1. (5.2.18) Find h in the matrix A below such that the eigenspace for $\lambda=7$ is two-dimensional.

$$
A=\left[\begin{array}{cccc}
7 & -1 & 3 & -6 \\
0 & 1 & h & 0 \\
0 & 0 & 7 & 1 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

The eigenspace of A corresponding to $\lambda=7$ is equal to $\operatorname{Nul}(A-7 I)$. Thus, we must find the value of h for which dimension of $\operatorname{Nul}(A-7 I)$ is 2 , which is the value of h for which the number of free variables in the homegeneous system $(A-7 I) \mathbf{x}=\mathbf{0}$ is 2 .
$A-7 I=\left[\begin{array}{cccc}0 & -1 & 3 & -6 \\ 0 & -6 & h & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -4\end{array}\right]$, and the reduced echelon form of $A-7 I$ is $\left[\begin{array}{cccc}0 & 1 & -3 & 0 \\ 0 & 0 & 18-h & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$. Thus, the homogeneous system $(A-7 I) \mathbf{x}=\mathbf{0}$ has 2 free variables and the dimension of the eigenspace of A corresponding to $\lambda=7$ is 2 when $h=18$.
2. (5.3.24) A is a 3×3 matrix with two eigenvalues. Each eigenspace is one-dimensional. Is A diagonalizable? Why (or why not)?

Since the dimensions of the eigenspaces of A add up to only $2, A$ does not have a set of 3 linearly independent eigenvectors; thus, A is not diagonalizable.
3. (6.1.26) Let $\mathbf{u}=\left[\begin{array}{c}5 \\ -6 \\ 7\end{array}\right]$, and let W be the set of all \mathbf{x} in \mathbb{R}^{3} such that $\mathbf{u} \cdot \mathbf{x}=0$. What theorem (in Chapter 4) can be used to show that W is a subspace of \mathbb{R}^{3} ? Describe W in geometric language.

- $\mathbf{u} \cdot \mathbf{x}=\mathbf{u}^{T} \mathbf{x}$; thus, $W=\operatorname{Nul}\left(\mathbf{u}^{T}\right)$. By the theorem (Theorem 2 in Chapter 4) stating that the null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}, W is a subspace of \mathbb{R}^{3} since it is the null space of the 1×3 matrix \mathbf{u}^{T}.
- Geometrically, W is the plane in \mathbb{R}^{3} orthogonal to the vector \mathbf{u}.

