

Lecture 8

Slide 3 $\begin{aligned}
\mathbf{F} \mathbf{x} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} x_1 + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} x_2, \\
\text{Slide 3} &\text{so } T(\mathbb{R}^2) = \mathbb{R}^2, \text{ that is, the range of } T \text{ is } \mathbb{R}^2, \text{ a subset of the codomain, } \mathbb{R}^3. \\
\text{Theorem 1 } Let \ T : \mathbb{R}^n \to \mathbb{R}^m \text{ be a linear transformation, with } \\
1 \leq m < \infty, \text{ and } 1 \leq n < \infty. \text{ Then, there exists an } m \times n \text{ matrix } A \\
\text{such that} \\
T(\mathbf{x}) = A\mathbf{x}.
\end{aligned}$

Proof:

where

$$T(\mathbf{x}) = T(x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n),$$

= $x_1T(\mathbf{e}_1) + \dots + x_nT(\mathbf{e}_n),$
= $[T(\mathbf{e}_1), \dots, T(\mathbf{e}_n)]\mathbf{x},$
= $A\mathbf{x},$

Slide 5

$$A = [\mathbf{a}_1, \cdots, \mathbf{a}_n] = [T(\mathbf{e}_1), \cdots, T(\mathbf{e}_n)],$$

Therefore, the column vectors \mathbf{a}_i in A are the images of the \mathbf{e}_i by T, that is, $\mathbf{a}_i = T(\mathbf{e}_i)$, for $i = 1 \cdots n$.

Theorem 2 Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. T is one-to-one $\Leftrightarrow T(\mathbf{x}) = 0$ has only the trivial solution $\mathbf{x} = \mathbf{0}$. For the proof, first recall: T linear implies $T(\mathbf{0}) = \mathbf{0}$. *Proof:* (\Rightarrow) If $\mathbf{x} \neq \mathbf{0}$ and T one-to-one, then $T(\mathbf{x}) \neq T(\mathbf{0}) = \mathbf{0}$, hence $T(\mathbf{x}) \neq \mathbf{0}$ for nonzero \mathbf{x} . In other words, $T(\mathbf{x}) = \mathbf{0}$ only has the trivial solution. (\Leftarrow) Take $\mathbf{u} - \mathbf{v} \neq \mathbf{0}$. Because $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution, then $\mathbf{0} \neq T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v})$. So, we have shown that $\mathbf{u} \neq \mathbf{v}$ implies that $T(\mathbf{u}) \neq T(\mathbf{v})$, and this says that T is one-to-one.

Theorem 3 Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix $A = [\mathbf{a}_1, \dots, \mathbf{a}_n]$. Then the following assertions hold: $T \text{ onto } \Leftrightarrow \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ span \mathbb{R}^m . $T \text{ one-to-one} \Leftrightarrow \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ are l.i.. *Proof:* Slide 8 T onto means that for all $\mathbf{b} \in \mathbb{R}^m$ there exists $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{b} = T(\mathbf{x}) = x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n$. This says that $\mathbf{b} \in \text{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ for all $\mathbf{b} \in \mathbb{R}^m$, so $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ span \mathbb{R}^m . $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$, so $x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n = \mathbf{0}$ has only the solution $x_1 = \dots = x_n = 0$. This says that $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ are l.i..

	The origin of Matrix operations
	Linear transformations $T: \mathbb{R}^n \to \mathbb{R}^m$ are functions that happen to be linear.
	Because they are functions, the usual operations on functions can be introduced, namely,
Slide 10	• multiplication by a number,
	• a pair of appropriate functions can be added,
	• a pair of appropriate functions can be <i>composed</i> .
	The association
	T , function $\longleftrightarrow A$, matrix
	translates operations on functions into operations on matrices.

