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Eigenvalues and Eigenvectors

• Review:

– Formula for the inverse matrix.

– Cramer’s rule.

– Determinants, areas and volumes.

• Definition of eigenvalues and eigenvectors.
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Review

Theorem 1 (Formula for the inverse matrix) If A be an

n× n matrix with det(A) = ∆ 6= 0, then

(
A−1

)
ij

=
1

∆
[Cji].

where Cij = (−1)i+j det(Aij).

Theorem 2 (Cramer’s rule) If the matrix A = [a1, · · · , an] is

invertible, then the linear system Ax = b has a unique solution for

every vector b, given by

xi =
1

∆
det(Ai(b)).

where xi is the i component of x, and Ai(b) = [a1, · · · ,b, · · · , an],

with b in the i column.
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Determinant, areas and volumes

Theorem 3 Let A = [a1, · · · , an] be an n× n matrix.

If n = 2, then | det(A)| is the area of the parallelogram determined

by a1, a2.

If n = 3, then | det(A)| is the volume of the parallelepiped

determined by a1, a2, and a3.
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Determinant, areas and volumes

Sketch of the proof for n = 2. The elementary row operations

• add to one row a multiple of another row;

• switch two rows;

leave the absolute value of the determinant unchanged, and they

also leave the area of the parallelogram unchanged.

These operations transform any parallelogram into a rectangle.

In the case of a rectangle, the determinant of the matrix

constructed with the vectors that form the rectangle is the area of

the rectangle.

Therefore, the theorem follows in the case n = 2.

Same argument holds for n = 3.
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Eigenvalues and eigenvectors

Definition 1 (Eigenvalues and eigenvectors) Let A be an

n× n matrix. A number λ is an eigenvalue of A if there exists a

nonzero vector x ∈ IRn such that

Ax = λx.

The vector x is called an eigenvalue of A corresponding to λ.

Notice: If x is an eigenvector, then tx with t 6= 0 is also an

eigenvector.

Definition 2 (Eigenspace) Let λ be an eigenvalue of A. The set

of all vectors x solutions of Ax = λx is called the eigenspace E(λ).

That is, E(λ) = { all eigenvectors with eigenvalue λ, and 0}.
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Examples

• Consider the matrix

A =


 1 3

3 1


 .

Show that the vectors v1 = [1, 1]T and v2 = [1,−1]T are

eigenvectors of A and find the associated eigenvalues.

Av1 =

[
1 3

3 1

][
1

1

]
=

[
4

4

]
= 4

[
1

1

]
= 4v1.

Av2 =

[
1 3

3 1

][
1

−1

]
=

[
−2

2

]
= −2

[
1

−1

]
= −2v2.

Then, λ1 = 4 and λ2 = −2.
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Examples

• Is v = [1, 2]T an eigenvector of matrix A given above?

The answer is no, because of the following calculation.

Av =

[
1 3

3 1

][
1

2

]
=

[
7

5

]
6= λ

[
1

2

]
.
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Examples

• Consider the matrix

A =


 1 2

3 6


 .

Show that the vectors v1 = [−2, 1]T is an eigenvector of A, and

find the associated eigenvalue.

Av1 =

[
1 2

3 6

][
−2

1

]
=

[
0

0

]
= 0

[
−2

1

]
.

Therefore, λ1 = 0.
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Examples

• Is there any other eigenvalue of the matrix A above?

One has to find the solutions of Ax = λx.

Ax =

[
1 2

3 6

][
x1

x2

]
=

[
λx1

λx2

]

x1 + 2x2 = λx1

3x1 + 6x2 = λx2 ⇒ x1 + 2x2 = λ
3
x2.

Therefore λx1 = λx2/3, that is λ
(
x1 − 1

3
x2

)
= 0. This implies that λ =

or 3x1 = x+ 2. The first case corresponds to the eigenvalue zero, already

studied above, which has the eigenvector v1 = [−2, 1]T .

The other case gives an eigenvector satisfying 3x1 = x2, so one possible

solution is

v2 =

[
1

3

]
.
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Examples

We compute the eigenvalue associated to v2 = [1, 3]T

Ax =

[
1 2

3 6

][
1

3

]
=

[
7

21

]
= 7

[
1

3

]

Therefore, the eigenvalue is λ2 = 7.

