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Basis and dimensions

• Review: Subspace of a vector space. (Sec. 4.1)

• Linear combinations, l.d., l.i. vectors. (Sec. 4.3)

• Dimension and Base of a vector space. (Sec. 4.4)
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Review: Vector space

A vector space is a set of elements of any kind, called vectors, on

which certain operations, called addition and multiplication by

numbers, can be performed.

The main idea in the definition of vector space is to do not specify

the nature of the elements nor do we tell how the operations are to

be performed on them. Instead, we require that the operations

have certain properties, which we take as axioms of a vector space.

Examples include spaces of arrows, matrices, functions.
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Review: Subspace

Definition 1 (Subspace) A subspace W of a vector space V is a

subset of V that is closed under the addition and scalar

multiplication operations on V .

That is, W ⊂ V , and for all u, v ∈W and a ∈ IR holds that

u + v ∈W, au ∈W.
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Examples

• The set W ⊂ IR3 given by

W = {x ∈ IR3 : x = (x1, x2, 0), x1, x2 ∈ IR},

is a subspace of IR3.

• The set Ŵ ⊂ IR3 given by

Ŵ = {x ∈ IR3 : x = (x1, x2, 1), x1, x2 ∈ IR},

in contrast is not a subspace of IR3.
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Examples

• The set W = {(x1, x2) ∈ IR2 : x1 ≥ 0} is not a subspace of IR2.

• The segment W{x ∈ IR : −1 ≤ x ≤ 1} is not a subspace of IR.

• The line W = {x ∈ IR3 : x = (1, 2, 3)t} is a subspace or IR3.

• The line W = {x ∈ IR3 : x = (1, 2, 0) + (1, 2, 3)t} is not a

subspace or IR3.
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Linear combinations

Definition 2 (Linear combination) Let V be a vector space,

v1, · · · ,vk ∈ V be arbitrary vectors, and a1, · · · , ak ∈ IR be arbitrary

scalars. We call a linear combination of v1, · · · ,vk the vector

k∑

i=1

aivi = a1v1 + · · ·+ akvk.

Linear combinations give rise to the concept of span of a set of

vectors.

Definition 3 (Span) The span of v1, · · · ,vk ∈ V is the set of all

linear combinations of these vectors, that is,

Span{v1, · · · ,vk} =

{
k∑

i=1

aivi : ai ∈ IR, 0 ≤ i ≤ k
}
.



Math 20F Linear Algebra Lecture 13 4

Slide 7

'

&

$

%

Notice that every linear combination of v1, · · · ,vk also belongs to

V , so Span{v1, · · · ,vk} ⊂ V . One can also check that it is a

subspace.

Claim 1 Let V be a vector space and v1, · · · ,vk ∈ V . Then,

Span{v1, · · · ,vk} ⊂ V is a subspace.

Different sets may span the same subspace.

Example:

• The space IR2 is spanned by {e1, e2}, and also by

{e1, e2, e1 + 2e2}, and also by {0, e1 + 2e2,−e1, e1 + e2}.

• The space P2 is spanned by {1, t, t2}, and also by

{1, t, t2, (t2 − 1), (t+ 1)2}.

It is then useful to remove redundant vectors from linear

combinations.
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Definition 4 (l.d.) Let V be a vector space. The vectors

v1, · · · ,vk ∈ V are linearly dependent, l.d., if there exist scalars

a1, · · · , ak ∈ R with at least one of them nonzero, such that

k∑

i=1

aivi = 0.

Definition 5 (l.i.) Let V be a vector space. The vectors

v1, · · · ,vk ∈ V are linearly independent, l.i., if they are not l.d.,

that is, the only choice of scalars a1, · · · , ak ∈ R for which the

equation
k∑

i=1

aivi = 0

holds is ai = 0 for all 1 ≤ i ≤ k.

Linearly independent set of vectors contain no redundant vectors,

in the sense of linear combinations.
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Examples:

• If one element in S ⊂ V is a scalar multiple of another, S is l.d..

• If 0 ∈ S, then S is l.d..

• Let V be the space of continuous functions on [0, 2π]. The set

of vectors v1 = cos2(t), v2 = sin2(t), v3 = 1 is l.d.. Indeed,

Pythagoras theorem says that v1 + v2 − v3 = 0.

