Eigenvalues and Eigenvectors

- Review:

Slide 1

- Formula for the inverse matrix.
- Cramer's rule.
- Determinants, areas and volumes.
- Definition of eigenvalues and eigenvectors.

Review

Theorem 1 (Formula for the inverse matrix) If A be an $n \times n$ matrix with $\operatorname{det}(A)=\Delta \neq 0$, then

$$
\left(A^{-1}\right)_{i j}=\frac{1}{\Delta}\left[C_{j i}\right]
$$

Slide 2
where $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$.
Theorem 2 (Cramer's rule) If the matrix $A=\left[\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right]$ is invertible, then the linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution for every vector \mathbf{b}, given by

$$
x_{i}=\frac{1}{\Delta} \operatorname{det}\left(A_{i}(\mathbf{b})\right) .
$$

where x_{i} is the i component of \mathbf{x}, and $A_{i}(\mathbf{b})=\left[\mathbf{a}_{1}, \cdots, \mathbf{b}, \cdots, \mathbf{a}_{n}\right]$, with \mathbf{b} in the i column.

Determinant, areas and volumes

Theorem 3 Let $A=\left[\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right]$ be an $n \times n$ matrix.
Slide 3
If $n=2$, then $|\operatorname{det}(A)|$ is the area of the parallelogram determined by $\mathbf{a}_{1}, \mathbf{a}_{2}$.

If $n=3$, then $|\operatorname{det}(A)|$ is the volume of the parallelepiped determined by $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.

Determinant, areas and volumes

Sketch of the proof for $n=2$. The elementary row operations

- add to one row a multiple of another row;
- switch two rows;
leave the absolute value of the determinant unchanged, and they also leave the area of the parallelogram unchanged.

These operations transform any parallelogram into a rectangle.
In the case of a rectangle, the determinant of the matrix constructed with the vectors that form the rectangle is the area of the rectangle.

Therefore, the theorem follows in the case $n=2$.
Same argument holds for $n=3$.

Eigenvalues and eigenvectors

Definition 1 (Eigenvalues and eigenvectors) Let A be an $n \times n$ matrix. A number λ is an eigenvalue of A if there exists a nonzero vector $\mathbf{x} \in \mathbb{R}^{n}$ such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

Slide 5
The vector \mathbf{x} is called an eigenvalue of A corresponding to λ.
Notice: If \mathbf{x} is an eigenvector, then $t \mathbf{x}$ with $t \neq 0$ is also an eigenvector.

Definition 2 (Eigenspace) Let λ be an eigenvalue of A. The set of all vectors \mathbf{x} solutions of $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenspace $E(\lambda)$.

That is, $E(\lambda)=\{$ all eigenvectors with eigenvalue λ, and $\mathbf{0}\}$.

Examples

- Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]
$$

Slide 6
Show that the vectors $\mathbf{v}_{1}=[1,1]^{T}$ and $\mathbf{v}_{2}=[1,-1]^{T}$ are eigenvectors of A and find the associated eigenvalues.

$$
\begin{gathered}
A \mathbf{v}_{1}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right]=4 \mathbf{v}_{1} . \\
A \mathbf{v}_{2}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-2 \\
2
\end{array}\right]=-2\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=-2 \mathbf{v}_{2} . \\
\text { Then, } \lambda_{1}=4 \text { and } \lambda_{2}=-2 \text {. }
\end{gathered}
$$

Examples

- Is $\mathbf{v}=[1,2]^{T}$ an eigenvector of matrix A given above?

Slide 7
The answer is no, because of the following calculation.

$$
A \mathbf{v}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
5
\end{array}\right] \neq \lambda\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Examples

- Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]
$$

Show that the vectors $\mathbf{v}_{1}=[-2,1]^{T}$ is an eigenvector of A, and find the associated eigenvalue.

$$
A \mathbf{v}_{1}=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]\left[\begin{array}{r}
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
$$

Therefore, $\lambda_{1}=0$.

Examples

- Is there any other eigenvalue of the matrix A above?

