Distance formula

Theorem 1 The distance between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\left|P_{1} P_{2}\right|=\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]^{1 / 2}
$$

Slide 1
The concept of distance has a central role to generalize the concept of limit to vector valued functions.

Application: A sphere has an equation.

$$
S_{P_{0}, R}=\left\{P \in \mathbb{R}^{3}:\left|P_{0} P\right|=R\right\}
$$

is the sphere centered at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ of radius $R>0$. The equation is

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=R^{2}
$$

Application: The equation of a ball centered at P_{0} of radius R is

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2} \leq R^{2}
$$

Exercises

- Fix constants a, b, c, and d. Show that

Slide 2

$$
x^{2}+y^{2}+z^{2}-2 a x-2 b y-2 c z=d
$$

is the equation of a sphere if and only if

$$
d>-\left(a^{2}+b^{2}+c^{2}\right)
$$

- Give the expressions for the center P_{0} and the radius R of the sphere.

Vectors in \mathbb{R}^{3}

- What are vectors?

Slide 3

- Operations with vectors.
- Addition, Difference.
- Multiplication by a number.
- Components.

What are vectors?

~ 1800 Physicists and Mathematicians realized that several different physical phenomena were described using the same idea, the same concept. These phenomena included velocities, accelerations, forces, rotations, electric and magnetic phenomena, heat transfer, etc.

The new concept were more than a number in the sense that it was needed more than a single number to specify it.

Definition $1 A$ vector in \mathbb{R}^{3} is an oriented segment.

Operations with vectors

Slide 5

- Addition: Parallelogram law.
- Multiplication by a number. (Positive, negative, or zero.)
- Difference.

Components on a vector

The operations with vectors, defined geometrically can be written in terms of components.

Given the vectors $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle, \mathbf{w}=\left\langle w_{x}, w_{y}, w_{z}\right\rangle$ in \mathbb{R}^{3}, and a
Slide 6 number $a \in \mathbb{R}$, then the following expressions hold,

$$
\begin{aligned}
\mathbf{v}+\mathbf{w} & =\left\langle\left(v_{x}+w_{x}\right),\left(v_{y}+w_{y}\right),\left(v_{z}+w_{z}\right)\right\rangle, \\
\mathbf{v}-\mathbf{w} & =\left\langle\left(v_{x}-w_{x}\right),\left(v_{y}-w_{y}\right),\left(v_{z}-w_{z}\right)\right\rangle, \\
a \mathbf{v} & =\left\langle a v_{x}, a v_{y}, a v_{z}\right\rangle, \\
|\mathbf{v}| & =\left[\left(v_{x}\right)^{2}+\left(v_{y}\right)^{2}+\left(v_{z}\right)^{2}\right]^{1 / 2} .
\end{aligned}
$$

Useful vectors:

$$
\begin{aligned}
\mathbf{i} & =\langle 1,0,0\rangle \\
\mathbf{j} & =\langle 0,1,0\rangle \\
\mathbf{k} & =\langle 0,0,1\rangle
\end{aligned}
$$

Every vector \mathbf{v} in \mathbb{R}^{3} can be written uniquely in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$.
The following equation holds,

$$
\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k} .
$$

Dot Product

Slide $8 \quad-$ Definition

- Properties
- Equivalent expression

Definition and properties

Definition 2 Let \mathbf{v}, w be vectors and $0 \leq \theta \leq \pi$ be the angle in between. Then

$$
\mathbf{v} \cdot \mathbf{w}=|\mathbf{v}||\mathbf{w}| \cos (\theta)
$$

Slide 9
Properties:

- $\mathbf{v} \cdot \mathbf{w}=0 \Longleftrightarrow \mathbf{v} \perp \mathbf{w}, \quad(\theta=\pi / 2) ;$
- $\mathbf{v} \cdot \mathbf{v}=|\mathbf{v}|^{2}, \quad(\theta=0)$;
- $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}, \quad$ (commutative);
- $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$.