• Consider the space P2. The set {1, t, t2} is l.i.. Indeed, the

equation

a0 + a1t+ a2t
2 = 0,

implies that all coefficient vanishes. Evaluate the equation at

t = 0, then a0 = 0. So we have a1t+ a2t
2 = 0. If the function

vanishes, its derivative also vanishes. So a1 + a2t = 0. Evaluate

this at t = 0, then a1 = 0. Repeat the procedure one more

time, then a2 = 0.
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Dimensions and base

Definition 6 (Finite dimension and base)

• A vector space V has finite dimension is there exists a maximal

set of l.i. vectors {v1, · · · ,vn}.

• The number n is called the dimension of V , and we denote by

n = dim V .

• The l.i. vectors {v1, · · · ,vn} are called a base of V .

• If there is no maximal set of l.i. vectors, then V is called

infinite dimensional.

That is, the set {v1, · · · ,vn} is maximal if it is l.i. but the set

{v1, · · · ,vn,vn+1} is l.d. for all vn+1 ∈ V .
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Examples:

• The set {e1, e2} ∈ IR2 is a basis. Another basis is

{e1 + e2, e1 − e2}. The set {e1, e2, e1 + e2} is not a basis. The

set {e1, 2e1} is not a basis.

• Notice that a basis of a vector space is not unique.

• The space IRn is finite dimensional, of dimension n, because

the vectors {e1, · · · , en} are l.i., and any set of n+ 1 vectors in

IRn is l.d..

• The space P , polynomials on [0, 1] is infinite dimensional. The

infinite set {1, t, t2, t3, · · ·} is l.i..

Theorem 1 A set of vectors E ⊂ V is a base if the vectors in E

are l.i. and span V .
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Components or coordinates

Theorem 2 Let V be a finite dimensional vector space with

n = dimV . If {u1, · · · ,un} is a basis of V , then each vector v ∈ V
has a unique decomposition

v =
n∑

i=1

aiui.

The n scalars ai are called components or coordinates of v with

respect to this basis.
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Exercises

Let u1 = (1, 1) and u2 = (1,−1), be a basis of IR2. Find the

components of x = (1, 2) in that basis.

The vectors u1, u2 form a basis so there exists constants c1, c2 such

that

x = c1u1 + c2u2.

That is, 
 1 1

1 −1




 c1

c2


 =


 1

2


 .

Then one has to solve the augmented matrix

 1 1 | 1

1 −1 | 2


→


 1 0 | 3

2

0 1 | − 1
2


 ,

so c1 = 3/2 and c2 = −1/2, and then x = 3/2u1 − 1/2u2.

Proof: The set {u1, · · · ,un} is a basis so there exists scalars ai, for 1 ≤ i ≤ n such that
the following decomposition holds,

v =
n∑

i=1

aiui.

This decomposition is unique. Because, if there is another decomposition

v =

n∑

i=1

biui.

then the difference has the form

n∑

i=1

(ai − bi)ui = 0.

Because the vectors {u1, · · · ,un} are l.i. this implies that ai = bi for all 0 ≤ i ≤ n.
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Null and Column spaces

• Null space and range. (Sec. 4.2)

• Examples.

• Linear transformations.

• Null space and range for L.T..

• Fundamental theorem of algebra. (Sec. 4.6)
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Null and range spaces: Matrix version

Definition 7 Let A be an m× n. The null space of A, denoted as

N(A) ⊂ V , is the set of all elements of V solution of Av = 0, that

is,

N(A) = {v ∈ V : Av = 0}.

Definition 8 Let A be an m× n. The column space of A, denoted

as Col(A), is the span of the columns of A. Its dimension is called

the rank of A, that is rank(A) = dim Col(A).
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Exercises

Find the null space of

A =


 1 1 1

2 1 3


 .

The null space are all x ∈ IR3 solutions of Ax = 0. One can check

that these solutions have the form

e =




−3

1

1


x3.

Therefore, N(A) = Span{(−3, 1, 1)}.
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Exercises

(Problem 20, Sec. 4.2) Find k1 and k2 such that N(A) is a subspace

of IRk1 , and Col(A) is a subspace of IRk2 , with A = [1,−3, 9, 0,−5].