One has to find the solutions of $A \mathbf{x}=\lambda \mathbf{x}$.

$$
\begin{aligned}
A \mathbf{x}= & {\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\lambda x_{1} \\
\lambda x_{2}
\end{array}\right] } \\
x_{1}+2 x_{2} & =\lambda x_{1} \\
3 x_{1}+6 x_{2} & =\lambda x_{2} \Rightarrow x_{1}+2 x_{2}=\frac{\lambda}{3} x_{2} .
\end{aligned}
$$

Therefore $\lambda x_{1}=\lambda x_{2} / 3$, that is $\lambda\left(x_{1}-\frac{1}{3} x_{2}\right)=0$. This implies that $\lambda=$ or $3 x_{1}=x+2$. The first case corresponds to the eigenvalue zero, already studied above, which has the eigenvector $\mathbf{v}_{1}=[-2,1]^{T}$.
The other case gives an eigenvector satisfying $3 x_{1}=x_{2}$, so one possible solution is

$$
\mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

Examples

We compute the eigenvalue associated to $\mathbf{v}_{2}=[1,3]^{T}$

$$
A \mathbf{x}=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{r}
7 \\
21
\end{array}\right]=7\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Therefore, the eigenvalue is $\lambda_{2}=7$.
This calculation seems complicated because one computes eigenvalues and eigenvectors at the same time. Later on we split the calculation, computing eigenvalues alone, and then eigenvectors.

Eigenvalues and Eigenvectors

- Definition of eigenvalues and eigenvectors.
- Eigenspace.
- Geometrical interpretation of eigenvectors.
- Characteristic equation.

Eigenvalues and eigenvectors
Definition 3 (Eigenvalues and eigenvectors) Let A be an $n \times n$ matrix. A number λ is an eigenvalue of A if there exists a nonzero vector $\mathbf{x} \in \mathbb{R}^{n}$ such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

Slide 12
The vector \mathbf{x} is called an eigenvalue of A corresponding to λ.
Notice: If \mathbf{x} is an eigenvector, then $t \mathbf{x}$ with $t \neq 0$ is also an eigenvector.

Definition 4 (Eigenspace) Let λ be an eigenvalue of A. The set of all vectors \mathbf{x} solutions of $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenspace $E(\lambda)$. That is, $E(\lambda)=\{$ all eigenvectors with eigenvalue λ, and $\mathbf{0}\}$.

Examples of eigenspaces

- The matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ has eigenvectors $\lambda_{1}=4$ and $\lambda_{2}=-2$. The corresponding eigenspaces are

$$
\begin{aligned}
E(4) & =\left\{\mathbf{x}=t[1,1]^{T}, \quad t \in \mathbb{R}\right\} \\
E(-2) & =\left\{\mathbf{x}=t[1,-1]^{T}, \quad t \in \mathbb{R}\right\}
\end{aligned}
$$

- The matrix $A=\left[\begin{array}{cc}1 & 2 \\ 3 & 6\end{array}\right]$ has eigenvectors $\lambda_{1}=0$ and $\lambda_{2}=7$.

The corresponding eigenspaces are

$$
\begin{array}{ll}
E(0)=\left\{\mathbf{x}=t[-2,1]^{T},\right. & t \in \mathbb{R}\} . \\
E(-2)=\left\{\mathbf{x}=t[1,3]^{T},\right. & t \in \mathbb{R}\} .
\end{array}
$$

Notice that not every eigenspace is one-dimensional.

Eigenspace

Theorem 4 Let λ be an eigenvector of A, an $n \times n$ matrix. Then, the set $E(\lambda) \subset \mathbb{R}^{n}$ is a subspace.

Proof: Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in E(\lambda)$, that is,
Slide 14

$$
A \mathbf{x}_{1}=\lambda \mathbf{x}_{1}, \quad A \mathbf{x}_{2}=\lambda \mathbf{x}_{2}
$$

Now compute

$$
A\left(a \mathbf{x}_{1}+b \mathbf{x}_{2}\right)=a A \mathbf{x}_{1}+b A \mathbf{x}_{2}=a \lambda \mathbf{x}_{1}+b \lambda \mathbf{x}_{2}=\lambda\left(a \mathbf{x}_{1}+b \mathbf{x}_{2}\right)
$$

Therefore, $a \mathbf{x}_{1}+b \mathbf{x}_{2} \in E(\lambda)$.