This calculation seems complicated because one computes

eigenvalues and eigenvectors at the same time. Later on we split

the calculation, computing eigenvalues alone, and then eigenvectors.
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Eigenvalues and Eigenvectors

• Definition of eigenvalues and eigenvectors.

• Eigenspace.

• Geometrical interpretation of eigenvectors.

• Characteristic equation.
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Eigenvalues and eigenvectors

Definition 3 (Eigenvalues and eigenvectors) Let A be an

n× n matrix. A number λ is an eigenvalue of A if there exists a

nonzero vector x ∈ IRn such that

Ax = λx.

The vector x is called an eigenvalue of A corresponding to λ.

Notice: If x is an eigenvector, then tx with t 6= 0 is also an

eigenvector.

Definition 4 (Eigenspace) Let λ be an eigenvalue of A. The set

of all vectors x solutions of Ax = λx is called the eigenspace E(λ).

That is, E(λ) = { all eigenvectors with eigenvalue λ, and 0}.
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Examples of eigenspaces

• The matrix A =


 1 3

3 1


 has eigenvectors λ1 = 4 and

λ2 = −2. The corresponding eigenspaces are

E(4) = {x = t[1, 1]T , t ∈ IR}.

E(−2) = {x = t[1,−1]T , t ∈ IR}.

• The matrix A =


 1 2

3 6


 has eigenvectors λ1 = 0 and λ2 = 7.

The corresponding eigenspaces are

E(0) = {x = t[−2, 1]T , t ∈ IR}.

E(−2) = {x = t[1, 3]T , t ∈ IR}.

Notice that not every eigenspace is one-dimensional.
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Eigenspace

Theorem 4 Let λ be an eigenvector of A, an n× n matrix. Then,

the set E(λ) ⊂ IRn is a subspace.

Proof: Let x1, x2 ∈ E(λ), that is,

Ax1 = λx1, Ax2 = λx2.

Now compute

A(ax1 + bx2) = aAx1 + bAx2 = aλx1 + bλx2 = λ(ax1 + bx2).

Therefore, ax1 + bx2 ∈ E(λ).
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Geometrical interpretation of eigenvectors

Think the n× n matrix A as a linear transformation A : IRn → Rn.

An eigenvector x of A determines a direction in IRn where the

action of A is simple: It is a stretching or a compression, depending

on whether |λ| ≥ 1 or |λ ≤ 1.

Theorem 5 The eigenvalue of a diagonal n× n matrix are the

elements of its diagonal, and its eigenvectors are the standard basis

vectors ei, with i = 1, · · · , n.
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Theorem 6 Let {v1, · · · ,vr} be eigenvectors of A with eigenvalues

{λ1, · · · , λr}, respectively.

If the {λ1, · · · , λr} are all different, then the {v1, · · · ,vr} are l.i..

Proof: By induction in r.

For r = 1 the theorem is true.

Consider the case r = 2 as an intermediate step to understand the idea

behind the proof. In this case we have two eigenvectors {v1,v2}
corresponding to different eigenvalues λ1, λ2, that is λ1 6= λ2. We have

to show that {v1,v2} are l.i.. By contradiction, assume that they are

l.d., that is, there exists a nonzero a ∈ IR such that

v2 = av1. (1)

Apply the matrix A on both sides of the equation (1), then one gets

λ2v2 = aλ1v1, because both vectors are eigenvectors of A. Now multiply

equation (1) by λ2. One gets, λ2v2 = aλ2v1.
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From these two equations one gets

0 = a(λ2 − λ1)v1.

Because a 6= 0, and the eigenvalues are different, one gets v1 = 0, which

is a contradiction to the hypothesis that v1 is an eigenvector. Therefore,

{v1,v2} are l.i.. This is the idea of the proof, and we now repeat it in

the case of r eigenvalues.

Assume that the theorem holds for r − 1 eigenvectors {v1, · · · ,vr−1},
and then show that it also holds for r eigenvectors vectors {v1, · · · ,vr}.
So assume that {v1, · · · ,vr−1} are l.i., and that, by contradiction,

suppose that the {v1, · · · ,vr−1,vr} are l.d.. Then,

vr = a1v1 + · · · + ar−1vr−1,

with some ai 6= 0.
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Apply the matrix A on both ides of equation above, then

λrvr = a1λ1v1 + · · ·+ ar−1λr−1vr−1.

