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z = a + bi, powers, roots, and exponentials

• Review: Cartesian and polar representations.

• Powers and roots.

• Exponential and Euler formula.
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Complex numbers can be associated with points

in a plane

• Cartesian picture: Good for representing addition and

real number multiplication.

(Parallelogram law and stretching.)

• Polar picture: Good for representing the

multiplication law.

(Stretching and rotation.)
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The power of a complex number is very easy to

compute in the polar representation

Theorem 1 (De Moivre)

(r[cos(θ) + i sin(θ)])n = rn[cos(nθ) + i sin(nθ)].

Equivalently:

z = r[cos(θ) + i sin(θ)]⇒ zn = rn[cos(nθ) + i sin(nθ)].
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Arbitrary powers are easy in polar representation

z = a+ bi, ⇔ z = r[cos(θ) + i sin(θ)],

r =
√
a2 + b2, θ = arctan(b/a).

Then,

(a+ bi)n = rn[cos(nθ) + i sin(nθ)].
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Magic at work: There are n solutions to the n-th

root of a complex number

(In real numbers there are one or two, for n is odd or even, respectively.)

Theorem 2 Let z = r[cos(θ) + i sin(θ)] and n ≥ 1.

Then, the complex numbers

wk = r
1
n

[
cos

(
θ

n
+

2π

n
k

)
+ i sin

(
θ

n
+

2π

n
k

)]

k = 0, · · · , n− 1 satisfy the equation

(wk)
n = z.
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Why not to integrate by parts?

• Review: Complex numbers and Euler formula.

• Integration by parts.

• Exercises.

• Recursion formula.
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Euler first obtained a formula for the exponential

of real numbers

Theorem 3

ex = lim
n→∞

(
1 +

x

n

)n
,

for all x ∈ IR.
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Euler later considered the De Moivre formula

[cos(θ) + i sin(θ)] =

[
cos

(
θ

n

)
+ i sin

(
θ

n

)]n
.

Therefore,

[cos(θ) + i sin(θ)] = lim
n→∞

(
1 +

iθ

n

)n
.
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Euler formula is one of the most beautiful

formulas we have seen so far

The calculation above suggests the following relation:

eiθ = cos(θ) + i sin(θ).

In particular, one has Euler formula:

eiπ − 1 = 0.
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Why not to integrate by parts?

Theorem 4 (Integration by parts) If f(x) and g(x)

are integrable functions in [a, b], then the following

formulas hold,
∫
f ′(x)g(x) dx = f(x)g(x)−

∫
f(x)g′(x) dx,

∫ b

a
f ′(x)g(x) dx = [f(x)g(x)]|ba −

∫ b

a
f(x)g′(x) dx.
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The proof is based on the product rule and the

FTC

Recall that [f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x).

Indefinite integral:

f(x)g(x) =

∫
[f(x)g(x)]′ dx,

=

∫
f ′(x)g(x)dx+

∫
f(x)g′(x) dx.

Definite integral:

[f(x)g(x)]|ba =

∫ b

a

[f(x)g(x)]′ dx,

=

∫ b

a

f ′(x)g(x)dx+

∫ b

a

f(x)g′(x) dx.
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Simple examples of integration by parts

Find the following integrals:
∫

ln(x) dx = x ln(x)− x,
∫
xex dx = (x− 1)ex,

∫
x sin(x) dx = −x cos(x) + sin(x),

∫ 1

x
ln(x) dx =

1

2
ln2(x).
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Integration by parts is very useful to construct

integration tables

Do you know how the following integral was discovered?

∫
x2

2
ex dx =

(
x2

2
− x + 1

)
ex.
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Reduction formulas are a simple way to write

complicated integrals

In the case of the function sin(x) one has:
∫

[sin(x)]n dx = − 1

n
[sin(x)](n−1) cos(x)

+
(n− 1)

n

∫
[sin(x)](n−2) dx.