Geometrical interpretation of eigenvectors

Think the $n \times n$ matrix A as a linear transformation $A: \mathbb{R}^{n} \rightarrow R^{n}$.
An eigenvector \mathbf{x} of A determines a direction in \mathbb{R}^{n} where the action of A is simple: It is a stretching or a compression, depending on whether $|\lambda| \geq 1$ or $\mid \lambda \leq 1$.

Theorem 5 The eigenvalue of a diagonal $n \times n$ matrix are the elements of its diagonal, and its eigenvectors are the standard basis vectors \mathbf{e}_{i}, with $i=1, \cdots, n$.

Theorem 6 Let $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right\}$ be eigenvectors of A with eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{r}\right\}$, respectively.

If the $\left\{\lambda_{1}, \cdots, \lambda_{r}\right\}$ are all different, then the $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right\}$ are l.i..
Proof: By induction in r.
For $r=1$ the theorem is true.
Consider the case $r=2$ as an intermediate step to understand the idea
Slide 16 behind the proof. In this case we have two eigenvectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ corresponding to different eigenvalues λ_{1}, λ_{2}, that is $\lambda_{1} \neq \lambda_{2}$. We have to show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are l.i.. By contradiction, assume that they are l.d., that is, there exists a nonzero $a \in \mathbb{R}$ such that

$$
\begin{equation*}
\mathbf{v}_{2}=a \mathbf{v}_{1} \tag{1}
\end{equation*}
$$

Apply the matrix A on both sides of the equation (1), then one gets $\lambda_{2} \mathbf{v}_{2}=a \lambda_{1} \mathbf{v}_{1}$, because both vectors are eigenvectors of A. Now multiply equation (1) by λ_{2}. One gets, $\lambda_{2} \mathbf{v}_{2}=a \lambda_{2} \mathbf{v}_{1}$.

From these two equations one gets

$$
0=a\left(\lambda_{2}-\lambda_{1}\right) \mathbf{v}_{1} .
$$

Because $a \neq 0$, and the eigenvalues are different, one gets $\mathbf{v}_{1}=0$, which is a contradiction to the hypothesis that \mathbf{v}_{1} is an eigenvector. Therefore, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are l.i.. This is the idea of the proof, and we now repeat it in

Slide 17 the case of r eigenvalues.

Assume that the theorem holds for $r-1$ eigenvectors $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r-1}\right\}$, and then show that it also holds for r eigenvectors vectors $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right\}$.
So assume that $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r-1}\right\}$ are l.i., and that, by contradiction, suppose that the $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r-1}, \mathbf{v}_{r}\right\}$ are l.d.. Then,

$$
\mathbf{v}_{r}=a_{1} \mathbf{v}_{1}+\cdots+a_{r-1} \mathbf{v}_{r-1}
$$

with some $a_{i} \neq 0$.

Apply the matrix A on both ides of equation above, then

$$
\lambda_{r} \mathbf{v}_{r}=a_{1} \lambda_{1} \mathbf{v}_{1}+\cdots+a_{r-1} \lambda_{r-1} \mathbf{v}_{r-1}
$$

Now multiply the first equation by λ_{r},

$$
\lambda_{r} \mathbf{v}_{r}=a_{1} \lambda_{r} \mathbf{v}_{1}+\cdots+a_{r-1} \lambda_{r} \mathbf{v}_{r-1}
$$

Subtract these two equations, and then one gets

$$
0=a_{1}\left(\lambda_{r}-\lambda_{1}\right) \mathbf{v}_{1}+\cdots+a_{r-1}\left(\lambda_{r}-\lambda_{r-1}\right) \mathbf{v}_{r-1} .
$$

Because all the λ_{i} are different, then the linear combination above says that the $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r-1}\right\}$ are l.d.. But this contradicts the hypothesis.

Therefore, the $\left\{\mathbf{v}_{1} \cdots, \mathbf{v}_{r}\right\}$ are l.i., and the theorem follows.