Now multiply the first equation by λr,

λrvr = a1λrv1 + · · ·+ ar−1λrvr−1.

Subtract these two equations, and then one gets

0 = a1(λr − λ1)v1 + · · · + ar−1(λr − λr−1)vr−1.

Because all the λi are different, then the linear combination above says

that the {v1, · · · ,vr−1} are l.d.. But this contradicts the hypothesis.

Therefore, the {v1 · · · ,vr} are l.i., and the theorem follows.
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The characteristic equation

To compute the eigenvalues and eigenvectors one has to solve the

equation Ax = λx for both, λ and x. This equation is equivalent to

(A− λI)x = 0.

This homogeneous system has a non-zero solutions if and only if

det(A− λI) = 0. Notice that this last equation is an equation only

for the eigenvalues! There is no x in this equation, so one can solve

only for λ and then solve for x.

Definition 5 (Characteristic function) Let A be an n× n
matrix and I the n× n identity matrix. Then, the scalar function

f(λ) = det(A− λI)

is called the characteristic function of A.
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The characteristic equation

Theorem 7 (Characteristic polynomial) The characteristic

function f(λ) of an n×n matrix A is a polynomial in λ of degree n.

Furthermore, the polynomial has the form

f(λ) = (−1)nλn + · · ·+ det(A).

Example:

f(λ) =

∣∣∣∣∣∣


 a b

c d


−


 λ 0

0 λ



∣∣∣∣∣∣

=

∣∣∣∣∣∣
a− λ b

c d− λ

∣∣∣∣∣∣

f(λ) = (a− λ)(d − λ)− bc,
= λ2 − (a+ d)λ + (ad− bc).
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The characteristic equation

Theorem 8 (Characteristic equation) The number λ is an

eigenvalue of A if and only if

det(A− λI) = 0. (2)

Equation (2) is called characteristic equation.

Proof:

Ax = λx ⇔ (A− λI)x = 0 ⇔ N(A− λI) 6= {0} ⇔

(A− λI) is not invertible ⇔ det(A− λI) = 0.
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Examples

• Find the eigenvalues of A =


 1 3

3 1


 and B =


 a b

−b a


 for

any a, b ∈ IR with b 6= 0.

Let start with matrix A,

0 =

∣∣∣∣∣
1 − λ 3

3 1 − λ

∣∣∣∣∣ = (1− λ)2 − 9, ⇒ λ = 1± 3,

that is, λ1 = 4, and λ2 = −2. Now, in the case of matrix B one has
∣∣∣∣∣
a− λ b

−b a− λ

∣∣∣∣∣ = (a− λ)2 + b2 6= 0,

therefore, B has none eigenvalues at all.
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Examples

Find the eigenvalues of A =


 2 3

0 2


 . The answer is:

0 =

∣∣∣∣∣∣
2− λ 3

0 2− λ

∣∣∣∣∣∣
= (2− λ)2, ⇒ (λ − 2)2 = 0,

that is, λ = 2. This eigenvalue has multiplicity 2, according to the

following definition.

Definition 6 (Multiplicity of eigenvalues) Let f(λ) be the

characteristic polynomial of an n× n matrix. The eigenvalue λ0

has algebraic multiplicity r > 0 if and only if

f(λ) = (λ− λ0)rg(λ), with g(λ0) 6= 0.
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Examples

• Find the eigenvalues and eigenspaces of the following two

matrices:

A =




3 1 1

0 3 2

0 0 1


 , B =




3 0 1

0 3 2

0 0 1


 .

The both matrices have the same eigenvalues, because,

fA(λ) = fB(λ) = (λ− 3)2(1− λ)

so the eigenvalues are:

• λ = 3 with multiplicity 2;

• λ = 1 with multiplicity 1.
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Examples

One can check that the eigenspaces are the following:

EA(3) =








1

0

0







, EA(1) =








0

−1

1







,

EB(3) =








1

0

0


 ,




0

1

0







, EB(1) =








1

2

−2







.