The solutions x of the equation Ax = 0 form a hyperplane in IR5,

given by the equation

x1 − 3x2 + 9x3 − 5x5 = 0.

So, the solutions can be written as

x =




3

1

0

0

0



x2 +




−9

0

1

0

0



x3 +




0

0

0

1

0



x4 +




5

0

0

0

1



x5.

N(A) = Span{(3, 1, 0, 0, 0), (−9, 0, 1, 0, 0), (0, 0, 0, 1, 0), (5, 0, 0, 0, 1)} ⊂ IR4.

Col(A) ⊂ IR.
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linear transformations

Definition 9 Let V , W be vector spaces. The function T : V → W

is called a linear transformation if it has the following properties:

• T (v1 + v2) = T (v1) + T (v2) for all v1, v2 ∈ V ;

• T (av) = aT (v), for all v ∈ V and a ∈ IR.

These properties means that T preserves addition and

multiplication by numbers. The two properties combine in one

formula

T (av + bu) = aT (v) + bT (u),

or equivalently,

T

(
k∑

i=1

aivi

)
=

k∑

i=1

aiT (vi).
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Examples:

• The identity transformation, that is T : V → V , given by

T (v) = v.

• A stretching by a ∈ IR, that is, T : V → V , given by T (v) = av.

• A projection, that is T : IR3 → IR3 given by

T (x1e1 + x2e2 + x3e3) = x1e1 + x2e2.

• The derivative. Let V be the vector space of differentiable

functions on (0, 1), and let W be the vector space of continuous

function on (0, 1). Then, T : V →W given by T (f) = f ′ is a

linear transformation.
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Null space and range of T

Definition 10 (Null space of T ) Let T : V →W be a linear

transformation. The null space of T , denoted as N(T ) ⊂ V , is the

set of all elements of V that T maps onto the 0 ∈W . That is,

N(T ) = {v ∈ V : T (v) = 0}.

Definition 11 (Range of T ) Let T : V →W be a linear

transformation. The range of T , denoted as T (V ) ⊂W , is the set

of all elements of W of the form w = T (v) for some v ∈ V .
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Theorem 3 (N(T ) subspace of V ) Let T : V →W be a linear

transformation. The null space of T is a subspace of V .

Theorem 4 (T (V ) subspace of W ) Let T : V →W be a linear

transformation. The range of T , denoted by T (V ) ⊂W , is a

subspace of W .

The nullity is the dimension of N(T ).

The rank is the dimension of T (V ).

Theorem 5 Let T be the linear transformation associated to A.

Then N(T ) = N(A) and T (V ) = Col(A).
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Proof of Theorem 3: Assume that u and v ∈ N(T ). Then, au + bv ∈ N(T ) because

T (au + bv) = aT (u) + bT (v) = a0 + b0 = 0.

Proof of Theorem 4: Given two vectors T (u) and T (v) in the range of T , then aT (u) +
bT (v) also belongs to the range of T because T is linear, that is,

aT (u) + bT (v) = T (au + bv).
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Examples:

• The identity transformation. The null space is N(I) = {0}.
The range space is T (V ) = V .

• A stretching by a ∈ IR. In the case a 6= 0 the null space is

N(T ) = {0} and T (V ) = V . In the case a = 0 one has

N(T ) = V and T (V ) = {0}.

• A projection, T : IR3 → IR3 given by

T (x1e1 + x2e2 + x3e3) = x1e1 + x2e2. Then N(T ) = {x3e3}.
The range space is the plane spanned by {e1, e2}.

• The derivative, given by T (f) = f ′. Then N(T ) are the

constant functions. The range of T are the continuous

functions on (0, 1).
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Fundamental theorem of algebra

Theorem 6 (Nullity plus rank) Let T : V →W be a linear

transformation, and V be finite dimensional. Then N(T ) and T (V )

are finite dimensional and the following relation holds,

dimN(T ) + dimT (V ) = dimV.

Theorem 7 (Nullity plus rank: Matrix form) Let A be an

m× n matrix with m, n finite Then, the following relation holds,

dimN(A) + rank(A) = n.

