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FEigenvalues and Eigenvectors

e Review:
— Formula for the inverse matrix.
— Cramer’s rule.

— Determinants, areas and volumes.

e Definition of eigenvalues and eigenvectors.
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Review

Theorem 1 (Formula for the inverse matrix) If A be an
n X n matric with det(A) = A # 0, then

_ 1
(A7), = x5l
where Cij = (71)i+j det(Az])
Theorem 2 (Cramer’s rule) If the matriz A = [a, -+, a,] is

invertible, then the linear system Ax = b has a unique solution for

every vector b, given by

1
Tr; = Z det(Ai (b))

where x; 1s the i component of x, and A;(b) =[ay, -+, b, -+, a,],

with b in the i column.
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Determinant, areas and volumes

Theorem 3 Let A =[a;,---,a,] be an n X n matriz.
Slide 3 If n =2, then | det(A)| is the area of the parallelogram determined
by ai, as.

If n =3, then | det(A)]| is the volume of the parallelepiped

determined by a1, as, and as.
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Determinant, areas and volumes

Sketch of the proof for n = 2. The elementary row operations
e add to one row a multiple of another row;
e switch two rows;

leave the absolute value of the determinant unchanged, and they

Slide 4 also leave the area of the parallelogram unchanged.

These operations transform any parallelogram into a rectangle.

In the case of a rectangle, the determinant of the matrix
constructed with the vectors that form the rectangle is the area of
the rectangle.

Therefore, the theorem follows in the case n = 2.

Same argument holds for n = 3.
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FEigenvalues and eigenvectors

Definition 1 (Eigenvalues and eigenvectors) Let A be an
n X n matriz. A number X is an eigenvalue of A if there exists a

nonzero vector X € IR™ such that
Ax = Ix.

The vector x is called an eigenvalue of A corresponding to .

Notice: If x is an eigenvector, then tx with ¢ # 0 is also an

eigenvector.

Definition 2 (Eigenspace) Let A be an eigenvalue of A. The set
of all vectors x solutions of Ax = Ax is called the eigenspace E(X).

That is, F(\) = { all eigenvectors with eigenvalue A, and 0}.

N )

-

Ezamples
e Consider the matrix
3
A=
3 1

Show that the vectors vi = [1,1]T and vy = [1, —1]T are

eigenvectors of A and find the associated eigenvalues.

IR
w3 L[ )

kThen, A =4 and Ao = —2. /
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Ezamples

e Is v =[1,2]7 an eigenvector of matrix A given above?

Slide 7 The answer is no, because of the following calculation.
1 3 1 7 1
Av = = #A .
3 1 2 5 2
Ezxamples
e Consider the matrix
2
A=
3 6
Slide 8
Show that the vectors vi = [—2,1]T is an eigenvector of A, and

find the associated eigenvalue.

eI

Therefore, A1 = 0.

N )
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e Is there any other eigenvalue of the matrix A above?

One has to find the solutions of Ax = A\x.

1 2 T AT
Ax = =
3 6 i) )\1'2
r1+2x2 = Ax1
Slide 9 A
31 +6x2 = Ax2 = zx1+212 = 2z9.

3
Therefore Az1 = Az2/3, that is A (:vl — %xg) = 0. This implies that A =
or 3z1 = x + 2. The first case corresponds to the eigenvalue zero, already

studied above, which has the eigenvector vi = [-2,1].

The other case gives an eigenvector satisfying 3z1 = x2, so one possible

solution is

N

)

4 N

Ezxamples

We compute the eigenvalue associated to vo = [1,3]7

S F M

Therefore, the eigenvalue is Ao = 7.

This calculation seems complicated because one computes
eigenvalues and eigenvectors at the same time. Later on we split
the calculation, computing eigenvalues alone, and then eigenvectors.

N )
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FEigenvalues and Eigenvectors

Definition of eigenvalues and eigenvectors.

Slide 11 )
e Eigenspace.

Geometrical interpretation of eigenvectors.

Characteristic equation.

4 N

FEigenvalues and eigenvectors

Definition 3 (Eigenvalues and eigenvectors) Let A be an
n X n matriz. A number X is an eigenvalue of A if there exists a

nonzero vector X € IR™ such that

Ax = Ix.

Slide 12
The vector x is called an eigenvalue of A corresponding to .

Notice: If x is an eigenvector, then tx with ¢ # 0 is also an

eigenvector.

Definition 4 (Eigenspace) Let A be an eigenvalue of A. The set
of all vectors x solutions of Ax = Ax is called the eigenspace E(X).

That is, E(X\) = { all eigenvectors with eigenvalue A, and 0}.

