
Math 20B Integral Calculus Lecture 1 1

Slide 1

'

&

$

%

Review on Integration (Secs. 5.1 - 5.3)

• Remarks on the course.

• Review: Sec. 5.1-5.3

– Origins of Calculus.

– Riemann Sums.

– New functions from old ones.
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A mathematical description of motion motivated

the creation of Calculus

Problem of Motion:

• Given x(t) find v(t) ↔ Differential Calculus.

• Given v(t) find x(t) ↔ Integral Calculus.

Derivatives and integrals are operations on functions.

One is the inverse of the other. This is the content of the

Fundamental theorem of Calculus.
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An integral is a sum of infinite many terms

Definition 1 (Integral of a function) Let f(x) be a

function defined on a interval x ∈ [a, b]. The integral of

f(x) in [a, b] is the number given by

∫ b

a
f(x)dx = lim

n→∞

n∑

i=0

f(x∗i ) ∆x,

if the limit exists. Given a natural number n we have

introduced a partition on [a, b] given by ∆x = (b− a)/n.

We denoted x∗i = (xi + xi−1)/2, where xi = a+ i∆x,

i = 0, 1, · · · , n. This choice of the sample point x∗i is

called midpoint rule.
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An integral is a sum of infinite many terms

Continuous functions are integrable. The sum of infinite

many terms is finite.

Theorem 1 If f(x) is continuous in [a, b], then
∫ b

a
f(x) dx = lim

n→∞Rn, exists.

Notation:
∫ b
a
f(x) dx is called the definite integral of f(x) from a to b.

Notice:
∫ b
a
f(x) dx is a number.
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Properties deduced from the definition

∫ b

a
f(x) dx = −

∫ a

b
f(x) dx;

∫ a

a
f(x) dx = 0;

∫ b

a
c dx = c(b− a);

∫ b

a
(f ± g) dx =

∫ b

a
f dx±

∫ b

a
g dx;
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More properties deduced from the definition

∫ b

a
c f(x) dx = c

∫ b

a
f(x) dx;

∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ a

c
f(x) dx;

f ≥ 0 ⇒
∫ b

a
f dx ≥ 0;

f ≥ g ⇒
∫ b

a
f dx ≥

∫ b

a
g x;

m ≤ f ≤M ⇒ m(b− a) ≤
∫ b

a
f dx ≤M(b − a).
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Integration can be used to define new functions

from old ones

Theorem 2 If f(x) is continuous in [a, b], then

F (x) =
∫ x

a
f(s) ds, x ∈ [a, b],

is a continuous functions and F (a) = 0.

Examples:

ln(x) =
∫ x

1

1

s
ds, x2 =

∫ x

0
2s ds.
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Fundamental Theorem of Calculus

• Review: New function using integration.

• Fundamental Theorem of Calculus. (Sec. 5.3)

• Integration tables. (Sec. 5.4)
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Integration can be used to define new functions

from old ones

Theorem 3 If f(x) is continuous in [a, b], then

F (x) =
∫ x

a
f(s) ds, x ∈ [a, b],

is a continuous functions and F (a) = 0.

Examples:

ln(x) =
∫ x

1

1

s
ds, x2 =

∫ x

0
2s ds.
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Derivation and integration are operations on

functions, and they are inverse of each other

Theorem 4 (Fundamental Theorem of Calculus)

If f(x) is continuous in [a, b] and c is any constant, then

F (x) =
∫ x

a
f(s) ds+ c, x ∈ [a, b],

is differentiable and

F ′(x) = f(x).
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The FTC justifies the name antiderivation for

integration

Definition 2 The function F (x) given by

F (x) =
∫ x

a
f(s) ds+ c

for any constant c is called the antiderivative of f(x).

The antiderivative of a given function is not unique.

Two antiderivatives of the same function can differ by a constant.

Notation:
∫
f dx also denotes an antiderivative of f .
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Here are two simple reformulations of the FTC

Corollary 1 If f(x) is continuous in [a, b], then
∫ b

a
f(s) ds = F (b)− F (a),

where F (x) is any antiderivative of f(x).

