Math 20F

Quiz 3 (version 1)
May 13, 2005

1. (3.2.29) Compute $\operatorname{det} B^{5}$, where $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$.
$\operatorname{det} B=\left|\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 2\end{array}\right|=\left|\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 0\end{array}\right|$, by subtracting the first column from the third column of B. Thus, $\operatorname{det} B=1 \cdot\left|\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right|=-2$. Since the determinant is multiplicative, $\operatorname{det} B^{5}=(\operatorname{det} B)^{5}=(-2)^{5}=-32$.
2. (4.4.27) Use coordinate vectors to test the linear independence of the set

$$
\left\{1+t^{3}, 3+t-2 t^{2},-t+3 t^{2}-t^{3}\right\}
$$

of polynomials. Explain your work.
The standard basis \mathcal{E} for \mathbb{P}_{3} is $\left\{1, t, t^{2}, t^{3}\right\}$. Hence,

$$
\left[1+t^{3}\right]_{\mathcal{E}}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad\left[3+t-2 t^{2}\right]_{\mathcal{E}}=\left[\begin{array}{c}
3 \\
1 \\
-2 \\
0
\end{array}\right], \quad\left[-t+3 t^{2}-t^{3}\right]_{\mathcal{E}}=\left[\begin{array}{c}
0 \\
-1 \\
3 \\
-1
\end{array}\right]
$$

The set $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ 1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 3 \\ -1\end{array}\right]\right\}$ is linearly independent since none of the vectors is a linear combination of the other two, as can be seen by observing the location of the zero entries. Thus, $\left\{1+t^{3}, 3+t-2 t^{2},-t+3 t^{2}-t^{3}\right\}$ is linearly independent because the set of corresponding coordinate vectors is linearly independent.
3. (4.6.3) The matrices $A=\left[\begin{array}{ccccc}1 & 5 & 2 & 1 & 2 \\ -2 & -10 & 1 & 8 & -9 \\ 3 & 15 & 1 & -7 & 11 \\ 1 & 5 & 1 & -1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccccc}1 & 5 & 0 & -3 & 4 \\ 0 & 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ are row equivalent.
(a) List $\operatorname{rank} A$ and $\operatorname{dim} \operatorname{Nul} A$. rank $A=2=$ number of nonzero rows in B, the reduced echelon form of A. $\operatorname{dim} \operatorname{Nul} A=3=$ number of non-pivot columns in B and A.
(b) Find bases for $\operatorname{Col} A$, Row A, and $\operatorname{Nul} A$.
basis for $\operatorname{Col} A=\left\{\left[\begin{array}{c}1 \\ -2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$, the set of pivot columns of A.
basis for Row $A=\{(1,5,0,-3,4),(0,0,1,2,-1)\}$, the set of nonzero rows of B.
Since Nul $A=\left\{\left[\begin{array}{c}-5 x_{2}+3 x_{4}-4 x_{5} \\ x_{2} \\ -2 x_{4}+x_{5} \\ x_{4} \\ x_{5}\end{array}\right]=x_{2}\left[\begin{array}{c}-5 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}3 \\ 0 \\ -2 \\ 1 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{c}-4 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$,
basis for Nul $A=\left\{\left[\begin{array}{c}-5 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ 0 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$

