Math 20F

Quiz 2 (version 1)

April 22, 2005

1. (1.7.14) Find the value of h for which the set of vectors

$$
\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-5 \\
6 \\
11
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
h
\end{array}\right]
$$

is linearly dependent. Justify your answer.
$\left\{\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right],\left[\begin{array}{c}-5 \\ 6 \\ 11\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ h\end{array}\right]\right\}$ will be linearly dependent if and only if the homogeneous vector equation $x_{1}\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right]+x_{2}\left[\begin{array}{c}-5 \\ 6 \\ 11\end{array}\right]+x_{3}\left[\begin{array}{c}2 \\ -1 \\ h\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ has a nontrivial solution.
The augmented matrix of the corresponding homogeneous matrix equation is $\left[\begin{array}{cccc}1 & -5 & 2 & 0 \\ -1 & 6 & -1 & 0 \\ -2 & 11 & h & 0\end{array}\right]$, which is row equivalent to $\left[\begin{array}{cccc}1 & -5 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 3+h & 0\end{array}\right]$, which has has nontrivial solutions when $h=-3$. Thus, the set of vectors is linearly dependent precisely when $h=-3$. A typical dependence relation is $-7\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right]-\left[\begin{array}{c}-5 \\ 6 \\ 11\end{array}\right]+\left[\begin{array}{c}2 \\ -1 \\ -3\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
2. (1.9.3) Find the standard matrix for the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates points (about the origin) through $\frac{3 \pi}{2}$ radians (counterclockwise).

Rotating $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ by $\frac{3 \pi}{2}$ radians yields $\left[\begin{array}{c}0 \\ -1\end{array}\right]$ and rotating $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ by $\frac{3 \pi}{2}$ radians yields $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Thus,

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
& T\left(\mathbf{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

Hence, the standard matrix for T is $\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
3. (2.2.24) Suppose A is $n \times n$ and the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each b in \mathbb{R}^{n}. Explain why A must be invertible. [Hint: Is A row equivalent to I_{n} ?]

Since $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^{n}, we can solve each of the n matrix equations

$$
\begin{aligned}
A \mathbf{u}_{1} & =\mathbf{e}_{1} \\
A \mathbf{u}_{2} & =\mathbf{e}_{2} \\
\ldots & \cdots \\
A \mathbf{u}_{n} & =\mathbf{e}_{n}
\end{aligned}
$$

Thus, $A\left[\mathbf{u}_{1} \mathbf{u}_{2} \cdots \mathbf{u}_{n}\right]=\left[A \mathbf{u}_{1} A \mathbf{u}_{2} \cdots A \mathbf{u}_{n}\right]=\left[\mathbf{e}_{1} \mathbf{e}_{2} \cdots \mathbf{e}_{n}\right]=I$. This means that the matrix $B=\left[\mathbf{u}_{1} \mathbf{u}_{2} \cdots \mathbf{u}_{n}\right]$ satisfies $A B=I$, which implies that A is invertible.