N )
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1
3 1

e The matrix A =

E(4) = {x =t[1,1]7,
B(-2) = {x=1t[1,-1]",

1 2
3 6

The corresponding eigenspaces are

e The matrix A =

B(0) = {x = t[-2,1]",

B(-2) = {x=1t[1,3]",

/ Examples of eigenspaces

has eigenvectors Ay = 4 and

Ao = —2. The corresponding eigenspaces are

t € R}.
t € R}.

t € R}.
t € R}.

Qotice that not every eigenspace is one-dimensional.

has eigenvectors Ay = 0 and Ay = 7.

-

Eigenspace

~

Theorem 4 Let \ be an eigenvector of A, an n X n matrixz. Then,

the set E(\) C IR™ is a subspace.
Proof: Let x1, x2 € E()\), that is,
AXl = )\Xl7

Now compute

A(axy + bx2) = aAxy + bAxs = adx; + bAxa = A(axy + bxa).

Therefore, ax; + bxa € E(M).

N

AX2 = )\Xg.

O

)
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/Theorem 6 Let {vi,---,v,} be eigenvectors of A with eigenvalub

kequation (1) by A2. One gets, A2va = aXavi. /

4 N

Geometrical interpretation of eigenvectors

Think the n x n matrix A as a linear transformation A : IR™ — R"™.

An eigenvector x of A determines a direction in IR™ where the
action of A is simple: It is a stretching or a compression, depending
on whether |[A| > 1 or |A < 1.

Theorem 5 The eigenvalue of a diagonal n X n matrix are the
elements of its diagonal, and its eigenvectors are the standard basis

vectors e;, withi=1,---,n.

N )

{A1,- -, A}, respectively.

If the {\1, -+, A} are all different, then the {v1,---,v,} are Li..
Proof: By induction in r.

For r = 1 the theorem is true.

Consider the case r = 2 as an intermediate step to understand the idea
behind the proof. In this case we have two eigenvectors {vi,va}
corresponding to different eigenvalues A1, A2, that is A1 # A2. We have
to show that {vi,v2} are Li.. By contradiction, assume that they are

l.d., that is, there exists a nonzero a € IR such that
V2 = avi. (1)

Apply the matrix A on both sides of the equation (1), then one gets

A2ve = aA1vi, because both vectors are eigenvectors of A. Now multiply
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From these two equations one gets
O = a(/\2 — /\1)V1.

Because a # 0, and the eigenvalues are different, one gets vi = 0, which
is a contradiction to the hypothesis that v; is an eigenvector. Therefore,
{v1, vz} are Li.. This is the idea of the proof, and we now repeat it in

the case of r eigenvalues.

Slide 17

Assume that the theorem holds for r — 1 eigenvectors {vi,---,vr_1},

and then show that it also holds for r eigenvectors vectors {vi,---,v,}.

So assume that {vi,--+,v,_1} are Li., and that, by contradiction,

suppose that the {vi,---,v,_1,v,} are L.d.. Then,
Vr=a1Vi+ -+ ar-1Vy_1,

with some a; # 0.

N )

4 N

Apply the matrix A on both ides of equation above, then

ArVe = a1 Aivi 4+ + Gro1 A1 Ve,

Now multiply the first equation by A,
A7‘V'r - alArvl +--+ arflArv'rfl-
Slide 18 Subtract these two equations, and then one gets

0=a1(Ar —A)vi+ -+ ar—1(Ar — Arc1) Vo1,

Because all the \; are different, then the linear combination above says
that the {v1,---,vr_1} are 1.d.. But this contradicts the hypothesis.

Therefore, the {v1---,v,} are Li., and the theorem follows. =

N )
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The characteristic equation

To compute the eigenvalues and eigenvectors one has to solve the
equation Ax = Ax for both, A and x. This equation is equivalent to

(A—XDx=0.

This homogeneous system has a non-zero solutions if and only if
det(A — A\T) = 0. Notice that this last equation is an equation only
for the eigenvalues! There is no x in this equation, so one can solve
only for A and then solve for x.

Definition 5 (Characteristic function) Let A be an n xn

matriz and I the n x n identity matriz. Then, the scalar function

F(N) = det(A — AI)

1s called the characteristic function of A.

)

~

The characteristic equation

Theorem 7 (Characteristic polynomial) The characteristic

function f(A\) of an n x n matriz A is a polynomial in X of degree n.

Furthermore, the polynomial has the form

FO) = (=1)"A\" + -+ + det(A).

S
(=
S

\
pe
S

fQ) = (a=X)(d—-A) —be,
= N —(a+d))+ (ad — be).

