$z=a+b i$, powers, roots, and exponentials

Slide 1

- Review: Cartesian and polar representations.
- Powers and roots.
- Exponential and Euler formula.

Complex numbers can be associated with points in a plane

- Cartesian picture: Good for representing addition and

Slide 2 real number multiplication. (Parallelogram law and stretching.)

- Polar picture: Good for representing the multiplication law.
(Stretching and rotation.)

The power of a complex number is very easy to compute in the polar representation

Theorem 1 (De Moivre)
Slide 3

$$
(r[\cos (\theta)+i \sin (\theta)])^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)]
$$

Equivalently:

$$
z=r[\cos (\theta)+i \sin (\theta)] \Rightarrow z^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)]
$$

Then,

$$
(a+b i)^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)] .
$$

Magic at work: There are n solutions to the n-th root of a complex number
(In real numbers there are one or two, for n is odd or even, respectively.)
Theorem 2 Let $z=r[\cos (\theta)+i \sin (\theta)]$ and $n \geq 1$.
Slide 5
Then, the complex numbers

$$
w_{k}=r^{\frac{1}{n}}\left[\cos \left(\frac{\theta}{n}+\frac{2 \pi}{n} k\right)+i \sin \left(\frac{\theta}{n}+\frac{2 \pi}{n} k\right)\right]
$$

$k=0, \cdots, n-1$ satisfy the equation

$$
\left(w_{k}\right)^{n}=z
$$

Why not to integrate by parts?

- Review: Complex numbers and Euler formula.

Slide 6

- Integration by parts.
- Exercises.
- Recursion formula.

Euler first obtained a formula for the exponential of real numbers

Slide 7
Theorem 3

$$
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

for all $x \in \mathbb{R}$.

Euler later considered the De Moivre formula

$$
[\cos (\theta)+i \sin (\theta)]=\left[\cos \left(\frac{\theta}{n}\right)+i \sin \left(\frac{\theta}{n}\right)\right]^{n} .
$$

Therefore,

$$
[\cos (\theta)+i \sin (\theta)]=\lim _{n \rightarrow \infty}\left(1+\frac{i \theta}{n}\right)^{n}
$$

Euler formula is one of the most beautiful formulas we have seen so far

The calculation above suggests the following relation:
Slide 9

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta) .
$$

In particular, one has Euler formula:

$$
e^{i \pi}-1=0 .
$$

Why not to integrate by parts?
Theorem 4 (Integration by parts) If $f(x)$ and $g(x)$ are integrable functions in $[a, b]$, then the following
Slide 10 formulas hold,

$$
\begin{aligned}
\int f^{\prime}(x) g(x) d x & =f(x) g(x)-\int f(x) g^{\prime}(x) d x \\
\int_{a}^{b} f^{\prime}(x) g(x) d x & =\left.[f(x) g(x)]\right|_{a} ^{b}-\int_{a}^{b} f(x) g^{\prime}(x) d x
\end{aligned}
$$

The proof is based on the product rule and the FTC

Recall that $[f(x) g(x)]^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
Indefinite integral:

$$
\begin{aligned}
f(x) g(x) & =\int[f(x) g(x)]^{\prime} d x, \\
& =\int f^{\prime}(x) g(x) d x+\int f(x) g^{\prime}(x) d x .
\end{aligned}
$$

Definite integral:

$$
\begin{aligned}
{[f(x) g(x)]]_{a}^{b} } & =\int_{a}^{b}[f(x) g(x)]^{\prime} d x, \\
& =\int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x .
\end{aligned}
$$

Simple examples of integration by parts
Find the following integrals:

$$
\begin{aligned}
\int \ln (x) d x & =x \ln (x)-x \\
\int x e^{x} d x & =(x-1) e^{x} \\
\int x \sin (x) d x & =-x \cos (x)+\sin (x) \\
\int \frac{1}{x} \ln (x) d x & =\frac{1}{2} \ln ^{2}(x)
\end{aligned}
$$

Integration by parts is very useful to construct integration tables

Slide 13
Do you know how the following integral was discovered?

$$
\int \frac{x^{2}}{2} e^{x} d x=\left(\frac{x^{2}}{2}-x+1\right) e^{x}
$$

Reduction formulas are a simple way to write complicated integrals

Slide 14
In the case of the function $\sin (x)$ one has:

$$
\begin{aligned}
\int[\sin (x)]^{n} d x= & -\frac{1}{n}[\sin (x)]^{(n-1)} \cos (x) \\
& +\frac{(n-1)}{n} \int[\sin (x)]^{(n-2)} d x
\end{aligned}
$$