Equivalent expression

Theorem 2 Let $\mathbf{v}=\left\langle v_{x}, v_{y}, v_{z}\right\rangle, \mathbf{w}=\left\langle w_{x}, w_{y}, w_{z}\right\rangle$. Then

$$
\mathbf{v} \cdot \mathbf{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}
$$

Slide 10
For the proof, recall that

$$
\begin{aligned}
\mathbf{i}=\langle 1,0,0\rangle, & \mathbf{j}=\langle 0,1,0\rangle,
\end{aligned} \quad \mathbf{k}=\langle 0,0,1\rangle, ~\left(\begin{array}{lll}
\mathbf{k} \cdot \mathbf{k}=1, \\
\mathbf{i} \cdot \mathbf{i}=1, & \mathbf{j} \cdot \mathbf{j}=1, & \mathbf{k} \cdot \mathbf{k}=1 \\
\mathbf{i} \cdot \mathbf{j}=0, & \mathbf{j} \cdot \mathbf{i}=0, & \mathbf{k} \cdot \mathbf{i}=0, \\
\mathbf{i} \cdot \mathbf{k}=0, & \mathbf{j} \cdot \mathbf{k}=0, & \mathbf{k} \cdot \mathbf{j}=0
\end{array}\right.
$$

Cross Product

- Definition

Slide 11

- Properties (Determinants)
- Equivalent expression
- Triple product

Definition

Definition 3 Let \mathbf{v}, w be 3-dimensional vectors, and $0 \leq \theta \leq \pi$ be the angle in between them. Then, $\mathbf{v} \times \mathbf{w}$ is a vector normal to \mathbf{v} and \mathbf{w}, pointing in the direction given by the right hand rule, and

Slide 12

$$
|\mathbf{v} \times \mathbf{w}|=|\mathbf{v}||\mathbf{w}| \sin (\theta)
$$

Example:

$$
\begin{aligned}
& \mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{i}=-\mathbf{k}, \\
& \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{j}=-\mathbf{i}, \\
& \mathbf{k} \times \mathbf{i}=\mathbf{j}, \quad \mathbf{i} \times \mathbf{k}=-\mathbf{j} .
\end{aligned}
$$

Properties

- $\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}$,
- $\mathbf{v} \times \mathbf{v}=0$,

Slide 13

- $(a \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(a \mathbf{w})=a(\mathbf{v} \times \mathbf{w})$,
- $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$,
- $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$.

Notice: $\mathbf{u} \times(\mathbf{v} \times \mathbf{w}) \neq(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.
Example: $\mathbf{i} \times(\mathbf{i} \times \mathbf{k})=-\mathbf{k}$, but $(\mathbf{i} \times \mathbf{i}) \times \mathbf{k}=0$.

Theorem 3 If $\mathbf{v}, \mathbf{w} \neq 0$, then the following assertion holds:

$$
\mathbf{v} \times \mathbf{w}=0 \Leftrightarrow \mathbf{v} \text { parallel } \mathbf{w} .
$$

Theorem $4|\mathbf{v} \times \mathbf{w}|$ is the area of the parallelogram formed by \mathbf{v} and \mathbf{w}.
Slide 14
Theorem 5 Let $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$. Then,

$$
\mathbf{v} \times \mathbf{w}=\left\langle\left(v_{2} w_{3}-v_{3} w_{2}\right),\left(v_{3} w_{1}-v_{1} w_{3}\right),\left(v_{1} w_{2}-v_{2} w_{1}\right)\right\rangle .
$$

For the proof of the last theorem, recall that

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j} .
$$

Note on determinants

They are useful un several areas of Mathematics. We don't study them in our course. We use them only as a tool to remember the components of $\mathbf{v} \times \mathbf{w}$.

Slide 15

$$
\begin{gathered}
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c . \\
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{cc}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
\end{gathered}
$$

Triple product

Definition 4 Given \mathbf{u}, \mathbf{v}, w, the triple product is the number given by

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})
$$

Theorem 6 Fix nonzero vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$. Then, $|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$ is the volume of the parallelepiped determined by $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

Note: $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v}$.

