Criterias for convergence of series

- Review: A rough criteria.

Slide 1

- Integral test for convergence.
- Estimating the remainder.
- Comparison test for convergence.

Here is a very rough criteria to check if a series diverges

Theorem 1 If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if
Slide 2 $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

It is based in the following result:
Theorem 2 If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Here is a test of convergence for certain series using integration

Theorem 3 Let $f(x)$ be a continuous, positive, decreasing function on $[1, \infty)$. Consider the sequence
Slide 3 $a_{n}=f(n), n \in \mathbb{Z}^{+}$. Then,
$\sum_{n=1}^{\infty} a_{n}$ is convergent $\Leftrightarrow \int_{1}^{\infty} f(x) d x$ is convergent.
The proof is to show the following inequality

$$
\int_{1}^{n+1} f(x) d x \leq s_{n} \leq a_{1}+\int_{1}^{n} f(x) d x
$$

We already used this test in the harmonic series
The harmonic series $s_{n}=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots$
Slide 4 diverges, because

$$
\ln (n+1)=\int_{1}^{n+1} \frac{1}{x} d x \leq s_{n}
$$

and $\ln (n+1)$ diverges when $n \rightarrow \infty$.

This test can be applied to the geometric series
Consider the geometric series
$s_{n}=\sum_{k=1}^{n} r^{(k-1)}=1+r+r^{2}+r^{3}+\cdots+r^{n-1}$, for $0<r<1$.

Slide 5 Here $f(x)=r^{x}$. Recall $\int r^{x} d x=\frac{r^{x}}{\ln (r)}+c$. Then,

$$
s_{n} \leq 1+\int_{1}^{n} r^{x} d x=1+\frac{r}{\ln (1 / r)}-\frac{r^{n}}{\ln (1 / r)}
$$

and $r^{n} \rightarrow 0$ when $n \rightarrow \infty$. So, s_{n} converges.
We knew that the geometric series converges, $\sum_{k=1}^{\infty} r^{(k-1)}=\frac{1}{1-r}$.

This test can be applied to the p-series
Theorem 4 The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges for $p>1$,
Slide 6 and it diverges for $p \leq 1$.

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x= \begin{cases}\frac{1}{p-1} & p>1 \\ \text { diverges } & p \leq 1\end{cases}
$$

The remainder of a series can be estimated with the same type of integral bounds as above

Definition 1 If $s_{n}=\sum_{k=1}^{n} a_{k}$ converges to s, then the remainder after n terms is

Slide 7

$$
R_{n}=s-s_{n}
$$

So, $R_{n}=a_{n+1}+a_{n+2}+\cdots$, that is,

$$
R_{n}=\sum_{k=n+1}^{\infty} a_{k} .
$$

Here is the estimation for the remainder

Theorem 5 Let $f(x)$ be continuous, positive, decreasing function on $[n, \infty)$. Consider the sequence $a_{k}=f(k)$ for

Slide 8

$$
\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

Therefore,

$$
s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x
$$

There are three types of comparison tests
Theorem 6 Let $\sum_{n=1}^{\infty} a_{n}$, and $\sum_{n=1}^{\infty} b_{n}$ be series with positive terms.

Slide 9

1. If $a_{n} \leq b_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
2. If $b_{n} \leq a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
3. If $\lim _{n \rightarrow \infty} a_{n} / b_{n}=c>0$, finite, then both $\sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty} a_{n}$ converge, or both diverge.

More and more and more convergence tests

- Review: Integral and test.
- Alternating series.
- Absolute convergence
- Root and ratio tests.

Why so many tests? Sometimes works one, sometimes another.

The integral test links series convergence with and improper integral convergence
$f(x)$ continuous, positive, and decreasing function on $[1, \infty)$. Define the sequence $a_{n}=f(n), n \in \mathbb{Z}^{+}$.
Slide 11
$\sum_{n=1}^{\infty} a_{n}$ is convergent $\Leftrightarrow \int_{1}^{\infty} f(x) d x$ is convergent.

The proof is to show the following inequality

$$
\int_{1}^{n+1} f(x) d x \leq s_{n} \leq a_{1}+\int_{1}^{n} f(x) d x
$$

The integral test does not apply on every series
Definition 2 Given $0<a_{n}$, the series $s_{n}=\sum_{k=1}^{n}(-1)^{k+1} a_{k}$ is called alternating series.

That is

$$
s_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots+(-1)^{n+1} a_{n} .
$$

Here is the alternating harmonic series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

The harmonic series diverges, however the alternating harmonic series converges

Theorem 7 If the alternating series $\sum_{k=1}^{n}(-1)^{k+1} a_{k}$
Slide 13
with $a_{k}>0$ also satisfies

- $a_{n+1}<a_{n}$ (decreasing sequence),
- $a_{n} \rightarrow 0$ as $n \rightarrow \infty$,
then $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ converges.

The convergence of a nonpositive series could be determined by its absolute value series

Definition $3 A$ series $\sum a_{n}$ is absolutely convergent if
Slide 14 $\sum\left|a_{n}\right|$ is convergent.

Is the series below convergent?

$$
s_{n}=\sum_{k=1}^{n} \frac{\cos (3 k)}{k^{2}} .
$$

First notice that it is absolutely convergent.

Absolutely convergence implies convergence

Theorem 8 If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$

Slide 15 converges.

Therefore, the series

$$
s_{n}=\sum_{k=1}^{n} \frac{\cos (3 k)}{k^{2}}
$$

is indeed convergent.

The root test for a series is to compare it with a geometric series

Theorem 9 Consider the series $\sum_{k=1}^{n} a_{k}$ and denote
Slide 16

$$
L=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} .
$$

- If $L<1$, then $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
- If $L>1$ or L is ∞, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
- If $L=1$, then the test is inconclusive.

The ratio test is perhaps the test one should try first

Theorem 10 Consider the series $\sum_{k=1}^{n} a_{k}$ and denote
Slide 17

$$
L=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}
$$

- If $L<1$, then $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
- If $L>1$ or L is ∞, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
- If $L=1$, then the test is inconclusive.

