series converges

Slide 22
Given any number $a \in \mathbb{R}$, the following limit holds,

$$
\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0
$$

Taylor polynomials approximate functions with polynomials

Consider the following example:
Slide 23
The energy of a free particle with rest mass m and velocity v is given by Einstein's formula

$$
E(v)=\frac{m c^{2}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

where c is the speed of light.

Einsteinian and Newtonian kinetic energies have very different expressions

The Einstein kinetic energy is the difference between $E(v)$ and the rest energy $E(0)$,

Slide 24

$$
E_{K}(v)=\frac{m c^{2}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}-m c^{2} .
$$

The Newtonian kinetic energy is

$$
N_{K}(v)=\frac{1}{2} m v^{2} .
$$

Newtonian kinetic energy is an approximation of the Einstein's kinetic energy

$$
\begin{gathered}
\frac{m c^{2}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=T_{2}(v)+R_{2}(v), \\
T_{2}(v)=m c^{2}+\frac{1}{2} m v^{2}
\end{gathered}
$$

where

Therefore we get that Newton kinetic energy is the second Taylor polynomial approximation of Einstein's kinetic energy:

$$
N_{K}(v)=\frac{1}{2} m v^{2} .
$$

The approximation is by a second Taylor polynomial

Introduction to differential equations

Slide 26

- Examples of differential equations.
- Separable differential equations.
- Examples and applications.

Physics describes nature through differential equations

Newton's law of movement of a particle.
Unknown: $x(t)$, position as function of time.
Equation: (mass times acceleration equal force)
Slide 27

$$
m x^{\prime \prime}(t)=F(t, x(t))
$$

where m is the mass of the particle, and F is the force applied to the particle.

Maxwell equations for electromagnetism, Schrödinger equations for quantum mechanics

Physics describes nature through differential equations

Slide 28
Radioactive decay of a substance.
Unknown: $m(t)$, mass as function of time.
Equation: (The mass decay rate is proportional to the actual mass)

$$
m^{\prime}(t)=-k m(t), \quad 0<k
$$

Physics describes nature through differential equations

Population growth in biological systems.
Unknown: $P(t)$ number of individuals as function of time.
Slide 29
Equation:

$$
P^{\prime}(t)=k P(t), \quad k>0 .
$$

Population growth with limited resources:

$$
P^{\prime}(t)=k P(t)\left(1-\frac{P(t)}{K}\right), \quad k>0, K>0 . .
$$

Separable equations are easy to integrate

General differential equation of first order:

$$
y^{\prime}(x)=f(x, y(x)) .
$$

Slide 30
Definition $4 A$ differential equation is separable if t has the form

$$
y^{\prime}(x)=\frac{g(x)}{h(y(x))} .
$$

Separable equations are easy to integrate

Theorem 8 Let $H(u)$ and $G(x)$ be differentiable functions, and let $H^{\prime}(u)=h(u)$, and $G^{\prime}(x)=g(x)$, be continuous functions. Let $H(u)$ be invertible. Then, the
separable equation

$$
y^{\prime}(x)=\frac{g(x)}{h(y(x))}
$$

has the solution

$$
y(x)=H^{-1}(G(x)+c), \quad c \text { constant } .
$$

To find family of curves orthogonal to another family of curves is an application of differential equations

Slide 32
Given a family of curves $\tilde{y}(x)$, find another family of curves $y(x)$ orthogonal to $\tilde{y}(x)$, that is

$$
y^{\prime}(x)=-\frac{1}{\tilde{y}(x)} .
$$

Separable differential equations

Slide 33

- Review: Separable equations.
- Application: Find orthogonal trajectories.
- The Logistic equation.

Separable equations are a particular class of differential equations.

Definition 5 A differential equation is separable if t has the form

$$
y^{\prime}(x)=\frac{g(x)}{h(y(x))}, \quad h(y(x)) \neq 0
$$

Examples:

$$
y^{\prime}(x)=\cos (x)[y(x)]^{2}, \quad P^{\prime}(t)=k P(t)\left(1-\frac{P(t)}{K}\right)
$$

Not separable equation:

$$
y^{\prime}(x)=\cos (x y(x))
$$

There is a general formula to integrate separable equations

Theorem 9 Let $h(u) \neq 0$ and $g(x)$ be continuous function. Introduce their antiderivatives

$$
H(u)=\int_{u_{0}}^{u} h(s) d s, \quad G(x)=\int_{x_{0}}^{x} g(s) d s
$$

Assume that $H(u)$ is invertible. Then, the separable equation

$$
y^{\prime}(x)=\frac{g(x)}{h(y(x))}, \quad y\left(x_{0}\right)=y_{0}
$$

has the solution $y(x)=H^{-1}(G(x))$, with $H\left(y_{0}\right)=0$, $G\left(x_{0}\right)=0$.

Application: Find curves orthogonal to a family of curves

Given a family of curves $\tilde{y}(x)$, find another family of
Slide 36 curves $y(x)$ orthogonal to $\tilde{y}(x)$.
Theorem 10 The curve $y(x)$ is orthogonal to the curve $\tilde{y}(x)$ at $x \Leftrightarrow$

$$
y^{\prime}(x)=-\frac{1}{\tilde{y}(x)}
$$

Orthogonal curves can be found following three main steps

Find a differential equation obeyed by $\tilde{y}(x)$.
$y(x)$ is orthogonal to the curve $\tilde{y}(x)$ at $x \Leftrightarrow$ $y^{\prime}(x)=-1 / y(x)$. That gives a differential equation for $y(x)$.

Solve the differential equation for $y(t)$.

The Logistic equations has two main sets of solutions

The logistic equation describes population growth with limited resources. The equation is:
Slide 38

$$
P^{\prime}(t)=k P(t)\left(1-\frac{P(t)}{K}\right), \quad P(t=0)=P_{0} .
$$

with $k>0$, and $K>0$.
The two types of solutions are increasing solutions, and decreasing solutions.

Here is the general solution to the Logistic equation

Slide 39
The solution is:

$$
P(t)=\frac{K}{1+A e^{-k t}}, \quad A=\frac{K-P_{0}}{P_{0}} .
$$

where $P(t=0)=P_{0}$.