Notice: dimE(λ) ≤ multipl.(λ).

In the case of B, where dimEB(λ) = multipl.(λ) for every eigenvalue of

B, the set of all eigenvectors of B is a basis of IR3.

In the case of A, where for λ = 3 holds that dimEA(3) < multipl.(3), the

set of eigenvectors of A is not a basis of IR3.
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Diagonalization

• Diagonalization and eigenvectors.

• Application: Computing powers of a matrix.

• Examples.
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Diagonalizable

Definition 7 (Diagonalizable matrices) An n× n matrix A is

diagonalizable if there exists a diagonal matrix D and an invertible

matrix P , with inverse P−1, such that

A = PDP−1. (3)

Notice that D is a diagonal matrix if

D =




d1 0 · · · 0

0 d2 · · · 0
...

...
. . .

...

0 0 · · · dn




= diag[d1, · · · , dn].
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Diagonalization and eigenvectors

Notice that if B = [b1, · · · ,bn], then BD = [d1b1, · · · , dnbn]. Also

notice that for a general B holds BD 6= DB.

Finally recall that AB = [Ab1, · · · , Abn].

Now, the main result:

Theorem 9 (Diagonalization and eigenvectors) An n× n
matrix A is diagonalizable if and only if A has n l.i. eigenvectors.

Furthermore, if we write A = PDP−1, with D diagonal, then

P = [p1, · · · ,pn], and D = diag[λ1, · · · , λn], where

Api = λipi, i = 1, · · · , n,

that is, {p1, · · · ,pn} are the eigenvectors with eigenvectors

λ1, · · · , λn, respectively.
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Proof:

(⇐) Let P = [p1, · · · ,pn] be a matrix formed with the n eigenvectors of

A, and denote by λi the corresponding eigenvalues, that is, Api = λipi.

Because {p1, · · · ,pn} are l.i. then P is invertible. Introduce the diagonal

matrix D = diag[λ1, · · · , λn]. Then,

PD = [λ1p1, · · · , λnpn] = [Ap1, · · · , Apn] = AP.

Therefore, A = PDP−1.

(⇒) Given the invertible matrix P , introduce its column vectors

P = [p1, · · · ,pn]. Denote the diagonal matrix D = diag[d1, · · · , dn]. Now,

the equation A = PDP−1 implies AP = AD, that is,

[Ap1, · · · , Apn] = [d1p1, · · · , dnpn],

which says that Api = dipi for every i = 1, · · · , n. So the pi are

eigenvectors of A with eigenvalue di. And these vectors are l.i. because

P is invertible.
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Example

Recall the matrix A given by

A =


 1 3

3 1


 ,

which has eigenvectors and eigenvalues given by

v1 =


 1

1


 , λ1 = 4, v2 =


 1

−1


 , λ2 = −2.

Then,

P =


 1 1

1 −1


 , P−1 = −1

2


 −1 −1

−1 1


 , D =


 4 0

0 −2


 .
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Example

Then, it is easy to check that

PDP−1 =


 1 1

1 −1




 4 0

0 −2



(
−1

2

)
 −1 −1

−1 1


 ,

=


 1 1

1 −1




 2 2

−1 1


 ,

=


 1 3

3 1


 ,

= A.
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Applications

Theorem 10 (Powers of matrices) Let A be an n× n matrix.

If A is diagonalizable, then

Ak = P (Dk)P−1.

Proof:

Ak = (PDP−1)(PDP−1) · · · (PDP−1),

= PD(P−1P )D(P−1P ) · · · (P−1P )DP−1,

= P (Dk)P−1.
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Example

• Compute A4 where 
 1 2

3 6




We know that the eigenvectors and eigenvalues of A are given by

v1 =

[
−2

1

]
, λ1 = 0, v2 =

[
1

3

]
, λ2 = 7.

Then,

P =

[
−2 1

1 3

]
, P−1 = −1

7

[
3 −1

−1 −2

]
, D =

[
0 0

0 7

]
.
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Example

A4 =

[
−2 1

1 3

][
0 0

0 74

](
−1

7

)[ 3 −1

−1 −2

]
,

=

[
−2 1

1 3

][
0 0

0 73

][
−3 1

1 2

]
,

=

[
−2 1

1 3

][
0 0

73 2(73)

]
,

=

[
73 2(73)

3(73) 6(73)

]
,

= 73

[
1 2

3 6

]
,

= 73A.
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Inner product

• Definition of inner product.