10
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The characteristic equation

Theorem 8 (Characteristic equation) The number A is an
eigenvalue of A if and only if

det(A — M) =0.
Equation (2) is called characteristic equation.
Proof:
Ax=Xx & (A-X)x=0 & NA-X)#{0} &

(A — AI) is not invertible < det(A—AI)=0.

~

-

Ezxamples
1 3 a b
e Find the eigenvalues of A = and B =
3 1 —-b a

any a,b € IR with b #£ 0.

Let start with matrix A,

1—A 3 5
0= =(1=-XN"=9, =A=143,
3 1-A
that is, A\1 = 4, and A2 = —2. Now, in the case of matrix B one has
a—A b
=(@—A)>+b"#£0,
-b a—2A

therefore, B has none eigenvalues at all.

N

11
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2 3
Find the eigenvalues of A = . The answer is:
0 2
2—A 3
0= =(2-X)% = (A-272=0,
0 2—-A

that is, A = 2. This eigenvalue has multiplicity 2, according to the
following definition.

Definition 6 (Multiplicity of eigenvalues) Let f(\) be the
characteristic polynomial of an n x n matriz. The eigenvalue \g
has algebraic multiplicity r > 0 if and only if

F) = A =2)"g(N),  with g(ho) # 0.

/ Ezxamples \

N )

4 N

Ezamples

e Find the eigenvalues and eigenspaces of the following two
matrices:

3 1
A=10 3
0 0

— N =

3 0 1
, B=10 3 2

0 0 1
The both matrices have the same eigenvalues, because,

fa) = fs() = (A =3)°(1-2)
so the eigenvalues are:

e )\ = 3 with multiplicity 2;

e )\ =1 with multiplicity 1.

N )

12
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One can check that the eigenspaces are the following;:

1 0
EA(3) = 0 , Ea(l) = -1 ;
1
1 0 1
Ep(3) = 0,1 , Ep(l)= 2
0 0 —2

Notice: dim E(A) < multipl.(A).

In the case of B, where dim Fg(\) = multipl.(\) for every eigenvalue of

B, the set of all eigenvectors of B is a basis of IR>.

In the case of A, where for A = 3 holds that dim F4(3) < multipl.(3), the

Qet of eigenvectors of A is not a basis of IR>. /

Diagonalization

e Diagonalization and eigenvectors.
e Application: Computing powers of a matrix.

e Examples.

13
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Diagonalizable

Definition 7 (Diagonalizable matrices) An n x n matriz A is
diagonalizable if there exists a diagonal matriz D and an invertible

matriz P, with inverse P~1, such that

7

A=PDP . (3)

Notice that D is a diagonal matrix if

d 0 - 0
0 do -~ 0

D=1 . .| =diag[dy, -, dy].
0 0 - d,

4 N

Diagonalization and eigenvectors
Notice that if B = [by,- -+, by], then BD = [d1b1, -+, d,b,]. Also
notice that for a general B holds BD # DB.
Finally recall that AB = [Aby, .-, Ab,,].
Now, the main result:

Theorem 9 (Diagonalization and eigenvectors) Ann xn

matriz A is diagonalizable if and only if A has n li. eigenvectors.

Furthermore, if we write A= PDP~', with D diagonal, then
P =[p1, - ,Pn], and D = diag[A1,- -+, \,], where

Api:)\ipi7 ’L'Zl,"'ﬂ’l,

that is, {p1,--,Pn} are the eigenvectors with eigenvectors

A,y A, respectively.

)

14
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(<) Let P = [p1,- -+, Pn] be a matrix formed with the n eigenvectors of

A, and denote by \; the corresponding eigenvalues, that is, Ap; = \ipi.

Because {p1,--,pn} are Li. then P is invertible. Introduce the diagonal
matrix D = diag[A1,- -, An]. Then,

PD = [Alply“'7)\npn] = [Ap177Apn] = AP.

Therefore, A = PDP™L.

