Linear transformations

Slide 1

- Definition of linear transformations.
- Linear transformations and matrices.
- one-to-one, onto.

Linear transformations

Definition $1 A$ function $T: \mathbb{R}^{n} \rightarrow R \subset \mathbb{R}^{m}$ is called a linear transformation if

$$
\begin{aligned}
T\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) & =T\left(\mathbf{x}_{1}\right)+T\left(x_{2}\right), & & \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbb{R}^{n}, \\
T(a \mathbf{x}) & =a T(\mathbf{x}), & & \forall \mathbf{x} \in \mathbb{R}^{n}, \forall a \in \mathbb{R} .
\end{aligned}
$$

The symbol \subset means "subset of" and \forall means "for all."

- \mathbb{R}^{n} is called the domain of T.
- \mathbb{R}^{m} is called the codomain of T.
- $R=T\left(\mathbb{R}^{n}\right)=\left\{\mathbf{v} \in \mathbb{R}^{m}:\right.$ exists $\mathbf{x} \in \mathbb{R}^{n}$, such that $\left.T(\mathbf{x})=\mathbf{v}\right\}$ is called the range of T.

Example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$,

$$
T \mathbf{x}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}+x_{2}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) x_{1}+\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right) x_{2}
$$

Slide 3
so $T\left(\mathbb{R}^{2}\right)=\mathbb{R}^{2}$, that is, the range of T is \mathbb{R}^{2}, a subset of the codomain, R^{3}.

Theorem 1 Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, with $1 \leq m<\infty$, and $1 \leq n<\infty$. Then, there exists an $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x}
$$

- Recall: $T\left(a_{1} \mathbf{b}_{1}+\cdots+a_{n} \mathbf{b}_{n}\right)=a_{1} T\left(\mathbf{b}_{1}\right)+\cdots+a_{n} T\left(\mathbf{b}_{n}\right)$.
- Introduce the n-vectors

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \cdots, \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

then

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}
$$

Proof:

$$
\begin{aligned}
T(\mathbf{x}) & =T\left(x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}\right) \\
& =x_{1} T\left(\mathbf{e}_{1}\right)+\cdots+x_{n} T\left(\mathbf{e}_{n}\right) \\
& =\left[T\left(\mathbf{e}_{1}\right), \cdots, T\left(\mathbf{e}_{n}\right)\right] \mathbf{x} \\
& =A \mathbf{x}
\end{aligned}
$$

where

$$
A=\left[\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right]=\left[T\left(\mathbf{e}_{1}\right), \cdots, T\left(\mathbf{e}_{n}\right)\right]
$$

Therefore, the column vectors \mathbf{a}_{i} in A are the images of the \mathbf{e}_{i} by T, that is, $\mathbf{a}_{i}=T\left(\mathbf{e}_{i}\right)$, for $i=1 \cdots n$.

One-to-one, and onto

Slide 6
Definition $2 T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if the following holds: If $\mathbf{x}_{1} \neq \mathbf{x}_{2}$, then $T\left(\mathbf{x}_{1}\right) \neq T\left(\mathbf{x}_{2}\right)$.

Definition $3 T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if the following holds:
For all $\mathbf{b} \in \mathbb{R}^{m}$ there exists $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{b}=T(\mathbf{x})$.

Theorem 2 Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
T is one-to-one $\Leftrightarrow T(\mathbf{x})=0$ has only the trivial solution $\mathbf{x}=\mathbf{0}$.
For the proof, first recall: T linear implies $T(\mathbf{0})=\mathbf{0}$.
Proof:

Slide 7
(\Rightarrow) If $\mathbf{x} \neq \mathbf{0}$ and T one-to-one, then $T(\mathbf{x}) \neq T(\mathbf{0})=\mathbf{0}$, hence $T(\mathbf{x}) \neq \mathbf{0}$ for nonzero \mathbf{x}. In other words, $T(\mathbf{x})=\mathbf{0}$ only has the trivial solution.
(\Leftarrow) Take $\mathbf{u}-\mathbf{v} \neq \mathbf{0}$. Because $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution, then $\mathbf{0} \neq T(\mathbf{u}-\mathbf{v})=T(\mathbf{u})-T(\mathbf{v})$. So, we have shown that $\mathbf{u} \neq \mathbf{v}$ implies that $T(\mathbf{u}) \neq T(\mathbf{v})$, and this says that T is one-to-one.