Corollary 2 If F (x) is differentiable in [a, b], then
∫ b

a
F ′(s) ds = F (b)− F (a).
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The insight from the FTC can be used to

construct integration tables

∫
adx = ax + c,

∫
xndx =

1

n+ 1
xn+1 + c, n 6= −1,

∫
1

x
dx = ln(x) + c,

∫
exdx = ex + c.
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The insight from the FTC can be used to

construct integration tables

∫
sin(x) dx = − cos(x) + c,

∫
cos(x) dx = sin(x) + c,

∫
1

1 + x2
dx = arctan(x) + c,

∫
1√

1− x2
dx = arcsin(s) + c.
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FTC and the chain rule

F (x) =
∫ x

a
f(t) dt+ c, F (a) = c, F ′(x) = f(x).

IF (x) = F (g(x)), ⇒ IF ′(x) = F ′(g(x)) g′(x).

IF (x) =
∫ g(x)

a
f(t)dt+ c, ⇒ IF ′(x) = f(g(x)) g′(x).

Example:

f(x) =
∫ sin(x)

1
ln(t) dt, ⇒ f ′(x) = ln(sin(x)) cos(x).
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Substitution rule

• Review: Derivation ↔ Integration

are inverse operations.

• Chain rule ↔ Substitution rule.

• Examples.
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Derivation and integration are inverse operations

F (x) =
∫ x

a
f(s) ds+ c ⇒ F (a) = c, F ′(x) = f(x).

In other words,

F (x) =
∫
f(x) dx ⇒ F ′(x) = f(x).

In still other words,
∫
F ′(x) dx = F (x).
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Derivation tables ⇒ Integration tables

(xn)′ = nxn−1 ⇒
∫
nxn−1 dx = xn + c,

[sin(x)]′ = cos(x) ⇒
∫

cos(x) dx = sin(x) + c.

Derivation rules ⇒ Integration rules

Chain rule ⇒ Substitution rule.

Product rule ⇒ Integration by parts.
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Chain rule provides a way to compute some

integrals

Find the primitive (antiderivative) of 2x cos(x2).
∫

cos(x2)2x dx =
∫

[sin(x2)]′ dx,

= sin(x2) + c.
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Chain rule provides a way to compute some

integrals

Find the primitive (antiderivative) of cos(x)/ sin(x).
∫

1

sin(x)
cos(x) dx =

∫
[ln(sin(x))]′ dx,

= ln(sin(x)) + c.
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Here is the general case of this inverse form of

chain rule

Find the primitive of f(g(x)) g′(x) knowing that the

primitive of f(x) is F (x), that is, F ′(x) = f(x).
∫
f(g(x)) g′(x) dx =

∫
F ′(g(x)) g′(x) dx,

=
∫

[F (g(x))]′ dx,

= F (g(x)) + c.
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The substitution rule is a technique to use the

inverse form of the chain rule efficiently

Recall, F ′(x) = f(x), then
∫
f(g(x)) g′(x) dx =

∫
F ′(g(x)) g′(x) dx.

Introduce u = g(x), then denote du = g′(x) dx.

Substitute these expressions in the right hand side above:
∫
f(g(x)) g′(x) dx =

∫
F ′(u) du,

= F (u) + c,

= F (g(x)) + c.
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The substitution rule on definite integrals changes

the limits of integration

Theorem 5 (Change of variable) Let g(x) be

differentiable in [a, b] with g′(x) continuous in [a, b]. Let

f(u) be continuous for u = g(x) and x ∈ [a, b]. Then,

∫ b

a
f(g(x)) g′(x) dx =

∫ g(b)

g(a)
f(u) du.
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Proof of the change of variable theorem

Let F (x) be a primitive of f(x), so F ′(x) = f(x), and

F (d)− F (c) =
∫ d
c f(u) du.

∫ b

a
f(g(x)) g′(x) dx =

∫ b

a
F ′(g(x)) g′(x) dx,

=
∫ b

a
[F (g(x))]′ dx,

= F (g(b))− F (g(a)),

=
∫ g(b)

g(a)
f(u) du.