• Examples.

• Norm, distance.

• Orthogonal vectors.

• Orthogonal complement.
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Definition of inner product

Definition 8 (Inner product) Let V be a vector space over IR.

An inner product ( , ) is a function V × V → IR with the following

properties

1. ∀u ∈ V , (u,u) ≥ 0, and (u,u) = 0 ⇔ u = 0;

2. ∀ u, v ∈ V , holds (u,v) = (v,u);

3. ∀ u, v, w ∈ V , and ∀ a, b ∈ IR holds

(au + bv,w) = a(u,w) + b(v,w).

Notation: V together with ( , ) is called an inner product space.
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Examples

• Let V = IRn, and {ei}ni=1 be the standard basis. Given two

arbitrary vectors x =
∑n
i=1 xiei and y =

∑n
i=1 yiei, then

(x,y) =

n∑

i=1

xiyi.

This product is also denoted as
∑n
i=1 xiyi = x · y. It is called

Euclidean inner product.

• Let V = IR2, and {ei}2i=1 be the standard basis. Given two

arbitrary vectors x =
∑2
i=1 xiei and y =

∑2
i=1 yiei, then

(x,y) = 2x1y1 + 3x2y2.
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Examples

• Let V = C([0, 1]). Given two arbitrary vectors f(x) and g(x),

then

(f, g) =

∫ 1

0

f(x)g(x) dx.

• Let V = C([0, 1]). Given two arbitrary vectors f(x) and g(x),

then

(f, g) =

∫ 1

0

exf(x)g(x) dx.
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Norm

An inner product space induces a norm, that is, a notion of length

of a vector.

Definition 9 (Norm) Let V , ( , ) be a inner product space. The

norm function, or length, is a function V → IR denoted as ‖ ‖, and

defined as

‖u‖ =
√

(u,u).

Example: The Euclidean norm is

‖u‖ =
√

u · u =
√

(x1)2 + · · ·+ (xn)2.
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Distance

A norm in a vector space, in turns, induces a notion of distance

between two vectors, defined as the length of their difference..

Definition 10 (Distance) Let V , ( , ) be a inner product space,

and ‖ ‖ be its associated norm. The distance between u and v ∈ V
is given by

dist(u,v) = ‖u− v‖.

Example: The Euclidean distance between to points x and y ∈ IR3

is

‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.
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Angle between vectors

Definition 11 (Angle) Let V , ( , ) be a inner product space, and

‖ ‖ be its associated norm. The angle θ between two vectors u,

v ∈ V is defined as

cos(θ) =
(u,v)

‖u‖ ‖v‖ .

Examples:

• The angle θ between two vectors x, y ∈ IR2 with respect to the

Euclidean inner product is given by

x · y = ‖x‖ ‖y‖ cos(θ).
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Angle between vectors

• The notion of angle can also be introduced in the inner space of

continuous functions C([0, 1]). The angle between f(x) = x and

g(x) = x2 is approximately 14.5, because

(f, g) =

∫ 1

0

x3dx =
1

4
,

‖f‖ =

√∫ 1

0

x2dx =
1√
3
, ‖g‖ =

√∫ 1

0

x4dx =
1√
5
.

then,

cos(θ) =
(f, g)

‖f‖ ‖g‖ =

√
15

4
⇐ θ ' 14.5.
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Orthogonal vectors

Definition 12 (Orthogonal vectors) Let V , ( , ) be an inner

product space. Two vectors u, v ∈ V are orthogonal, or

perpendicular, if and only if

(u,v) = 0.

We call them orthogonal, because cos(θ) = 0, which implies

θ = π/2. Example:

• The vectors cos(x), sin(x) ∈ C([0, 2π]) are orthogonal, because

(cos(x), sin(x)) =

∫ 2π

0

sin(x) cos(x) dx,

=
1

2

∫ 2π

0

sin(2x) dx,

= −1

4

(
cos(2x)|2π0

)
,

= 0.