The characteristic equation

To compute the eigenvalues and eigenvectors one has to solve the equation $A \mathbf{x}=\lambda \mathbf{x}$ for both, λ and \mathbf{x}. This equation is equivalent to

$$
(A-\lambda I) \mathbf{x}=0
$$

This homogeneous system has a non-zero solutions if and only if

Slide 19

The characteristic equation

Theorem 7 (Characteristic polynomial) The characteristic function $f(\lambda)$ of an $n \times n$ matrix A is a polynomial in λ of degree n.

Furthermore, the polynomial has the form

$$
f(\lambda)=(-1)^{n} \lambda^{n}+\cdots+\operatorname{det}(A) .
$$

Slide 20

Example:

$$
\begin{aligned}
& f(\lambda)=\left|\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right|=\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right| \\
& f(\lambda)=(a-\lambda)(d-\lambda)-b c, \\
&=\lambda^{2}-(a+d) \lambda+(a d-b c) .
\end{aligned}
$$

The characteristic equation

Theorem 8 (Characteristic equation) The number λ is an eigenvalue of A if and only if

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{2}
\end{equation*}
$$

Slide 21
Equation (2) is called characteristic equation.
Proof:

$$
\begin{gathered}
A \mathbf{x}=\lambda \mathbf{x} \Leftrightarrow(A-\lambda I) \mathbf{x}=0 \Leftrightarrow N(A-\lambda I) \neq\{\mathbf{0}\} \Leftrightarrow \\
(A-\lambda I) \text { is not invertible } \Leftrightarrow \operatorname{det}(A-\lambda I)=0 .
\end{gathered}
$$

Examples

- Find the eigenvalues of $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$ for any $a, b \in \mathbb{R}$ with $b \neq 0$.

Let start with matrix A,

$$
0=\left|\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-9, \Rightarrow \lambda=1 \pm 3,
$$

that is, $\lambda_{1}=4$, and $\lambda_{2}=-2$. Now, in the case of matrix B one has

$$
\left|\begin{array}{cc}
a-\lambda & b \\
-b & a-\lambda
\end{array}\right|=(a-\lambda)^{2}+b^{2} \neq 0
$$

therefore, B has none eigenvalues at all.

Examples

Find the eigenvalues of $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$. The answer is:

$$
0=\left|\begin{array}{cc}
2-\lambda & 3 \\
0 & 2-\lambda
\end{array}\right|=(2-\lambda)^{2}, \quad \Rightarrow \quad(\lambda-2)^{2}=0
$$

that is, $\lambda=2$. This eigenvalue has multiplicity 2 , according to the following definition.

Definition 6 (Multiplicity of eigenvalues) Let $f(\lambda)$ be the characteristic polynomial of an $n \times n$ matrix. The eigenvalue λ_{0} has algebraic multiplicity $r>0$ if and only if

$$
f(\lambda)=\left(\lambda-\lambda_{0}\right)^{r} g(\lambda), \quad \text { with } \quad g\left(\lambda_{0}\right) \neq 0
$$

Examples

- Find the eigenvalues and eigenspaces of the following two matrices:

$$
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

The both matrices have the same eigenvalues, because,

$$
f_{A}(\lambda)=f_{B}(\lambda)=(\lambda-3)^{2}(1-\lambda)
$$

so the eigenvalues are:

- $\lambda=3$ with multiplicity 2 ;
- $\lambda=1$ with multiplicity 1 .

Examples

One can check that the eigenspaces are the following:

$$
\begin{gathered}
E_{A}(3)=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}, \quad E_{A}(1)=\left\{\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]\right\}, \\
E_{B}(3)=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}, \quad E_{B}(1)=\left\{\left[\begin{array}{r}
1 \\
2 \\
-2
\end{array}\right]\right\} .
\end{gathered}
$$

Notice: $\operatorname{dim} E(\lambda) \leq$ multipl. (λ).
In the case of B, where $\operatorname{dim} E_{B}(\lambda)=$ multipl. (λ) for every eigenvalue of B, the set of all eigenvectors of B is a basis of \mathbb{R}^{3}.

In the case of A, where for $\lambda=3$ holds that $\operatorname{dim} E_{A}(3)<$ multipl.(3), the set of eigenvectors of A is not a basis of \mathbb{R}^{3}.

