Tricks for trigs

Slide 1

- Review: Recursion formulas.
- Integral of some trigonometric functions.
- integrals of $f: \mathbb{R} \rightarrow \mathbb{C}$.

Reduction formulas are a simple way to write complicated integrals

In the case of the function $\sin (x)$ one has:
Slide 2

$$
\begin{aligned}
& \int(\sin (x))^{n} d x=-\frac{1}{n}(\sin (x))^{(n-1)} \cos (x)+\frac{(n-1)}{n} \int(\sin (x))^{(n-2)} d x . \\
& \int(\cos (x))^{n} d x=\frac{1}{n}(\cos (x))^{(n-1)} \sin (x)+\frac{(n-1)}{n} \int(\cos (x))^{(n-2)} d x .
\end{aligned}
$$

Tricks for sines and cosines

Consider integrals of the form

$$
\int[\sin (x)]^{m}[\cos (x)]^{n} d x
$$

Slide 3
If m or n is odd, then the integral can be done by substitution, recalling:

$$
\begin{gathered}
\sin ^{\prime}(x)=\cos (x), \quad \cos ^{\prime}(x)=-\sin (x) \\
\sin ^{2}(x)+\cos ^{2}(x)=1
\end{gathered}
$$

Tricks for sines and cosines

Consider integrals of the form

$$
\int[\sin (x)]^{m}[\cos (x)]^{n} d x
$$

Slide 4
If both m and n are even, then integral above can be done recalling

$$
\begin{aligned}
& \sin ^{2}(x)=\frac{1}{2}[1-\cos (2 x)] \\
& \cos ^{2}(x)=\frac{1}{2}[1+\cos (2 x)]
\end{aligned}
$$

Tricks for tangents and secants

Consider integrals of the form

$$
\int[\tan (x)]^{n}[\sec (x)]^{m} d x
$$

If n is odd or if m is even, then substitution recalling

$$
\begin{gathered}
\tan ^{\prime}(x)=\sec ^{2}(x), \quad \sec ^{\prime}(x)=\tan (x) \sec (x) \\
\sec ^{2}(x)-\tan ^{2}(x)=1
\end{gathered}
$$

More tricks on sines and cosines

The following integrals can be done with the associated formula:

Slide 6
$\int \sin (m x) \cos (n x) d x \rightarrow \sin (\alpha) \cos (\beta)=\frac{1}{2}[\sin (\alpha-\beta)+\sin (\alpha+\beta)] ;$
$\int \sin (m x) \sin (n x) d x \rightarrow \sin (\alpha) \sin (\beta)=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] ;$
$\int \cos (m x) \cos (n x) d x \rightarrow \cos (\alpha) \cos (\beta)=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$.

Integration can be generalized to functions

$f: \mathbb{R} \rightarrow \mathbb{C}$
These functions have the form $f(x)=f_{1}(x)+i f_{2}(x)$, with $f_{1}(x)$ and $f_{2}(x)$ real functions.

Slide 7 Examples:

$$
\begin{aligned}
f(x) & =2 x+i \ln (x) \\
f^{\prime}(x) & =2+i \frac{1}{x} \\
g(x) & =\tan (3 x)+i e^{2 x} \\
g^{\prime}(x) & =3 \sec ^{2}(3 x)+2 i e^{2 x} .
\end{aligned}
$$

Riemann sums, integration, and the FTC can be generalized to function $f: \mathbb{R} \rightarrow \mathbb{C}$

$$
\int f(x) d x=\int f_{1}(x) d x+i \int f_{2}(x) d x
$$

Example:

$$
\begin{gathered}
\int e^{i a x} d x=\frac{1}{i a} e^{i a x}=-\frac{i}{a} e^{i a x} \\
\int\left[x^{2}+i \cos (x)\right] d x=\frac{1}{3} x^{3}+i \sin (x)
\end{gathered}
$$

Complex tricks for sine and cosine

Euler formulas

$$
\begin{aligned}
e^{i x} & =\cos (x)+i \sin (x) \\
e^{-i x} & =\cos (x)-i \sin (x),
\end{aligned}
$$

Slide 9 imply that

$$
\begin{aligned}
\cos (x) & =\frac{1}{2}\left[e^{i x}+e^{-i x}\right] \\
\sin (x) & =\frac{1}{2 i}\left[e^{i x}-e^{-i x}\right]
\end{aligned}
$$

Therefore, integrals in sines and cosines can be transformed into complex integrals for exponentials.

The subtle art of integration

Slide 10

- Trigonometric substitution.
- Integrals of rational functions
- Examples.

Here is one more trick with trigs
Integrals of the form

$$
\int \sqrt{a^{2}-x^{2}} d x, \quad|x| \leq|a|,
$$

Slide 11
can be computed with the change of variable:

$$
x=a \sin (\theta) .
$$

Then,

$$
\int \sqrt{a^{2}-x^{2}} d x=a^{2} \int \cos ^{2}(\theta) d \theta
$$

Here are two more tricks that do not always work well, but they are worth to try

Integrals containing factors $\sqrt{a^{2}+x^{2}}$ could be
Slide 12 transformed with a change of variables $x=a \tan (\theta)$.

Integrals containing factors $\sqrt{x^{2}-a^{2}}$, with $|x| \geq|a|$, could be transformed with a change of variables $x=a \sec (\theta)$.