(=) Given the invertible matrix P, introduce its column vectors
P = [p1, - -,Ppn]. Denote the diagonal matrix D = diag[d1, - --,dx]. Now,
the equation A = PDP~! implies AP = AD, that is,

[Ap17 o 7Apn] = [d1p17 o ’,dnpn],

which says that Ap; = d;p; for every ¢ = 1,---,n. So the p; are
eigenvectors of A with eigenvalue d;. And these vectors are l.i. because

P is invertible. O

N )

-

Recall the matrix A given by

Ezxample

13
A= ,
3 1

which has eigenvectors and eigenvalues given by

1 1
Vi = ) )\1 = 4) Vo = ) )\2 = —2.
1 -1
Then,
1 1 . 1] -1 -1 4 0
P= , pl=_= , D=
1 -1 21 -1 1 0 —2

15
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Ezxample

Then, it is easy to check that

popt — | U1 4 0 (1) 1 -1
1 -1 0 -2 2) 1 -1 1|’
R 2 2
1 -1 1 1|
1 3
31|’
- A
Applications

Theorem 10 (Powers of matrices) Let A be an n X n matriz.
If A is diagonalizable, then

AF = P(D*)P~1,

Proof:
A* = (PDP~YY(PDP71)...(PDP7Y),
= PD(P'P)D(P'P)...(P~'P)DP!,
P(D* P~

~

16
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Ezxample

e Compute A* where

We know that the eigenvectors and eigenvalues of A are given by

-2 1
V1 = 5 )\1:0, Vo = 5 )\2:7.
1 3

Then,

/ Ezxample
e e )

17
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Inner product

Definition of inner product.

e Examples.

Norm, distance.

Orthogonal vectors.

Orthogonal complement.

4 N

Definition of inner product

Definition 8 (Inner product) Let V be a vector space over IR.
An inner product (, ) is a function V- x V — IR with the following
properties

1. Vu eV, (uu) >0, and (u,u) =0 & u=0;
2. Y u, v eV, holds (u,v) = (v,u);

3. Vu, v,weV, andV a, b € IR holds
(au+bv,w) =a(u,w) + b(v,w).

Notation: V together with ( , ) is called an inner product space.

N )

18



Math 20F Linear Algebra

Slide 37

Slide 38

Lecture 24

-

Ezamples

e Let V =IR", and {e;}}_; be the standard basis. Given two
arbitrary vectors x = > 1, r;e; and y = > ., y;€;, then

n
=1

This product is also denoted as Y, ; z;y; = x - y. It is called
Euclidean inner product.

e Let V = IR? and {e;}7_; be the standard basis. Given two
arbitrary vectors x = 2?21 z;e; and y = Zle 1y;€;, then

(x,y) = 2z1y1 + 3x2y2.

N

~

-

Ezamples

e Let V =C([0,1]). Given two arbitrary vectors f(x) and g(z),
then

(f79)2/0 f(x)g(z) dz.

e Let V = (C([0,1]). Given two arbitrary vectors f(x) and g(x),
then

(f.9) = /0 e f(2)g(x) da.

~

19
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Norm

An inner product space induces a norm, that is, a notion of length
of a vector.

Definition 9 (Norm) Let V, (, ) be a inner product space. The
norm function, or length, is a function V.— IR denoted as || ||, and
defined as

[ul] = V/(u, w).

Example: The Euclidean norm is

lu| =vu-u= \/(331)2 + o ()2

N )

4 N

Distance

A norm in a vector space, in turns, induces a notion of distance

between two vectors, defined as the length of their difference..

Definition 10 (Distance) Let V, (, ) be a inner product space,
and || || be its associated norm. The distance between u and v € V
is given by

dist(u,v) = ||lu—v]|.

Example: The Euclidean distance between to points x and y € IR3
is

Ix =yl = V(x1 —y1)? + (22 — y2)? + (w3 — y3)*.

N )

20
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Angle between vectors

Definition 11 (Angle) Let V, (, ) be a inner product space, and
Il || be its associated norm. The angle 6 between two vectors u,

v € V is defined as
cos(f) = (wv) .
[[al vl

Examples:

e The angle 6 between two vectors x, y € IR? with respect to the
FEuclidean inner product is given by

x-y = [[x[ly[l cos(6).

N )

4 N

Angle between vectors

e The notion of angle can also be introduced in the inner space of
continuous functions C([0, 1]). The angle between f(x) = x and

g(z) = 22 is approximately 14.5, because

.1

4
1 ) 1 1 . 1
17 = /Oxdxﬁ, lgll = /Oxdx%_

then,
cos(f) = .9) @ < 0 ~14.5.

el 4

21
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/ Orthogonal vectors
Definition 12 (Orthogonal vectors) Let V, (1, ) be an inner

product space. Two vectors u, v € V are orthogonal, or

perpendicular, if and only if

(u,v) =0.
We call them orthogonal, because cos(f) = 0, which implies
0 = 7/2. Example:

e The vectors cos(z), sin(z) € C([0, 27]) are orthogonal, because

(cos(x),sin(x)) = / ’ sin(z) cos(z) dz,

0

1 27
—/ sin(2z) dz,
2 Jo

1

(
= -1 (cos(Zr) (2)7') ,

k = 0.

~

)
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