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Components and change of basis

• Review: Isomorphism.

• Review: Components in a basis.

• Unique representation in a basis.

• Change of basis.
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Review: Isomorphism

Definition 1 (Isomorphism) The linear transformation

T : V →W is an isomorphism if T is one-to-one and onto.

Example: T : P1 → IR3 given by

T (a+ bt+ ct2) =




a

b

c




is an isomorphism.
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Basis and components

Definition 2 (Dimension) A vector space V has dimension n if

the maximum number of l.i. vectors is n.

Definition 3 (Basis) A basis of an n-dimensional vector space V

is any set {u1, · · · ,un} of n l.i. vectors.

Theorem 1 (Basis) Let V be an n-dimensional vector space. The

set {u1, · · · ,un} is a basis of V ⇔ {u1, · · · ,un} are l.i. and they

span V .

Theorem 2 Let {u1, · · · ,un} be a basis of V . Then, each vector

v ∈ V has a unique decomposition

v = a1u1 + · · ·+ anvn.

Proof of Theorem 1:
(⇒) Suppose that {u1, · · · ,un} does not span V . Then there exists v ∈ V that it is

not a linear combination of {u1, · · · ,un}. That is, bv + a1u1 + · · ·+ anun = 0 implies that
b = a1 = · · · = an = 0. This in turn says that {v,u1, · · · ,un} is a l.i. set. But this is a
contradiction with the assumption that n is the maximum number of l.i. vectors in V .

(⇐) {u1, · · · ,un} is l.i. and spans V . Then, for all v ∈ V there exists numbers a1, · · · an
such that v = a1u1 + · · ·+ anun. That is, the set {v,u1, · · · ,un} is l.d. for all v ∈ V . That
says that n is the maximum number of l.i. vectors in V .

Proof of Theorem 2: The set {u1, · · · ,un} is a basis of V so they span V . Then, there
exists scalars ai, for 1 ≤ i ≤ n such that the following decomposition holds,

v =

n∑

i=1

aiui.

This decomposition is unique. Because, if there is another decomposition

v =

n∑

i=1

biui.

then the difference has the form

n∑

i=1

(ai − bi)ui = 0.

Because the vectors {u1, · · · ,un} are l.i. this implies that ai = bi for all 0 ≤ i ≤ n.
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Exercises

Consider the basis {e1, e2} given by

e1 =


 1

0


 , e2 =


 0

1


 .

Consider a second basis {u1,u2} given by

u1 =


 1

1


 , u2 =


 1

−1


 .

Find the components of x = e1 + 2e2 in the basis {u1,u2}.

x = e1 + 2e2 =

[
1
2

]

e

, [x]e =

[
1
2

]

e

.

The vectors {u1,u2} form a basis so there exists constants c1, c2 such that

x = c1u1 + c2u2 =

[
c1
c2

]

u

, [x]u =

[
c1
c2

]

e

.

Therefore,
[x]e = c1[u1]e + c2[u2]e.

That is, [
1
2

]

e

=

[
1 1
1 −1

] [
c1
c2

]

u

Then one has to solve the augmented matrix

[
1 1 | 1
1 −1 | 2

]
→
[

1 0 | 3
2

0 1 | − 1
2

]
,

so c1 = 3/2 and c2 = −1/2, and then

[x]y =

[
1
2

]

e

, [x]u =

[
3
2
− 1

2

]

u

.
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Change of basis

Theorem 3 (Change of basis) Let {u1, · · · ,un} and

{v1, · · · ,vn} be basis of V . Then, there exists a unique n× n
invertible matrix Pv←u such that

[x]v = Pv←u[x]u,

for all x ∈ V . Furthermore, the matrix Pv←u has the form

Pv←u = [[u1]v , · · · , [un]v] .

Proof of Theorem 3: Both sets {u1, · · · ,un} and {v1, · · · ,vn} are basis of V , then there
exist a unique set of numbers {u1, · · · , un} and {v1, · · · , vn} such that

x = u1u1 + · · ·+ unun =



u1

...
un



u

, x = v1v1 + · · ·+ vnvn =



v1

...
vn



v

.

Therefore, 

v1

...
vn



v

= [[u1]v, · · · , [un]v]



u1

...
un



u

.

This system of equations for (u1, · · ·un) has a unique solution solutions for all (v1, · · · vn),
because the u’s and v’s are basis. That is, Pv←u = [[u1]v , · · · , [un]v] is invertible.
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Exercises

• (2, Sec. 4.7) Let {b1,b2}, {c1, c2} be basis of IR2. Let

b1 = −c1 + 4c2 and b2 = 5c1 − 3c2.

– Find [x]c for [x]b = (5, 3)b.

– Find [x]b for [x]c = (1, 1)c.

In P2 find the change of coordinate matrix from the basis

B = {1− 2t+ t2, 3− 5t+ 4t2, 2t+ t2}. to the standard basis

{1, t, t2}. Find the B-coordinates of x = 1− 2t.
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Determinants

• Determinants of 2× 2 matrices.

• Definition.

• Properties.
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2× 2 determinant

Definition 4 The determinant of a 2× 2 matrix A =


 a b

c d


 is

given by

∆ = det(A) =

∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣
= ad− bc.

The determinant appears in the computation of the inverse matrix.
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Properties

Theorem 4 (Main properties of 2× 2 determinants)

Let A = [a1, a2] be a 2× 2 matrix. Let c be a 2-vector.