 $Linear \ combination \ of \ matrices$ Given the $m \times n$ matrices $A = [\mathbf{a}_1, \cdots, \mathbf{a}_n]$ and $B = [bb_1, \cdots, \mathbf{b}_n]$, and the numbers c, d, the linear combination is defined as $cA + dB = [c\mathbf{a}_1 + d\mathbf{b}_1, \cdots, c\mathbf{a}_n + d\mathbf{b}_n].$ That is, in components, $cA + dB = \begin{bmatrix} (ca_{11} + db_{11}) & \cdots & (ca_{1n} + db_{1n}) \\ \vdots & \vdots & \vdots \\ (ca_{m1} + db_{m1}) & \cdots & (ca_{mn} + db_{mn}) \end{bmatrix}.$

Slide 11

 $\begin{array}{l} Multiplication \ of \ Matrices\\ \text{Composition of } S: I\!\!R^n \to I\!\!R^m, \ \text{with } T: I\!\!R^m \to I\!\!R^\ell\\ I\!\!R^n \xrightarrow{S} I\!\!R^m \xrightarrow{T} I\!\!R^\ell,\\ T \circ S(\mathbf{x}) = T(S(\mathbf{x})),\\ \text{implies the multiplication of the matrix A (associated to T) with the matrix B (associated to S),\\ \mathbf{x} \in I\!\!R^n \xrightarrow{B} B\mathbf{x} \in I\!\!R^m \xrightarrow{A} A(B\mathbf{x}) \in I\!\!R^\ell.\\ T(S(\mathbf{x})) \longleftrightarrow A(B\mathbf{x}). \end{array}$

Matrix operations: Properties $\bullet A(BC) = (AB)C,$ $\bullet A(B+C) = AB + AC,$ $\bullet (B+C)A = BA + BC,$ $\bullet a(AB) = (aA)B = A(aB),$ $\bullet I_m A = A = AI_n.$ Notice: For $n \times n$ squared matrices A, B, one has in general that $AB \neq BA,$ that is, the product is not commutative.

Properties of the transpose • $(A^T)^T = A$, • $(A+B)^T = A^T + B^T$, • $(aA)^T = aA^T$, • $(AB)^T = B^T A^T$.

Slide 19 Inverse matrix and systems of linear equations. Theorem 4 $An \ n \times n$ matrix A is invertible \Leftrightarrow for all $\mathbf{b} \in \mathbb{R}^n$ there exists a unique $\mathbf{x} \in \mathbb{R}^n$ solution of $A\mathbf{x} = \mathbf{b}$. Proof: (\Rightarrow) Define $\mathbf{x} = A^{-1}\mathbf{b}$. Then, $A\mathbf{x} = A(A^{-1})\mathbf{b} = \mathbf{b}$. If \mathbf{x}_1 and \mathbf{x}_2 satisfy $A\mathbf{x}_1 = \mathbf{b}$, and $A\mathbf{x}_2 = \mathbf{b}$, then $A(\mathbf{x}_1 - \mathbf{x}_2) = 0$, so $(A^{-1})A(\mathbf{x}_1 - \mathbf{x}_2) = 0$, and then $\mathbf{x}_1 = \mathbf{x}_2$. The solution is unique. (\Leftarrow)(sketch) For all $\mathbf{b} \in \mathbb{R}^n$ exists a unique $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$. This defines a function $S : \mathbb{R}^n \to \mathbb{R}^n$, $S(\mathbf{b}) = \mathbf{x}$. Assume that this function is linear. (We do not show this here.) Then it has associated a matrix C, such that $C\mathbf{b} = \mathbf{x}$. Then, $AC\mathbf{b} = A\mathbf{x} = \mathbf{b}$, so AC = I. Finally, $A\mathbf{x} = \mathbf{b}$ implies that $CA\mathbf{x} = C\mathbf{b} = \mathbf{x}$, so CA = I.

Lecture 10

Claim: Each ERO can be performed by multiplication by an appropriate matrix.

If the ERO given by the matrices E_1, \dots, E_k transform A into the identity matrix I, then the following equations holds,

 $E_k \cdots E_1 A = I,$

Slide 21

The computation of A^{-1} can be done as follows:

therefore $E_k \cdots E_1 = A^{-1}$.

 $[A|I] \to [E_1A|E_1] \to \cdots \to [E_k \cdots E_1A|E_k \cdots E_1].$

But the ERO are chosen such that $E_k \cdots E_1 A = I$, so

 $[E_k \cdots E_1 A | E_k \cdots E_1] = [I | E_k \cdots E_1]$

and the matrix $E_k \cdots E_1$ is precisely equal to A^{-1} .