Diagonalization

Slide 26

- Diagonalization and eigenvectors.
- Application: Computing powers of a matrix.
- Examples.

Diagonalizable

Definition 7 (Diagonalizable matrices) $A n n \times n$ matrix A is diagonalizable if there exists a diagonal matrix D and an invertible matrix P, with inverse P^{-1}, such that

$$
\begin{equation*}
A=P D P^{-1} \tag{3}
\end{equation*}
$$

Slide 27
Notice that D is a diagonal matrix if

$$
D=\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right]=\operatorname{diag}\left[d_{1}, \cdots, d_{n}\right]
$$

Diagonalization and eigenvectors

Notice that if $B=\left[\mathbf{b}_{1}, \cdots, \mathbf{b}_{n}\right]$, then $B D=\left[d_{1} \mathbf{b}_{1}, \cdots, d_{n} \mathbf{b}_{n}\right]$. Also notice that for a general B holds $B D \neq D B$.
Finally recall that $A B=\left[A \mathbf{b}_{1}, \cdots, A \mathbf{b}_{n}\right]$.
Now, the main result:
Slide 28
Theorem 9 (Diagonalization and eigenvectors) $A n n \times n$ matrix A is diagonalizable if and only if A has n l.i. eigenvectors. Furthermore, if we write $A=P D P^{-1}$, with D diagonal, then $P=\left[\mathbf{p}_{1}, \cdots, \mathbf{p}_{n}\right]$, and $D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right]$, where

$$
A \mathbf{p}_{i}=\lambda_{i} \mathbf{p}_{i}, \quad i=1, \cdots, n
$$

that is, $\left\{\mathbf{p}_{1}, \cdots, \mathbf{p}_{n}\right\}$ are the eigenvectors with eigenvectors $\lambda_{1}, \cdots, \lambda_{n}$, respectively.

Proof:
(\Leftarrow) Let $P=\left[\mathbf{p}_{1}, \cdots, \mathbf{p}_{n}\right]$ be a matrix formed with the n eigenvectors of A, and denote by λ_{i} the corresponding eigenvalues, that is, $A \mathbf{p}_{i}=\lambda_{i} \mathbf{p}_{i}$.
Because $\left\{\mathbf{p}_{1}, \cdots, \mathbf{p}_{n}\right\}$ are 1.i. then P is invertible. Introduce the diagonal matrix $D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right]$. Then,

$$
P D=\left[\lambda_{1} \mathbf{p}_{1}, \cdots, \lambda_{n} \mathbf{p}_{n}\right]=\left[A \mathbf{p}_{1}, \cdots, A \mathbf{p}_{n}\right]=A P
$$

Slide 29
Therefore, $A=P D P^{-1}$.
(\Rightarrow) Given the invertible matrix P, introduce its column vectors $P=\left[\mathbf{p}_{1}, \cdots, \mathbf{p}_{n}\right]$. Denote the diagonal matrix $D=\operatorname{diag}\left[d_{1}, \cdots, d_{n}\right]$. Now, the equation $A=P D P^{-1}$ implies $A P=A D$, that is,

$$
\left[A \mathbf{p}_{1}, \cdots, A \mathbf{p}_{n}\right]=\left[d_{1} \mathbf{p}_{1}, \cdots, d_{n} \mathbf{p}_{n}\right]
$$

which says that $A \mathbf{p}_{i}=d_{i} \mathbf{p}_{i}$ for every $i=1, \cdots, n$. So the \mathbf{p}_{i} are eigenvectors of A with eigenvalue d_{i}. And these vectors are l.i. because P is invertible.