Theorem 3 Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with matrix $A=\left[\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right]$. Then the following assertions hold:
T onto $\Leftrightarrow\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\}$ span \mathbb{R}^{m}.
T one-to-one $\Leftrightarrow\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\}$ are l.i..
Proof:
Slide 8
T onto means that for all $\mathbf{b} \in \mathbb{R}^{m}$ there exists $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{b}=T(\mathbf{x})=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}$. This says that
$\mathbf{b} \in \operatorname{Span}\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\}$ for all $\mathbf{b} \in \mathbb{R}^{m}$, so $\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\}$ span \mathbb{R}^{m}.
$T(\mathbf{x})=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$, so
$x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{0}$ has only the solution $x_{1}=\cdots=x_{n}=0$.
This says that $\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\}$ are l.i..

Matrix Operations

- Multiplication by a number,

Slide 9

- Addition.
- Matrix multiplication.
- Properties (Non-commutative).
- Transpose of a matrix.

The origin of Matrix operations

Linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are functions that happen to be linear.

Because they are functions, the usual operations on functions can be introduced, namely,

Slide 10

- multiplication by a number,
- a pair of appropriate functions can be added,
- a pair of appropriate functions can be composed.

The association

$$
T, \text { function } \longleftrightarrow A \text {, matrix }
$$

translates operations on functions into operations on matrices.

Linear combination of matrices

Given the $m \times n$ matrices $A=\left[\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right]$ and $B=\left[b b_{1}, \cdots, \mathbf{b}_{n}\right]$, and the numbers c, d, the linear combination is defined as

$$
c A+d B=\left[c \mathbf{a}_{1}+d \mathbf{b}_{1}, \cdots, c \mathbf{a}_{n}+d \mathbf{b}_{n}\right]
$$

That is, in components,

$$
c A+d B=\left[\begin{array}{ccc}
\left(c a_{11}+d b_{11}\right) & \cdots & \left(c a_{1 n}+d b_{1 n}\right) \\
\vdots & & \vdots \\
\left(c a_{m 1}+d b_{m 1}\right) & \cdots & \left(c a_{m n}+d b_{m n}\right)
\end{array}\right]
$$

Multiplication of Matrices

Composition of $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, with $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}$

$$
\mathbb{R}^{n} \xrightarrow{S} \mathbb{R}^{m} \xrightarrow{T} \mathbb{R}^{\ell}
$$

Slide 12

$$
T \circ S(\mathbf{x})=T(S(\mathbf{x}))
$$

implies the multiplication of the matrix A (associated to T) with the matrix B (associated to S),

$$
\begin{gathered}
\mathbf{x} \in \mathbb{R}^{n} \xrightarrow{B} B \mathbf{x} \in \mathbb{R}^{m} \xrightarrow{A} A(B \mathbf{x}) \in \mathbb{R}^{\ell} . \\
T(S(\mathbf{x})) \longleftrightarrow A(B \mathbf{x}) .
\end{gathered}
$$

Multiplication of Matrices

Slide 13

$$
\begin{array}{lccc}A B & \text { denotes multiplication of } & A & \text { with } \\ \ell \times n \\ \ell \times m\end{array}
$$

And the product is,

$$
A B=\left[A \mathbf{b}_{1}, \cdots, A \mathbf{b}_{n}\right] .
$$

Matrix operations: Properties

- $A(B C)=(A B) C$,
- $A(B+C)=A B+A C$,
- $(B+C) A=B A+B C$,

Slide 14

- $a(A B)=(a A) B=A(a B)$,
- $I_{m} A=A=A I_{n}$.

