Math 20F Quiz 2 (version 1) April 22, 2005

1. (1.7.14) Find the value of h for which the set of vectors

$$\begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix}, \begin{bmatrix} -5\\ 6\\ 11 \end{bmatrix}, \begin{bmatrix} 2\\ -1\\ h \end{bmatrix}$$

is linearly *dependent*. Justify your answer.

 $\left\{ \begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix}, \begin{bmatrix} -5\\ 6\\ 11 \end{bmatrix}, \begin{bmatrix} 2\\ -1\\ h \end{bmatrix} \right\}$ will be linearly dependent if and only if the homogeneous vector equation $x_1 \begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix} + x_2 \begin{bmatrix} -5\\ 6\\ 11 \end{bmatrix} + x_3 \begin{bmatrix} 2\\ -1\\ h \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$ has a nontrivial solution.

The augmented matrix of the corresponding homogeneous matrix equation is $\begin{bmatrix} 1 & -5 & 2 & 0 \\ -1 & 6 & -1 & 0 \\ -2 & 11 & h & 0 \end{bmatrix},$

which is row equivalent to $\begin{bmatrix} 1 & -5 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 3+h & 0 \end{bmatrix}$, which has has nontrivial solutions when h = -3. Thus, the set of vectors is linearly dependent precisely when h = -3. A typical dependence relation is $-7\begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} - \begin{bmatrix} -5 \\ 6 \\ 11 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

2. (1.9.3) Find the standard matrix for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that rotates points (about the origin) through $\frac{3\pi}{2}$ radians (counterclockwise).

Rotating
$$\begin{bmatrix} 1\\0 \end{bmatrix}$$
 by $\frac{3\pi}{2}$ radians yields $\begin{bmatrix} 0\\-1 \end{bmatrix}$ and rotating $\begin{bmatrix} 0\\1 \end{bmatrix}$ by $\frac{3\pi}{2}$ radians yields $\begin{bmatrix} 1\\0 \end{bmatrix}$. Thus,
 $T(\mathbf{e}_1) = T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} 0\\-1 \end{bmatrix}$
 $T(\mathbf{e}_2) = T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = \begin{bmatrix} 1\\0 \end{bmatrix}$
Hence, the standard matrix for T is $[T(\mathbf{e}_1) T(\mathbf{e}_2)] = \begin{bmatrix} 0 & 1\\-1 & 0 \end{bmatrix}$.

3. (2.2.24) Suppose A is $n \times n$ and the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each b in \mathbb{R}^n . Explain why A must be invertible. [*Hint:* Is A row equivalent to I_n ?]

Since $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^n , we can solve each of the *n* matrix equations

$$A\mathbf{u}_1 = \mathbf{e}_1$$

$$A\mathbf{u}_2 = \mathbf{e}_2$$

$$\dots$$

$$A\mathbf{u}_n = \mathbf{e}_n$$

Thus, $A [\mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_n] = [A\mathbf{u}_1 A\mathbf{u}_2 \cdots A\mathbf{u}_n] = [\mathbf{e}_1 \mathbf{e}_2 \cdots \mathbf{e}_n] = I$. This means that the matrix $B = [\mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_n]$ satisfies AB = I, which implies that A is invertible.