Example

Recall the matrix A given by

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]
$$

Slide 30
which has eigenvectors and eigenvalues given by

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \lambda_{1}=4, \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \quad \lambda_{2}=-2
$$

Then,

$$
P=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right], \quad P^{-1}=-\frac{1}{2}\left[\begin{array}{rr}
-1 & -1 \\
-1 & 1
\end{array}\right], \quad D=\left[\begin{array}{rr}
4 & 0 \\
0 & -2
\end{array}\right]
$$

Example

Then, it is easy to check that

$$
\begin{aligned}
P D P^{-1} & =\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
4 & 0 \\
0 & -2
\end{array}\right]\left(-\frac{1}{2}\right)\left[\begin{array}{rr}
-1 & -1 \\
-1 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
2 & 2 \\
-1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right] \\
& =A
\end{aligned}
$$

Applications

Theorem 10 (Powers of matrices) Let A be an $n \times n$ matrix. If A is diagonalizable, then

$$
A^{k}=P\left(D^{k}\right) P^{-1}
$$

Slide 32
Proof:

$$
\begin{aligned}
A^{k} & =\left(P D P^{-1}\right)\left(P D P^{-1}\right) \cdots\left(P D P^{-1}\right) \\
& =P D\left(P^{-1} P\right) D\left(P^{-1} P\right) \cdots\left(P^{-1} P\right) D P^{-1} \\
& =P\left(D^{k}\right) P^{-1}
\end{aligned}
$$

Example

- Compute A^{4} where

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]
$$

Slide 33
We know that the eigenvectors and eigenvalues of A are given by

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
-2 \\
1
\end{array}\right], \quad \lambda_{1}=0, \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad \lambda_{2}=7 .
$$

Then,

$$
P=\left[\begin{array}{rr}
-2 & 1 \\
1 & 3
\end{array}\right], \quad P^{-1}=-\frac{1}{7}\left[\begin{array}{rr}
3 & -1 \\
-1 & -2
\end{array}\right], \quad D=\left[\begin{array}{ll}
0 & 0 \\
0 & 7
\end{array}\right] .
$$

Slide 34
Example

A^{4}	$=\left[\begin{array}{rr}-2 & 1 \\ 1 & 3\end{array}\right]\left[\begin{array}{rr}0 & 0 \\ 0 & 7^{4}\end{array}\right]\left(-\frac{1}{7}\right)\left[\begin{array}{rr}3 & -1 \\ -1 & -2\end{array}\right]$,
	$=\left[\begin{array}{rr}-2 & 1 \\ 1 & 3\end{array}\right]\left[\begin{array}{rr}0 & 0 \\ 0 & 7^{3}\end{array}\right]\left[\begin{array}{rr}-3 & 1 \\ 1 & 2\end{array}\right]$,
	$=\left[\begin{array}{rr}-2 & 1 \\ 1 & 3\end{array}\right]\left[\begin{array}{rr}0 & 0 \\ 7^{3} & 2\left(7^{3}\right)\end{array}\right]$,
	$=\left[\begin{array}{rr}7^{3} & 2\left(7^{3}\right) \\ 3\left(7^{3}\right) & 6\left(7^{3}\right)\end{array}\right]$,
	$=7^{3}\left[\begin{array}{rr}1 & 2 \\ 3 & 6\end{array}\right]$,
	$=7^{3} A$.

Inner product

- Definition of inner product.

Slide 35

- Examples.
- Norm, distance.
- Orthogonal vectors.
- Orthogonal complement.

Definition of inner product

Definition 8 (Inner product) Let V be a vector space over \mathbb{R}. An inner product (,) is a function $V \times V \rightarrow \mathbb{R}$ with the following properties
Slide 36

1. $\forall \mathbf{u} \in V,(\mathbf{u}, \mathbf{u}) \geq 0$, and $(\mathbf{u}, \mathbf{u})=0 \Leftrightarrow \mathbf{u}=\mathbf{0}$;
2. $\forall \mathbf{u}, \mathbf{v} \in V$, holds $(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u})$;
3. $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, and $\forall a, b \in \mathbb{R}$ holds $(a \mathbf{u}+b \mathbf{v}, \mathbf{w})=a(\mathbf{u}, \mathbf{w})+b(\mathbf{v}, \mathbf{w})$.

Notation: V together with $($,$) is called an inner product space.$

Examples

- Let $V=\mathbb{R}^{n}$, and $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n}$ be the standard basis. Given two arbitrary vectors $\mathbf{x}=\sum_{i=1}^{n} x_{i} \mathbf{e}_{i}$ and $\mathbf{y}=\sum_{i=1}^{n} y_{i} \mathbf{e}_{i}$, then

$$
(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n} x_{i} y_{i}
$$

This product is also denoted as $\sum_{i=1}^{n} x_{i} y_{i}=\mathbf{x} \cdot \mathbf{y}$. It is called Euclidean inner product.