Notice: For $n \times n$ squared matrices A, B, one has in general that

$$
A B \neq B A
$$

that is, the product is not commutative.

Transpose of a matrix

Definition 4 The transpose of an $m \times n$ matrix A is an $n \times m$ matrix called A^{T}, whose columns are the rows of A.

Slide 15
Example:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right], \quad A^{T}=\left[\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right], \quad\left(A^{T}\right)^{T}=\left[\begin{array}{cc}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]=A
$$

Properties of the transpose

- $\left(A^{T}\right)^{T}=A$,
- $(A+B)^{T}=A^{T}+B^{T}$,
- $(a A)^{T}=a A^{T}$,
- $(A B)^{T}=B^{T} A^{T}$.

Inverse of a matrix

Slide 17

- Inverse of a matrix.
- Computation of the matrix.

Inverse of a matrix

Slide 18 Definition $5 A n n \times n$ (squared) matrix A is said to be invertible \Leftrightarrow there exists an $n \times n$ matrix, denoted as A^{-1}, satisfying

$$
\left(A^{-1}\right) A=I_{n}, \quad A\left(A^{-1}\right)=I_{n} .
$$

Inverse matrix and systems of linear equations.
Theorem 4 An $n \times n$ matrix A is invertible \Leftrightarrow for all $\mathbf{b} \in \mathbb{R}^{n}$ there exists a unique $\mathbf{x} \in \mathbb{R}^{n}$ solution of $A \mathbf{x}=\mathbf{b}$.

Proof: (\Rightarrow) Define $\mathbf{x}=A^{-1} \mathbf{b}$. Then, $A \mathbf{x}=A\left(A^{-1}\right) \mathbf{b}=\mathbf{b}$.
If \mathbf{x}_{1} and \mathbf{x}_{2} satisfy $A \mathbf{x}_{1}=\mathbf{b}$, and $A \mathbf{x}_{2}=\mathbf{b}$, then $A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=0$, so $\left(A^{-1}\right) A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=0$, and then $\mathbf{x}_{1}=\mathbf{x}_{2}$. The solution is unique.
Slide 19
(\Leftarrow) (sketch)
For all $\mathbf{b} \in \mathbb{R}^{n}$ exists a unique $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\mathbf{b}$. This defines a function $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, S(\mathbf{b})=\mathbf{x}$.

Assume that this function is linear. (We do not show this here.)
Then it has associated a matrix C, such that $C \mathbf{b}=\mathbf{x}$.
Then, $A C \mathbf{b}=A \mathbf{x}=\mathbf{b}$, so $A C=I$.
Finally, $A \mathbf{x}=\mathbf{b}$ implies that $C A \mathbf{x}=C \mathbf{b}=\mathbf{x}$, so $C A=I$.

Computation of the inverse matrix

- The inverse matrix can be computed with ERO (elementary row operations).
- Start with and augmented matrix $[A \mid I]$.
- Perform ERO until $[A \mid I] \rightarrow[I \mid B]$, for some matrix B.
- Then, $B=A^{-1}$. (Otherwise, A is not invertible.)

Claim: Each ERO can be performed by multiplication by an appropriate matrix.

If the ERO given by the matrices E_{1}, \cdots, E_{k} transform A into the identity matrix I, then the following equations holds,

$$
E_{k} \cdots E_{1} A=I
$$

Slide $21 \quad$ therefore $E_{k} \cdots E_{1}=A^{-1}$.
The computation of A^{-1} can be done as follows:

$$
[A \mid I] \rightarrow\left[E_{1} A \mid E_{1}\right] \rightarrow \cdots \rightarrow\left[E_{k} \cdots E_{1} A \mid E_{k} \cdots E_{1}\right]
$$

But the ERO are chosen such that $E_{k} \cdots E_{1} A=I$, so

$$
\left[E_{k} \cdots E_{1} A \mid E_{k} \cdots E_{1}\right]=\left[I \mid E_{k} \cdots E_{1}\right]
$$

and the matrix $E_{k} \cdots E_{1}$ is precisely equal to A^{-1}.