Proof of Theorem 6: Let n = dimV and let S = {e1, · · · , ek} be a basis for N(T ), so we
say that the nullity is some number k ≥ 0. Because N(T ) is contained in V one knows that
k ≤ n. Let us add l.i. vectors to S to complete a basis of V , say, {e1, · · · , ek, ek+1, · · · , ek+r}
for some number r ≥ 0 such that k + r = n. We shall prove that {T (ek+1), · · · , T (ek+r)} is
a basis for T (V ), and then r = dim T (V ). This relation proves Theorem 6.

The elements {T (ek+1), · · · , T (ek+r)} are a basis of T (V ) because they span T (V ) and
they are l.i.. They span T (V ) because for every w ∈ T (V ) we know that there exists v ∈ V
such that w = T (v). If we write v =

∑n
i=1 viei, then we have

w = T

(
n∑

i=0

ei

)
=

n∑

i=0

aiT (ei) =

k+r∑

i=k+1

aiT (ei),

then the {T (ek+1), · · · , T (ek+r)} span T (V ).
These vectors are also l.i., by the following argument. Suppose there are scalars ck+1, · · · , ck+r

such that
k+r∑

i=k+1

ciT (ei) = 0.

Then, this implies

T

(
k+r∑

i=k+1

ciei

)
= 0,

so the vector u =
∑k+r

i=k+1 ciT (ei) belongs to N(T ). But if u belongs to N(T ), then it must
be written also as a linear combination of the elements of the base of N(T ), namely, the
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vectors e1, · · · , ek, so there exists constants c1, · · · , ck such that

u =

k∑

i=1

ciei.

Then, we can construct the linear combination

0 = u− u =

k∑

i=1

ciei −
k+r∑

i=k+1

ciei.

Because the set {e1 · · · , ek+r} is a basis o V we have that all the ci with 1 ≤ i ≤ k + r
must vanish. Then, the vectors {T (ek+1), · · · , T (ek+r)} are l.i.. Therefore they are a basis
of T (V ), and then the dimension of dim T (V ) = r. This proves the Theorem.
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The matrix of a linear transformation

Theorem 8 Let T : V →W be a linear transformation, where V

and W are finite dimensional vector spaces with dimV = n and

dimW = m. Let {v1, · · · ,vn} be a basis of V , and {w1, · · · ,wm}
be a basis of W .

Then, T has associated a matrix A = [ai], 1 ≤ i ≤ n, given by

T (vi) = ai =

m∑

j=1

aijwj .

Idea of the proof: every vector in W is a linear combinations of the basis vectors wj for
0 ≤ j ≤ m. In particular all the n vectors T (ei), 0 ≤ i ≤ n. therefore, there must exist the
m× n set of numbers aij given above. These coefficients define the matrix A associated to
T .
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Example:

• In the case T : IR2 → IR3, one chooses the basis vectors

v1 = (1, 0), v2 = (0, 1), for IR2, and the basis vectors

w1 = (1, 0, 0), w2 = (0, 1, 0), w3 = (0, 0, 1) for IR3. Then, a

linear transformation

T (x1, x2) = (x1 + 3x2,−x1 + x2, x2),

has associated the matrix A = [a1, a2] given by

a1 =




1

−1

0


 , a2 =




3

1

1


 .
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Invertible transformations

• One-to-one and onto.

• Isomorphisms (one-to-one and onto).

• Invertible transformations.
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One-to-one and onto

Definition 12 (one-to-one onto) Let T : V →W be a linear

transformation.

• T is one-to-one if v1 6= v2 implies T (v1) 6= T (v2);

• T is onto if for all w ∈W there exists v ∈ V such that

T (v) = w.

Theorem 9 Let T : V →W be a linear transformation.

• T is one-to-one ⇔ N(T ) = {0};

• T is onto ⇔ T (V ) = W .
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Isomorphism

Definition 13 (Isomorphism) The linear transformation

T : V →W is an isomorphism if T is one-to-one and onto.

Isomorphic spaces are essentially the same. There is a one to one

correspondence between elements from one space and of the other.

Example:

• P2 is isomorphic to R3. A basis of P2 is {1, t, t2} A general

element v ∈ P has the form v = a0 + a1t+ a2t
2. The linear

transformation T : P2 → R3 given by

T (a0 + a1t+ a2t
2) = a0e0 + a1e2 + a2e3 ∈ IR3 is an

isomorphism.

Theorem 10 Let T : V →W be an isomorphism, with V and W

of finite dimension. Then dimV = dimW .