- Let $V=\mathbb{R}^{2}$, and $\left\{\mathbf{e}_{i}\right\}_{i=1}^{2}$ be the standard basis. Given two arbitrary vectors $\mathbf{x}=\sum_{i=1}^{2} x_{i} \mathbf{e}_{i}$ and $\mathbf{y}=\sum_{i=1}^{2} y_{i} \mathbf{e}_{i}$, then

$$
(\mathbf{x}, \mathbf{y})=2 x_{1} y_{1}+3 x_{2} y_{2}
$$

Examples

- Let $V=C([0,1])$. Given two arbitrary vectors $f(x)$ and $g(x)$, then

Slide 38

$$
(f, g)=\int_{0}^{1} f(x) g(x) d x
$$

- Let $V=C([0,1])$. Given two arbitrary vectors $f(x)$ and $g(x)$, then

$$
(f, g)=\int_{0}^{1} e^{x} f(x) g(x) d x
$$

Norm

An inner product space induces a norm, that is, a notion of length of a vector.

Definition 9 (Norm) Let V, (,) be a inner product space. The
Slide 39 norm function, or length, is a function $V \rightarrow \mathbb{R}$ denoted as $\|\|$, and defined as

$$
\|\mathbf{u}\|=\sqrt{(\mathbf{u}, \mathbf{u})}
$$

Example: The Euclidean norm is

$$
\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}=\sqrt{\left(x_{1}\right)^{2}+\cdots+\left(x_{n}\right)^{2}} .
$$

Distance

A norm in a vector space, in turns, induces a notion of distance between two vectors, defined as the length of their difference.

Definition 10 (Distance) Let V, (,) be a inner product space, and $\|\|$ be its associated norm. The distance between \mathbf{u} and $\mathbf{v} \in V$ is given by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

Example: The Euclidean distance between to points \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{3}$ is

$$
\|\mathbf{x}-\mathbf{y}\|=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}} .
$$

Angle between vectors

Definition 11 (Angle) Let V, (,) be a inner product space, and $\|\|$ be its associated norm. The angle θ between two vectors \mathbf{u}, $\mathbf{v} \in V$ is defined as

Angle between vectors

- The notion of angle can also be introduced in the inner space of continuous functions $C([0,1])$. The angle between $f(x)=x$ and $g(x)=x^{2}$ is approximately 14.5 , because

$$
\begin{gathered}
(f, g)=\int_{0}^{1} x^{3} d x=\frac{1}{4} \\
\|f\|=\sqrt{\int_{0}^{1} x^{2} d x}=\frac{1}{\sqrt{3}}, \quad\|g\|=\sqrt{\int_{0}^{1} x^{4} d x}=\frac{1}{\sqrt{5}}
\end{gathered}
$$

then,

$$
\cos (\theta)=\frac{(f, g)}{\|f\|\|g\|}=\frac{\sqrt{15}}{4} \Leftarrow \quad \theta \simeq 14.5 .
$$

Orthogonal vectors

Definition 12 (Orthogonal vectors) Let V, (,) be an inner product space. Two vectors $\mathbf{u}, \mathbf{v} \in V$ are orthogonal, or perpendicular, if and only if

$$
(\mathbf{u}, \mathbf{v})=0
$$

Slide 43
We call them orthogonal, because $\cos (\theta)=0$, which implies $\theta=\pi / 2$. Example:

- The vectors $\cos (x), \sin (x) \in C([0,2 \pi])$ are orthogonal, because

$$
\begin{aligned}
(\cos (x), \sin (x)) & =\int_{0}^{2 \pi} \sin (x) \cos (x) d x \\
& =\frac{1}{2} \int_{0}^{2 \pi} \sin (2 x) d x \\
& =-\frac{1}{4}\left(\left.\cos (2 x)\right|_{0} ^{2 \pi}\right) \\
& =0
\end{aligned}
$$

