System of Linear Equations

Definition 1 Fix a set of numbers a_{ij} , b_i , where $i = 1, \dots, m$ and $j = 1, \dots, n$. A system of m linear equations in n variables x_j , is given by

Slide 1

Slide 2

$$a_{11}x_1 + \cdots + a_{1n}x_n = b_1,$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + \cdots + a_{mn}x_n = b_m.$$

Consistent: It has solutions (one or infinitely many).

Inconsistent: It has no solutions.

Solutions to a system of linear equations can be obtained by:

- Substitution. (Convenient for small systems.)
- Elementary Row Operations. (Convenient for large systems.)

It is not needed to write down the variable x_1, \dots, x_n while performing the EROs. Only the coefficients of the system, and the right hand side is needed.

This is the reason to introduce the matrix notation.

Matrix Notation

System of Equations:

Augmented Matrix

Slide 3

Slide 4

$$m \text{ rows} \overbrace{\left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array}\right)}^{n \text{ columns}}$$

$$m \text{ rows} \overbrace{\left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array}\right)}^{n \text{ columns}}$$

Elementary Row Operations (EROs)

- Add to one row a multiple of the other.
- Interchange two rows.
- Multiply a row by a nonzero constant.

EROs do not change the solutions of a linear system of equations.

EROs are performed until the matrix is in echelon form.

Echelon form: Solutions of the linear system can be easily read out.

Definition 2 The diagonal elements of a matrix

$$\begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{pmatrix}$$

Slide 5

are given by a_{ii} , for i from 1 to the minimum of m and n.

Examples: Only the diagonal elements are given.

$$\begin{pmatrix} a_{11} & * & * \\ * & a_{22} & * \\ * & * & a_{33} \end{pmatrix}, \quad \begin{pmatrix} a_{11} & * & * \\ * & a_{22} & * \end{pmatrix}, \quad \begin{pmatrix} a_{11} & * \\ * & a_{22} \\ * & * \end{pmatrix}.$$

Echelon Forms

- Echelon form: Upper triangular. (Every element below the diagonal is zero.)
- Reduced Echelon Form: A matrix in echelon form such that the first nonzero element in every row satisfies both,
 - it is equal to 1,
 - it is the only nonzero element in that column.

Existence and uniqueness

ullet A system of linear equations is inconsistent if and only if the echelon form of the augmented matrix has a row of the form

 $[0,\cdots,0|b\neq 0].$

- A consistent system of linear equations contains either,
 - a unique solution, that is, no free variables;
 - or infinitely many solutions, that is, at least one free variable.

Vectors in \mathbb{R}^n

• Definition, Operations, Components.

- Linear combinations.
- Span.

Slide 7

Definition, Operations, Components

Definition 3 A vector in \mathbb{R}^n , $n \geq 1$, is an oriented segment.

Operations:

- Addition, Difference: Parallelogram law.
- Multiplication by a number: Stretching, compressing.

In components:

$$\mathbf{v} \pm \mathbf{w} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \pm \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 \pm w_1 \\ \vdots \\ v_n \pm w_n \end{pmatrix}, \quad a\mathbf{v} = \begin{pmatrix} av_1 \\ \vdots \\ av_n \end{pmatrix}.$$

Some properties of the addition and multiplication by a scalar:

Slide 10

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u},$$

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w},$$

$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v},$$

$$(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}.$$

Definition 4 A vector $\mathbf{w} \in \mathbb{R}^n$ is a linear combination of $p \geq 1$ vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ in \mathbb{R}^n if there exist p numbers c_1, \dots, c_p such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p.$$

A system of linear equations can be written as a vector equation:

Slide 11

$$a_{11}x_1 + \cdots + a_{1n}x_n = b_1,$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + \cdots + a_{mn}x_n = b_m.$$

$$\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} x_1 + \dots + \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} x_n = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

$$\mathbf{a}_1 x_1 + \dots + \mathbf{a}_n x_n = \mathbf{b}.$$

Span

Definition 5 Given p vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ in \mathbb{R}^n , denote by $Span\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ the set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$.

Slide 12

Note:

- Span $\{\mathbf{v}_1, \cdots, \mathbf{v}_p\} \subset \mathbb{R}^n$,
- If $\mathbf{w} \in \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, then there exist numbers c_1, \dots, c_p such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p.$$

Matrices as linear functions

Definition 6 A linear function $\mathbf{y} : \mathbb{R}^n \to \mathbb{R}^m$ is a function $\mathbf{y}(\mathbf{x})$ of the form

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + & \cdots & +a_{1n}x_n + c_1 \\ \vdots & & \vdots \\ a_{m1}x_1 + & \cdots & +a_{mn}x_n + c_m \end{pmatrix},$$

where

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n,$$

and a_{ij} , c_i are constants, with $i = 1, \dots, m$, and $j = 1, \dots n$.

Introducing the vector $\mathbf{c} \in \mathbb{R}^m$, and the $m \times n$ matrix A as follows,

$$\mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix}, \quad A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix},$$

then, the linear function y(x) can be written as,

$$\mathbf{y} = A\mathbf{x} + \mathbf{c}.$$

(Compare it with the expression for a linear function $y: I\!\!R \to I\!\!R,$ that is, y=ax+c.)

Slide 13

The product $A\mathbf{x}$ is defined as follows:

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + & \cdots & +a_{1n}x_n \\ \vdots & & \vdots \\ a_{m1}x_1 + & \cdots & +a_{mn}x_n \end{pmatrix}.$$

Slide 15

Exercise: Show that this product satisfies the following properties:

- $\bullet \ A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v},$
- $A(c\mathbf{u}) = cA\mathbf{u}$.

Summary

A system of linear equations

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + & \cdots & +a_{1n}x_n \\ \vdots & & \vdots \\ a_{m1}x_1 + & \cdots & +a_{mn}x_n \end{pmatrix},$$

Slide 16

can be expressed as a linear function, or as a linear combination of the column vectors, respectively,

$$\mathbf{y} = A\mathbf{x}, \quad \mathbf{y} = \mathbf{a}_1 x_1 + \dots + \mathbf{a}_n x_n,$$

where $A = [\mathbf{a}_1, \cdots, \mathbf{a}_n]$.

Theorem 1 Fix and $m \times n$ matrix $A = [\mathbf{a}_1, \dots, \mathbf{a}_n]$, and a vector $\mathbf{b} \in \mathbb{R}^m$. Then,

 $\mathbf{b} \in Span\{\mathbf{a}_1, \dots, \mathbf{a}_n\} \Leftrightarrow there \ exist \ x_1, \dots, x_n, \ such \ that$ $\mathbf{b} = \mathbf{a}_1 x_1 + \dots + \mathbf{a}_n x_n,$

 \Leftrightarrow **b** = A**x**,

 \Leftrightarrow the echelon form of $[A|\mathbf{b}]$ has NO row of the form $[0\cdots 0|b\neq 0].$