\qquad
\qquad
TA Name: \qquad Sec. Time: \qquad
Math 20C

Quiz 3

November 9, 2005

1. (Sec. 14.6, Probl. 19) Find the directional derivative of $f(x, y)=\sqrt{x y}$ at $P(2,8)$ in the direction of $Q(5,4)$.

The unit vector \mathbf{u} in the direction form P to Q is computed as follows.

$$
\begin{aligned}
\mathbf{v} & =\overrightarrow{P Q}=\langle 5-2,4-8\rangle=\langle 3,-4\rangle \\
|\mathbf{v}| & =\sqrt{9+16}=5, \quad \Rightarrow \mathbf{u}=\frac{1}{5}\langle 3,-4\rangle
\end{aligned}
$$

The gradient of f is given by

$$
\nabla f(x, y)=\left\langle\frac{y}{2 \sqrt{x y}}, \frac{x}{2 \sqrt{x y}}\right\rangle=\frac{1}{2}\left\langle\sqrt{\frac{y}{x}}, \sqrt{\frac{x}{y}}\right\rangle
$$

Then,

$$
\nabla f(2,8)=\frac{1}{2}\left\langle 2, \frac{1}{2}\right\rangle=\left\langle 1, \frac{1}{4}\right\rangle
$$

Therefore,

$$
D_{u} f(2,8)=\left\langle 1, \frac{1}{4}\right\rangle \cdot \frac{1}{5}\langle 3,-4\rangle=\frac{1}{5}(3-1)
$$

then,

$$
D_{u} f(2,8)=\frac{2}{5}
$$

2. (Sec. 14.7, Probl. 45) Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane

$$
x+2 y+3 z=6
$$

$$
V(x, y, z)=x y z, \quad \text { with } x>0, \quad y>0, \quad z>0
$$

The constraint is $x+2 y+3 z=6$. Then,

$$
x=6-2 y-3 z, \quad \Rightarrow V(y, z)=6 y z-2 y^{2} z-3 y z^{2}
$$

Then,

$$
\begin{aligned}
& V_{y}=6 z-4 y z-3 z^{2}=0, \quad z \neq 0, \quad \Rightarrow 6-4 y-3 z=0 \\
& V_{z}=6 y-2 y^{2}-6 y z=0, \quad y \neq 0, \quad \Rightarrow 6-2 y-6 z=0
\end{aligned}
$$

The first equation says $3 z=6-4 y$, then this expression into the second equation above implies

$$
6-2 y-2(6-4 y)=0, \quad \Rightarrow-6+6 y=0, \quad \Rightarrow y=1
$$

Then,

$$
z=\frac{2}{3}, \quad \text { and then } x=6-2-3 \frac{2}{3}, \quad \Rightarrow x=2
$$

Finally,

$$
V=\frac{4}{3}
$$