• det([a1 + c, a2]) = det([a1, a2]) + det([c, a2]).

• det([ca1, a2]) = c det([a1, a2]).

• det([a1, a2]) = − det([a2, a1]).

• det([a1, a1]) = 0.

• a1, a2 are l.d. ⇔ det([a1, a2]) = 0.

• A is invertible ⇔ det(A) 6= 0.

• det(A) = det(AT ).
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Properties

Theorem 5 (Determinants and elementary row operations)

Let A be a 2× 2 matrix.

• Let B be the result of adding to a row in A a multiple of

another row in A. Then, det(B) = det(A).

• Let B be the result of interchanging two rows in A. Then,

det(B) = − det(A).

• Let B be the result of multiply a row in A by a number k.

Then, det(B) = k det(A).
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Determinants and areas

Theorem 6 Let A = [a1, a2] be a 2× 2 matrix, with a1 and a2

being nonzero and noncollinear. Then, | det([a1, a2])| is the area of

the parallelogram formed by a1 and a2.

Proof: Choose a basis e1, e2 such that a1 = be1, for some number b 6= 0.

Because a1 is not collinear to a2, there exists a c 6= 0 such that the

vector u = ca1 + a2 is collinear to e2. For that vector u holds that

u = he2, where |h| is the height of the parallelogram. Summarizing:

a1 =

[
b

0

]
, u =

[
0

h

]
.

Now, the determinant of A is the following:

det(A) = det([a1, a2]) = det([a1, a2 + ca1]) = det([a1,u]).
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Therefore,

det(A) =

∣∣∣∣∣
b 0

0 h

∣∣∣∣∣ = hb.

Then, | det(A)| = |h| |b|, where |h| is the height and |b| the length of the

base of the parallelogram. .
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Determinants

• Determinant of 3× 3 matrices.

• Determinant of n× n matrices.

• Some properties.
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Determinant of 3× 3 matrices

Definition 5 The determinant of a 3× 3 matrix A is given by

det(A) =

∣∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣∣
a11 −

∣∣∣∣∣∣
a21 a23

a31 a33

∣∣∣∣∣∣
a12 +

∣∣∣∣∣∣
a21 a22

a31 a32

∣∣∣∣∣∣
a13,

= (a22a33 − a32a23)a11 − (a21a33 − a31a23)a12

+(a21a32 − a31a22)a13.

This formula is called “expansion by the first row.”
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Determinant of 3× 3 matrices

Theorem 7 (Expansions by rows) The determinant of a 3× 3

matrix A can also be computed with an expansion by the second row

or by the third row.

The proof is just do the calculation. For example, the expansion by

the second row is the following:

−
∣∣∣∣∣
a12 a13

a32 a33

∣∣∣∣∣ a21 +

∣∣∣∣∣
a11 a13

a31 a33

∣∣∣∣∣ a22 −
∣∣∣∣∣
a11 a12

a31 a32

∣∣∣∣∣a23

= −(a12a33 − a32a13)a21 + (a11a33 − a31a13)a22 − (a11a32 − a31a12)a23.

= det(A).
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Determinant of 3× 3 matrices

Theorem 8 (Expansions by columns) The determinant of a

3× 3 matrix A can also be computed with an expansion by the any

of its columns.

The proof is again to do the calculation. For example, the

expansion by the first column is the following:
∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣ a11 −
∣∣∣∣∣
a12 a13

a32 a33

∣∣∣∣∣ a21 +

∣∣∣∣∣
a12 a13

a22 a23

∣∣∣∣∣a31

= (a22a33 − a32a23)a11 − (a12a33 − a32a13)a21 + (a12a23 − a22a13)a31.

= det(A).
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Determinant of n× n matrices

Notation:

Aij =




a11 · · · a1j · · · a1n

...
...

...

ai1 · · · aij · · · ain

...
...

...

an1 · · · anj · · · ann




A =




+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .



, Sign of coefficient aij is (−1)i+j .



Math 20F Linear Algebra Lecture 18 11

Slide 18

'

&

$

%

Determinant of n× n matrices

Definition 6 The determinant of an n× n matrix A = [aij is

given by

det(A) = det(A11)a11 − det(A12)a12 + · · ·+ (−1)1+n det(A1n)a1n,

=

n∑

j=1

(−1)1+j det(A1j)a1j .

This formula is called “expansion by the first row.”
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Determinant of n× n matrices

Theorem 9 The determinant of an n× n matrix A = [aij ] can be

computed by an expansion along any row or along any column.

That is,

det(A) =
n∑

j=1

(−1)i+j det(Aij)aij , for any i = 1, · · · , n,

=
n∑

i=1

(−1)i+j det(Aij)aij , for any j = 1, · · · , n.

Notation: The cofactor Cij of a matrix A is the number given by

Cij = (−1)i+j det(Aij).

Theorem 10 det(A) = det(AT ).
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Determinant of n× n matrices

Suggestion: If a matrix has a row or a column with several zeros,

then it is simpler to compute its determinant by an expansion

along that row or column.

Theorem 11 The determinant of a triangular matrix is the

product of its diagonal elements.

Examples:
∣∣∣∣∣∣∣∣

1 2 3

0 4 5

0 0 6

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
4 5

0 6

∣∣∣∣∣∣
(1) = 1× 4× 6 = 24.

∣∣∣∣∣∣∣∣

1 0 0

2 3 0

4 1 5

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
3 0

1 5

∣∣∣∣∣∣
(1) = 1× 3× 5 = 15.