Quotients of polynomials can always be integrated

Definition 1 A rational function is a function of the
Slide 13
form

$$
f(x)=\frac{P_{n}(x)}{Q_{m}(x)}
$$

where $P_{n}(x)$ and $Q_{m}(x)$ are a polynomials of degree n and m, respectively.

The idea is to learn how to integrate rational functions as the following ones:

$$
\begin{aligned}
& \int \frac{2 x^{3}-x^{2}+x-1}{x+1} d x \\
& \int \frac{4 x^{3}-2 x^{2}-x-1}{2 x^{2}+x-1} d x
\end{aligned}
$$

The idea is to rewrite the rational function in a more convenient way

Theorem 1 Consider a rational function $P_{n}(x) / Q_{m}(x)$,
Slide 15 with $n>m$. Then, there exist polynomials $S_{p}(x)$ and $R_{q}(x)$ of degree $p=n-m$ and $q<m$ such that

$$
\frac{P_{n}(x)}{Q_{m}(x)}=S_{p}(x)+\frac{R_{q}(x)}{Q_{m}(x)}
$$

The idea is to rewrite the rational function in a more convenient way

Theorem 2 Consider a rational function $R_{q}(x) / Q_{m}(x)$ with $q<m$, and where
Slide 16

$$
Q_{m}(x)=Q_{0}\left(x-a_{1}\right) \cdots\left(x-a_{m}\right)
$$

with a_{1}, \cdots, a_{m} are real numbers. Then, there exists real numbers A_{1}, \cdots, A_{m} such that

$$
\frac{R_{q}(x)}{Q_{m}(x)}=\frac{A_{1}}{\left(x-a_{1}\right)}+\cdots+\frac{A_{m}}{\left(x-a_{m}\right)} .
$$

How to integrate ratio of polynomials

- Review: Rational functions.
- Integration of rational functions.
- Examples.

A rational function is a quotient of polynomials

Definition $2 A$ rational function is a function of the form

Slide 18

$$
f(x)=\frac{P_{n}(x)}{Q_{m}(x)}
$$

where $P_{n}(x)$ and $Q_{m}(x)$ are a polynomials of degree n and m, respectively.

Quotients of polynomials can always be integrated

The idea is to rewrite the rational function in a more convenient way

Slide 19
Theorem 3 Consider a rational function $P_{n}(x) / Q_{m}(x)$, with $n>m$. Then, there exist polynomials $S_{p}(x)$ and $R_{q}(x)$ of degree $p=n-m$ and $q<m$ such that

$$
\frac{P_{n}(x)}{Q_{m}(x)}=S_{p}(x)+\frac{R_{q}(x)}{Q_{m}(x)}
$$

The problem of integrating a quotient of arbitrary polynomials has been simplified

One needs to study only polynomials of the form

$$
\frac{P_{n}(x)}{Q_{m}(x)}, \quad 0 \leq n<m .
$$

This type of rational functions can be integrated using the following two results.

Every polynomial can be decomposed into a product of polynomials of degree one and two

Theorem 4 Every polynomial $Q_{m}(x)$ with $m \geq 0$ and real coefficients can be decomposed as
Slide 21
$Q_{m}(x)=a\left(x-a_{1}\right)^{\ell_{1}} \cdots\left(x-a_{r}\right)^{\ell_{r}}\left(x^{2}+b_{1} x+c_{1}\right)^{m_{1}} \cdots\left(x^{2}+b_{s} x+c_{s}\right)^{m_{s}}$.
with $m=\ell_{1}+\cdots+\ell_{r}+m_{1}+\cdots+m_{s}$.
The a_{1}, \cdots, a_{r} are roots of $Q_{m}(x)$, that is, $Q_{m}\left(a_{i}\right)=0$, for $i=1, \cdots, r$.

Products can be transformed into sums

Theorem 5 Consider a rational function $R_{q}(x) / Q_{m}(x)$ with $0 \leq q<m$, and where
$Q_{m}(x)=a\left(x-a_{1}\right)^{\ell_{1}} \cdots\left(x-a_{r}\right)^{\ell_{r}}\left(x^{2}+b_{1} x+c_{1}\right)^{m_{1}} \cdots\left(x^{2}+b_{s} x+c_{s}\right)^{m_{s}}$.
Then, $R_{q}(x) / Q_{m}(x)$ can be written as
Slide 22

$$
\begin{gathered}
\frac{R_{q}(x)}{Q_{m}(x)}=\sum_{i_{1}=1}^{\ell_{1}} \frac{A_{i_{1} 1}}{\left(x-a_{1}\right)^{i_{1}}}+\cdots+\sum_{i_{r}=1}^{\ell_{r}} \frac{A_{i_{r} r}}{\left(x-a_{r}\right)^{i_{r}}} \\
+\sum_{j_{1}=1}^{m_{1}} \frac{B_{j_{1} 1} x+C_{j_{1} 1}}{\left(x^{2}+b_{1} x+c_{1}\right)^{j_{1}}}+\cdots+\sum_{j_{s}=1}^{m_{s}} \frac{B_{j_{s} s} x+C_{j_{s} s}}{\left(x^{2}+b_{s} x+c_{s}\right)^{j_{s}}}
\end{gathered}
$$

where $A^{\prime} s, B$'s, and C 's are real numbers.
The right hand side can always be integrated!

